Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism

Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 33)


The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.


Energy expenditure Food intake Glucose homeostasis Orexin/hypocretin 


  1. 1.
    Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(5):1 page following 696PubMedCrossRefGoogle Scholar
  2. 2.
    Marcus JN et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25PubMedCrossRefGoogle Scholar
  3. 3.
    Tsujino N, Sakurai T (2013) Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 7:28PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    de Lecea L, Sutcliffe JG (1999) The hypocretins/orexins: novel hypothalamic neuropeptides involved in different physiological systems. Cell Mol Life Sci 56(5–6):473–480PubMedCrossRefGoogle Scholar
  5. 5.
    Peyron C et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015PubMedGoogle Scholar
  6. 6.
    Date Y et al (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 96(2):748–753PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nambu T et al (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827(1–2):243–260PubMedCrossRefGoogle Scholar
  8. 8.
    Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77(2):323–324PubMedCrossRefGoogle Scholar
  9. 9.
    Delgado JM, Anand BK (1953) Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol 172(1):162–168PubMedGoogle Scholar
  10. 10.
    Mogenson GJ, Stevenson JA (1967) Drinking induced by electrical stimulation of the lateral hypothalamus. Exp Neurol 17(2):119–127PubMedCrossRefGoogle Scholar
  11. 11.
    Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287(5450):125–128PubMedCrossRefGoogle Scholar
  12. 12.
    Bittencourt JC et al (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319(2):218–245PubMedCrossRefGoogle Scholar
  13. 13.
    Rosin DL et al (2003) Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol 465(4):593–603PubMedCrossRefGoogle Scholar
  14. 14.
    Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119(4):1033–1044PubMedCrossRefGoogle Scholar
  15. 15.
    Meister B (2007) Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav 92(1–2):263–271PubMedCrossRefGoogle Scholar
  16. 16.
    Qu D et al (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380(6571):243–247PubMedCrossRefGoogle Scholar
  17. 17.
    Leinninger GM et al (2011) Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab 14(3):313–323PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Laque A et al (2013) Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. Am J Physiol Endocrinol Metab 304(9):E999–E1011PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Allison MB et al (2015) TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol Metab 4(4):299–309PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li Z et al (2015) Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab 22(6):1059–1067PubMedCrossRefGoogle Scholar
  21. 21.
    Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585PubMedCrossRefGoogle Scholar
  22. 22.
    Haynes AC et al (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul Pept 96(1–2):45–51PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada H et al (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun 267(2):527–531PubMedCrossRefGoogle Scholar
  24. 24.
    Sharf R et al (2010) Orexin signaling via the orexin 1 receptor mediates operant responding for food reinforcement. Biol Psychiatry 67(8):753–760PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Yamanaka A et al (1999) Chronic intracerebroventricular administration of orexin-A to rats increases food intake in daytime, but has no effect on body weight. Brain Res 849(1–2):248–252PubMedCrossRefGoogle Scholar
  26. 26.
    Lin L et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376PubMedCrossRefGoogle Scholar
  27. 27.
    Nishino S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40PubMedCrossRefGoogle Scholar
  28. 28.
    Peyron C et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997PubMedCrossRefGoogle Scholar
  29. 29.
    Mignot E (2004) Sleep, sleep disorders and hypocretin (orexin). Sleep Med 5(Suppl 1):S2–S8PubMedCrossRefGoogle Scholar
  30. 30.
    de Lecea L (2012) Hypocretins and the neurobiology of sleep-wake mechanisms. Prog Brain Res 198:15–24PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kotz CM et al (2002) Feeding and activity induced by orexin A in the lateral hypothalamus in rats. Regul Pept 104(1–3):27–32PubMedCrossRefGoogle Scholar
  32. 32.
    Thorpe AJ et al (2003) Peptides that regulate food intake: regional, metabolic, and circadian specificity of lateral hypothalamic orexin A feeding stimulation. Am J Physiol Regul Integr Comp Physiol 284(6):R1409–R1417PubMedCrossRefGoogle Scholar
  33. 33.
