Skip to main content

Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 31)

Abstract

Metabolic parameters have a direct role in the regulation of immune cell function. Thereby the inflammation-induced metabolism of aromatic amino acids, most importantly of tryptophan and phenylalanine, plays a central role. In addition, neuropsychiatric conditions that go along with disorders that are characterized by acute or chronic inflammation, such as the development of depression, decreased quality of life or cognitive impairments, are connected to disturbed amino acid and subsequent neurotransmitter metabolism.

The bioanalytical procedures for the determination of concentrations of tryptophan and phenylalanine and their respective first stable intermediates kynurenine and tyrosine as well as some analytical finesses and potential sources of errors are discussed in this chapter. Monitoring of these immunometabolic parameters throughout therapies in addition to biomarkers of immune response and inflammation such as neopterin can be useful to determine disease progression but also to plan psychiatric interventions timely, thus to establish personalized treatments.

Keywords

  • Indoleamine 2,3-dioxygenase (IDO-1)
  • Kynurenine
  • Neopterin
  • Phenylalanine
  • Tryptophan
  • Tyrosine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2016_23
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-51152-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. Murr C, Widner B, Sperner-Unterweger B, Ledochowski M, Schubert C, Fuchs D (1999) Immune reaction links disease progression in cancer patients with depression. Med Hypotheses 55:137–140

    CrossRef  Google Scholar 

  2. Strasser B, Becker K, Fuchs D, Gostner JM (2016a) Kynurenine pathway metabolism and immune activation: peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology (in press). doi:10.1016/j.neuropharm.2016.02.030

    Google Scholar 

  3. Widner B, Laich A, Sperner-Unterweger B, Ledochowski M, Fuchs D (2002) Neopterin production tryptophan degradation and mental depression: what is the link? Brain Behav Immun 16:590–595

    CAS  PubMed  CrossRef  Google Scholar 

  4. Widner B, Ledochowski M, Fuchs D (2000) Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Curr Drug Metab 1(2):193–204

    CAS  PubMed  CrossRef  Google Scholar 

  5. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 7:468–473

    CAS  PubMed  CrossRef  Google Scholar 

  6. Maes M, Scharpé S, Meltzer HY et al (2008) Increased neopterin and interferon-gamma secretion and lower availability of L-tryptophan in major depression: further evidence for an immune response. Psychiatry Res 54:143–160

    CrossRef  Google Scholar 

  7. O’Mahony SM, Myint AM, van den Hove D, Desbonnet L, Steinbusch H, Leonard BE (2006) Gestational stress leads to depressive-like behavioural and immunological changes in the rat. Neuroimmunomodulation 13:82–88

    PubMed  CrossRef  CAS  Google Scholar 

  8. Werner ER, Blau N, Thöny B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414

    CAS  PubMed  CrossRef  Google Scholar 

  9. Tietz AA, Lindberg M, Kennedy EP (1964) A new pteridine-requiring enzyme system for the oxidation of glyceryl ethers. J Biol Chem 239:4081–4090

    CAS  PubMed  Google Scholar 

  10. Harada T, Kagamiyama H, Hatakeyama K (1993) Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science 260:1507–1510

    CAS  PubMed  CrossRef  Google Scholar 

  11. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim Biophys Acta 1012:140–147

    CAS  PubMed  CrossRef  Google Scholar 

  12. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1990) Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1). Cancer Res 50:2863–2867

    CAS  PubMed  Google Scholar 

  13. Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Tumour necrosis factor-alpha and lipopolysaccharide enhance interferon-induced tryptophan degradation and pteridine synthesis in human cells. Biol Chem Hoppe Seyler 370:1063–1069

    CAS  PubMed  CrossRef  Google Scholar 

  14. Werner ER, Bahrami S, Heller R, Werner-Felmayer G (2002) Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein. J Biol Chem 277:10129–10133

    CAS  PubMed  CrossRef  Google Scholar 

  15. DiLella AG, Kwok SCM, Ledley FD, Marvit J, Woo SLC (1986) Molecular structure and polymorphic map of the human phenylalanine hydroxylase gene. Biochemistry 25:743–749

    CAS  PubMed  CrossRef  Google Scholar 

  16. Guldberg P, Henriksen KF, Sipila I, Guttler F, de la Chapelle A (1995) Molecular structure and polymorphic map of the human phenylalanine hydroxylase gene. J Med Genet 32:976–978

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Shintaku H (2002) Disorders of tetrahydrobiopterin metabolism and their treatment. Curr Drug Metab 3:123–131

    CAS  PubMed  CrossRef  Google Scholar 

  18. Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37:137–162

    CAS  PubMed  CrossRef  Google Scholar 

  19. Neurauter G, Schröcksnadel K, Scholl-Bürgi S et al (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9:622–627

    CAS  PubMed  CrossRef  Google Scholar 

  20. Fuchs D, Hausen A, Huber C et al (1982) Pteridinausscheidung als Marker für alloantigen-induzierte Lymphozytenproliferation. Hoppe Seyler’s Z Physiol Chem 363:661–664