    Thorpe AJ, Teske JA, Kotz CM (2005) Orexin A-induced feeding is augmented by caloric challenge. Am J Physiol Regul Integr Comp Physiol 289(2):R367–R372PubMedCrossRefGoogle Scholar
  34. 34.
    Cai XJ et al (1999) Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 48(11):2132–2137PubMedCrossRefGoogle Scholar
  35. 35.
    Griffond B et al (1999) Insulin-induced hypoglycemia increases preprohypocretin (orexin) mRNA in the rat lateral hypothalamic area. Neurosci Lett 262(2):77–80PubMedCrossRefGoogle Scholar
  36. 36.
    Moriguchi T et al (1999) Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci Lett 264(1–3):101–104PubMedCrossRefGoogle Scholar
  37. 37.
    Paranjape SA et al (2006) Habituation of insulin-induced hypoglycemic transcription activation of lateral hypothalamic orexin-A-containing neurons to recurring exposure. Regul Pept 135(1–2):1–6PubMedCrossRefGoogle Scholar
  38. 38.
    Otlivanchik O, Le Foll C, Levin BE (2015) Perifornical hypothalamic orexin and serotonin modulate the counterregulatory response to hypoglycemic and glucoprivic stimuli. Diabetes 64(1):226–235PubMedCrossRefGoogle Scholar
  39. 39.
    Diano S et al (2003) Fasting activates the nonhuman primate hypocretin (orexin) system and its postsynaptic targets. Endocrinology 144(9):3774–3778PubMedCrossRefGoogle Scholar
  40. 40.
    Horvath TL, Gao XB (2005) Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab 1(4):279–286PubMedCrossRefGoogle Scholar
  41. 41.
    Myers MG Jr et al (2009) The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab 9(2):117–23Google Scholar
  42. 42.
    Flak JN, Myers MG Jr (2016) Minireview: CNS mechanisms of leptin action. Mol Endocrinol 30(1):3–12Google Scholar
  43. 43.
    Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 459(7245):340–342PubMedCrossRefGoogle Scholar
  44. 44.
    Williams KW et al (2011) The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. J Neurosci 31(37):13147–13156PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Goforth PB et al (2014) Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci 34(34):11405–11415PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Louis GW et al (2010) Direct innervation and modulation of orexin neurons by lateral hypothalamic LepRb neurons. J Neurosci 30(34):11278–11287PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cui H et al (2012) Neuroanatomy of melanocortin-4 receptor pathway in the lateral hypothalamic area. J Comp Neurol 520(18):4168–4183PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Elias CF et al (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402(4):442–459PubMedCrossRefGoogle Scholar
  49. 49.
    Laque A et al (2015) Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 4(10):706–717PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    de Weille J et al (1988) ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci U S A 85(4):1312–1316PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dunne MJ et al (1989) Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 8(2):413–420PubMedPubMedCentralGoogle Scholar
  52. 52.
    Zini S et al (1993) Galanin reduces release of endogenous excitatory amino acids in the rat hippocampus. Eur J Pharmacol 245(1):1–7PubMedCrossRefGoogle Scholar
  53. 53.
    Muller TD et al (2015) Ghrelin. Mol Metab 4(6):437–460PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Toshinai K et al (2003) Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 144(4):1506–1512PubMedCrossRefGoogle Scholar
  55. 55.
    Yamanaka A et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38(5):701–713PubMedCrossRefGoogle Scholar
  56. 56.
    Lopez M et al (2000) Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochem Biophys Res Commun 269(1):41–45PubMedCrossRefGoogle Scholar
  57. 57.
    Stanley S et al (2010) Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci U S A 107(15):7024–7029PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yamamoto Y et al (2000) Effects of food restriction on the hypothalamic prepro-orexin gene expression in genetically obese mice. Brain Res Bull 51(6):515–521PubMedCrossRefGoogle Scholar
  59. 59.
    Ma X et al (2007) Electrical inhibition of identified anorexigenic POMC neurons by orexin/hypocretin. J Neurosci 27(7):1529–1533PubMedCrossRefGoogle Scholar
  60. 60.
    Kohno D et al (2003) Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes 52(4):948–956PubMedCrossRefGoogle Scholar
  61. 61.
    Muroya S et al (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19(6):1524–1534PubMedCrossRefGoogle Scholar
  62. 62.
    Jain MR et al (2000) Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept 87(1–3):19–24PubMedCrossRefGoogle Scholar
  63. 63.
    Morello G et al (2016) Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling. Proc Natl Acad Sci U S A 113(17):4759–4764PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mieda M et al (2004) Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci 24(46):10493–10501PubMedCrossRefGoogle Scholar
  65. 65.
    Akiyama M et al (2004) Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur J Neurosci 20(11):3054–3062PubMedCrossRefGoogle Scholar
  66. 66.
    Thorpe AJ et al (2005) Centrally administered orexin A increases motivation for sweet pellets in rats. Psychopharmacology (Berl) 182(1):75–83CrossRefGoogle Scholar
  67. 67.
    Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437(7058):556–559PubMedCrossRefGoogle Scholar
  68. 68.
    Zheng H, Patterson LM, Berthoud HR (2007) Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 27(41):11075–11082PubMedCrossRefGoogle Scholar
  69. 69.
    Nair SG, Golden SA, Shaham Y (2008) Differential effects of the hypocretin 1 receptor antagonist SB 334867 on high-fat food self-administration and reinstatement of food seeking in rats. Br J Pharmacol 154(2):406–416PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Richards JK et al (2008) Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology (Berl) 199(1):109–117CrossRefGoogle Scholar
  71. 71.
    Borgland SL et al (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29(36):11215–11225PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Petrovich GD, Hobin MP, Reppucci CJ (2012) Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 224:70–80PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Piccoli L et al (2012) Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology 37(9):1999–2011PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kay K et al (2014) Hindbrain orexin 1 receptors influence palatable food intake, operant responding for food, and food-conditioned place preference in rats. Psychopharmacology (Berl) 231(2):419–427CrossRefGoogle Scholar
  75. 75.
    DiLeone RJ, Georgescu D, Nestler EJ (2003) Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci 73(6):759–768PubMedCrossRefGoogle Scholar
  76. 76.
    Vittoz NM, Berridge CW (2006) Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 31(2):384–395PubMedCrossRefGoogle Scholar
  77. 77.
    Vittoz NM, Schmeichel B, Berridge CW (2008) Hypocretin/orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur J Neurosci 28(8):1629–1640PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Korotkova TM et al (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23(1):7–11PubMedGoogle Scholar
  79. 79.
    Srinivasan S et al (2012) The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 7(9):e44726PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Borgland SL et al (2006) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49(4):589–601PubMedCrossRefGoogle Scholar
  81. 81.
    Wang B, You ZB, Wise RA (2009) Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: independence from the local corticotropin-releasing factor network. Biol Psychiatry 65(10):857–862PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Perello M et al (2010) Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner. Biol Psychiatry 67(9):880–886PubMedCrossRefGoogle Scholar
  83. 83.
    Bonnavion P et al (2015) Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 6:6266PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hara J et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354PubMedCrossRefGoogle Scholar
  85. 85.
    Hara J, Yanagisawa M, Sakurai T (2005) Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett 380(3):239–242PubMedCrossRefGoogle Scholar
  86. 86.
    Funato H et al (2009) Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab 9(1):64–76PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hagan JJ et al (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A 96(19):10911–10916PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kiwaki K et al (2004) Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab 286(4):E551–E559PubMedCrossRefGoogle Scholar
  89. 89.
    Novak CM, Kotz CM, Levine JA (2006) Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab 290(2):E396–E403PubMedCrossRefGoogle Scholar
  90. 90.