    CAS  PubMed  CrossRef  Google Scholar 

  21. Cano OD, Neurauter G, Fuchs D, Shearer GM, Boasso A (2008) Differential effect of type I and type II interferons on neopterin production and amino acid metabolism in human astrocytes-derived cells. Neurosci Lett 438:22–25

    CAS  PubMed  CrossRef  Google Scholar 

  22. Huber C, Batchelor JR, Fuchs D et al (1984) Immune response-associated production of neopterin - release from macrophages primarily under control of interferon-gamma. J Exp Med 160:310–316

    CAS  PubMed  CrossRef  Google Scholar 

  23. Wirleitner B, Reider D, Ebner S et al (2002) Monocyte-derived dendritic cells release neopterin. J Leukocyte Biol 72:1148–1153

    CAS  PubMed  Google Scholar 

  24. Schoedon G, Troppmair J, Adolf G, Huber C, Niederwieser A (1986) Interferon-gamma enhances biosynthesis of pterins in peripheral blood mononuclear cells by induction of GTP-cyclohydrolase I activity. J Interferon Res 6:697–703

    CAS  PubMed  CrossRef  Google Scholar 

  25. Jungi TW, Adler H, Adler B, Thöny M, Krampe M, Peterhans E (1996) Inducible nitric oxide synthase of macrophages. Present knowledge and evidence for species-specific regulation. Vet Immunol Immunopathol 54:323–330

    CAS  PubMed  CrossRef  Google Scholar 

  26. Fuchs D, Murr C, Reibnegger G et al (1994) Nitric oxide synthase and antimicrobial armature of human macrophages. J Infect Dis 169:224

    CAS  PubMed  CrossRef  Google Scholar 

  27. Schneemann M, Schoedon G (2002) Species differences in macrophage NO production are important. Nat Immunol 3:102

    CAS  PubMed  CrossRef  Google Scholar 

  28. Fuchs D, Hausen A, Reibnegger G, Werner ER, Dierich MP, Wachter H (1988) Neopterin as a marker for activated cell-mediated immunity: application in HIV infection. Immunol Today 9:150–155

    CAS  PubMed  CrossRef  Google Scholar 

  29. Jenny M, Klieber M, Zaknun D et al (2011) In vitro testing for anti-inflammatory properties of compounds employing peripheral blood mononuclear cells freshly isolated from healthy donors. Inflamm Res 60:127–135

    CAS  PubMed  CrossRef  Google Scholar 

  30. Sperner-Unterweger B, Neurauter G, Klieber M et al (2011) Enhanced tryptophan degradation in patients with ovarian carcinoma correlates with several serum soluble immune activation markers. Immunobiology 216:296–301

    CAS  PubMed  CrossRef  Google Scholar 

  31. Fuchs D, Avanzas P, Arroyo-Espliguero R et al (2009) The role of neopterin in atherogenesis and cardiovascular risk stratification. Curr Med Chem 16:4644–4653

    CAS  PubMed  CrossRef  Google Scholar 

  32. Pedersen ER, Midttun Ø, Ueland PM et al (2011) Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler Thromb Vasc Biol 31:698–704

    CAS  PubMed  CrossRef  Google Scholar 

  33. Blasko I, Knaus G, Weiss E et al (2007) Cognitive deterioration in Alzheimer’s disease is accompanied by increase of plasma neopterin. J Psychiatr Res 41:694–701

    PubMed  CrossRef  Google Scholar 

  34. Widner B, Leblhuber F, Fuchs D (2002) Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. J Neural Transm 109:181–189

    CAS  PubMed  CrossRef  Google Scholar 

  35. Ghisoni K, Aguiar AS Jr, de Oliveira PA, et al (2016) Neopterin acts as an endogenous cognitive enhancer. Brain Behav Immun pii: S0889-1591(16)30039-3. doi: 10.1016/j.bbi.2016.02.019

    Google Scholar 

  36. Forrest CM, Mackay GM, Oxford L et al (2011) Kynurenine metabolism predicts cognitive function in patients following cardiac bypass and thoracic surgery. J Neurochem 119(1):136–152

    CAS  PubMed  CrossRef  Google Scholar 

  37. Fuchs D, Möller AA, Reibnegger G et al (1991) Increased endogenous interferon-gamma and neopterin correlate with increased degradation of tryptophan in human immunodeficiency virus type 1 infection. Immunol Lett 28:207–212

    CAS  PubMed  CrossRef  Google Scholar 

  38. Stone TW, Darlington LG (2013) The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 169:1211–1227

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  39. Badawy AA (2016) The non albumin-bound tryptophan (free tryptophan) (tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology (in press)

    Google Scholar 

  40. Badawy AA (2010) Perspective: plasma free tryptophan revisited: what you need to know and do before measuring it. J Psychopharmacol 24:809–815

    CAS  PubMed  CrossRef  Google Scholar 

  41. Yoshida R, Imanishi J, Oku T, Kishida T, Hayaishi O (1981) Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc Natl Acad Sci U S A 78:129–132

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Werner ER, Bitterlich G, Fuchs D et al (1987) Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci 41:273–280