    Teske JA et al (2006) Elevated hypothalamic orexin signaling, sensitivity to orexin A, and spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 291(4):R889–R899PubMedCrossRefGoogle Scholar
  91. 91.
    Lubkin M, Stricker-Krongrad A (1998) Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun 253(2):241–245PubMedCrossRefGoogle Scholar
  92. 92.
    Jones DN et al (2001) Effects of centrally administered orexin-B and orexin-A: a role for orexin-1 receptors in orexin-B-induced hyperactivity. Psychopharmacology (Berl) 153(2):210–218CrossRefGoogle Scholar
  93. 93.
    Perez-Leighton CE et al. (2012) Behavioral responses to orexin, orexin receptor gene expression, and spontaneous physical activity contribute to individual sensitivity to obesity. Am J Physiol Endocrinol Metab 303(7):E865–E874Google Scholar
  94. 94.
    Samson WK et al (1999) Cardiovascular regulatory actions of the hypocretins in brain. Brain Res 831(1–2):248–253PubMedCrossRefGoogle Scholar
  95. 95.
    Matsumura K, Tsuchihashi T, Abe I (2001) Central orexin-A augments sympathoadrenal outflow in conscious rabbits. Hypertension 37(6):1382–1387PubMedCrossRefGoogle Scholar
  96. 96.
    Shirasaka T et al (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277(6 Pt 2):R1780–R1785PubMedGoogle Scholar
  97. 97.
    Dun NJ et al (2000) Orexins: a role in medullary sympathetic outflow. Regul Pept 96(1–2):65–70PubMedCrossRefGoogle Scholar
  98. 98.
    Zheng H, Patterson LM, Berthoud HR (2005) Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol 485(2):127–142PubMedCrossRefGoogle Scholar
  99. 99.
    Yasuda T et al (2005) Dual regulatory effects of orexins on sympathetic nerve activity innervating brown adipose tissue in rats. Endocrinology 146(6):2744–2748PubMedCrossRefGoogle Scholar
  100. 100.
    Monda M et al (2007) Sympathetic and hyperthermic reactions by orexin A: role of cerebral catecholaminergic neurons. Regul Pept 139(1–3):39–44PubMedCrossRefGoogle Scholar
  101. 101.
    Verty AN, Allen AM, Oldfield BJ (2010) The endogenous actions of hypothalamic peptides on brown adipose tissue thermogenesis in the rat. Endocrinology 151(9):4236–4246PubMedCrossRefGoogle Scholar
  102. 102.
    Madden CJ, Tupone D, Morrison SF (2012) Orexin modulates brown adipose tissue thermogenesis. Biomol Concepts 3(4):381–386PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Morrison SF, Madden CJ, Tupone D (2012) An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. Adipocytes 1(2):116–120CrossRefGoogle Scholar
  104. 104.
    Sellayah D, Sikder D (2012) Orexin receptor-1 mediates brown fat developmental differentiation. Adipocytes 1(1):58–63CrossRefGoogle Scholar
  105. 105.
    Donadio V et al (2014) Lower wake resting sympathetic and cardiovascular activities in narcolepsy with cataplexy. Neurology 83(12):1080–1086PubMedCrossRefGoogle Scholar
  106. 106.
    Oldfield BJ et al (2002) The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110(3):515–526PubMedCrossRefGoogle Scholar
  107. 107.
    Korim WS et al (2014) Orexinergic activation of medullary premotor neurons modulates the adrenal sympathoexcitation to hypothalamic glucoprivation. Diabetes 63(6):1895–1906PubMedCrossRefGoogle Scholar
  108. 108.
    Machado BH et al (2002) Pressor response to microinjection of orexin/hypocretin into rostral ventrolateral medulla of awake rats. Regul Pept 104(1–3):75–81PubMedCrossRefGoogle Scholar
  109. 109.