    CAS  PubMed  CrossRef  Google Scholar 

  43. Munn DH, Zhou M, Attwood JT et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193

    CAS  PubMed  CrossRef  Google Scholar 

  44. Uyttenhove C, Pilotte L, Théate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    CAS  PubMed  CrossRef  Google Scholar 

  45. Fuchs D, Möller AA, Reibnegger G, Stöckle E, Werner ER, Wachter H (1990) Decreased serum tryptophan in patients with HIV-1 infection correlates with increased serum neopterin and with neurologic/psychiatric symptoms. J Acquir Immune Defic Syndr 3:873–876

    CAS  PubMed  Google Scholar 

  46. Heyes MP, Saito K, Crowley JS et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115:1249–1273

    PubMed  CrossRef  Google Scholar 

  47. Heyes MP, Brew BJ, Saito K et al (1992) Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and beta 2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients. J Neuroimmunol 40:71–80

    CAS  PubMed  CrossRef  Google Scholar 

  48. Thomas SR, Terentis AC, Cai H et al (2007) Post-translational regulation of human indoleamine 2,3-dioxygenase activity by nitric oxide. J Biol Chem 282:23778–23787

    CAS  PubMed  CrossRef  Google Scholar 

  49. Kuhn DM, Arthur R Jr (1997) Molecular mechanism of the inactivation of tryptophan hydroxylase by nitric oxide: attack on critical sulfhydryls that spare the enzyme iron center. J Neurosci 17:7245–7251

    CAS  PubMed  Google Scholar 

  50. Gostner JM, Becker K, Ueberall F, Fuchs D (2015) The good and bad of antioxidant foods: an immunological perspective. Food Chem Toxicol 80:72–79

    CAS  PubMed  CrossRef  Google Scholar 

  51. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90:1–10

    CAS  PubMed  CrossRef  Google Scholar 

  52. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    CAS  PubMed  CrossRef  Google Scholar 

  53. Abita JP, Cost H, Milstien S, Kaufman S, Saimot G (1985) Urinary neopterin and biopterin levels in patients with AIDS and AIDS-related complex. Lancet 2(8445):51–52

    CAS  PubMed  CrossRef  Google Scholar 

  54. Zangerle R, Fuchs D, Reibnegger G et al (1995) Serum nitrite plus nitrate in infection with human immunodeficiency virus type-1. Immunobiology 193:59–70

    CAS  PubMed  CrossRef  Google Scholar 

  55. Moens AL, Kass DA (2006) Tetrahydrobiopterin and cardiovascular disease. Arterioscler Thromb Vasc Biol 26:2439–2444

    CAS  PubMed  CrossRef  Google Scholar 

  56. Patel KB, Stratford MR, Wardman P, Everett SA (2002) Oxidation of tetrahydrobiopterin by biological radicals and scavenging of the trihydrobiopterin radical by ascorbate. Free Radic Biol Med 32:203–211

    CAS  PubMed  CrossRef  Google Scholar 

  57. Nathan CF, Murray HW, Wiebe ME, Rubin BY (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158:670–689

    CAS  PubMed  CrossRef  Google Scholar 

  58. Murr C, Winklhofer-Roob BM, Schroecksnadel K et al (2009) Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis 202:543–549

    CAS  PubMed  CrossRef  Google Scholar 

  59. Capuron L, Moranis A, Combe N et al (2009) Vitamin E status and quality of life in the elderly: influence of inflammatory processes. Br J Nutr 102:1390–1394

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  60. Zangerle R, Kurz K, Neurauter G, Kitchen M, Sarcletti M, Fuchs D (2010) Increased blood phenylalanine to tyrosine ratio in HIV-1 infection and correction following effective antiretroviral therapy. Brain Behav Immun 24:403–408

    CAS  PubMed  CrossRef  Google Scholar 

  61. Capuron L, Schroecksnadel S, Féart C et al (2011) Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 70:175–182

    CAS  PubMed  CrossRef  Google Scholar 

  62. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, Miller AH (2013) Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 31:153–160

    CAS  PubMed  CrossRef  Google Scholar 

  63. Zoller H, Schloegl A, Schroecksnadel S, Vogel W, Fuchs D (2012) Influence of interferon-α therapy on phenylalanine hydroxylase activity in patients with HCV infection. J Interferon Cytokine Res 32:216–220

    CAS  PubMed  CrossRef  Google Scholar 

  64. Murr C, Grammer TB, Kleber ME et al (2015) Low serum free tryptophan is associated with immune activation, inflammation and predicts mortality in patients with cardiovascular disease, the ludwigshafen risk and cardiovascular health (LURIC) study. Eur J Clin Invest 45:247–254

    CAS  PubMed  CrossRef  Google Scholar 

  65. Murr C, Grammer TB, Kleber ME et al (2014) Immune activation and inflammation in patients with cardiovascular disease are associated with higher phenylalanine to tyrosine ratios, the ludwigshafen risk and cardiovascular health (LURIC) study. J Amino Acids 2014:783730

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  66. Scholl-Bürgi S, Schroecksnadel S, Jenny M, Karall D, Fuchs D (2011) Chronic immune stimulation