    Antunes VR et al (2001) Orexins/hypocretins excite rat sympathetic preganglionic neurons in vivo and in vitro. Am J Physiol Regul Integr Comp Physiol 281(6):R1801–R1807PubMedCrossRefGoogle Scholar
  110. 110.
    de Lecea L, Huerta R (2014) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5:16PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Parsons MP, Hirasawa M (2010) ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 30(24):8061–8070PubMedCrossRefGoogle Scholar
  112. 112.
    Venner A et al (2011) Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 589(Pt 23):5701–5708Google Scholar
  113. 113.
    Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25(9):2429–2433PubMedCrossRefGoogle Scholar
  114. 114.
    Karnani MM et al (2011) Activation of central orexin/hypocretin neurons by dietary amino acids. Neuron 72(4):616–629PubMedCrossRefGoogle Scholar
  115. 115.
    Burdakov D et al (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron 50(5):711–722PubMedCrossRefGoogle Scholar
  116. 116.
    Gonzalez JA et al (2008) Metabolism-independent sugar sensing in central orexin neurons. Diabetes 57(10):2569–2576PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gonzalez JA et al (2009) Deletion of TASK1 and TASK3 channels disrupts intrinsic excitability but does not abolish glucose or pH responses of orexin/hypocretin neurons. Eur J Neurosci 30(1):57–64PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Guyon A et al (2009) Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels. J Neurosci 29(8):2528–2533PubMedCrossRefGoogle Scholar
  119. 119.
    Liu ZW et al (2011) Intracellular energy status regulates activity in hypocretin/orexin neurones: a link between energy and behavioural states. J Physiol 589(Pt 17):4157–4166PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Venner A et al (2011) Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 589(Pt 23):5701–5708PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sheng Z et al (2014) Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol Cell Neurosci 62:30–41PubMedCrossRefGoogle Scholar
  122. 122.
    Goforth PB et al (2011) Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol 105(5):2350–2363Google Scholar
  123. 123.
    Tsuneki H, Wada T, Sasaoka T (2012) Role of orexin in the central regulation of glucose and energy homeostasis. Endocr J 59(5):365–374PubMedCrossRefGoogle Scholar
  124. 124.
    Yoshimichi G et al (2001) Orexin-A regulates body temperature in coordination with arousal status. Exp Biol Med (Maywood) 226(5):468–476CrossRefGoogle Scholar
  125. 125.
    Yi CX et al (2009) A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58(9):1998–2005PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Nowak KW et al (2000) Acute orexin effects on insulin secretion in the rat: in vivo and in vitro studies. Life Sci 66(5):449–454PubMedCrossRefGoogle Scholar
  127. 127.
    Inutsuka A et al (2014) Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons. Neuropharmacology 85:451–460PubMedCrossRefGoogle Scholar
  128. 128.
    Tsuneki H et al (2002) Reduction of blood glucose level by orexins in fasting normal and streptozotocin-diabetic mice. Eur J Pharmacol 448(2–3):245–252PubMedCrossRefGoogle Scholar
  129. 129.
    Shiuchi T et al (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10(6):466–480PubMedCrossRefGoogle Scholar
  130. 130.
    Tsuneki H et al (2015) Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64(2):459–470PubMedCrossRefGoogle Scholar
  131. 131.
    Ramadori G et al (2011) SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14(3):301–312PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wu X et al (2004) Hypothalamus-brain stem circuitry responsible for vagal efferent signaling to the pancreas evoked by hypoglycemia in rat. J Neurophysiol 91(4):1734–1747PubMedCrossRefGoogle Scholar
  133. 133.
    Tsuneki H et al (2013) Hypothalamic orexin prevents hepatic insulin resistance induced by social defeat stress in mice. Neuropeptides 47(3):213–219PubMedCrossRefGoogle Scholar
  134. 134.
    McCrimmon RJ, Sherwin RS (2010) Hypoglycemia in type 1 diabetes. Diabetes 59(10):2333–2339PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of MichiganAnn ArborUSA
  2. 2.Departments of Internal Medicine, and Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations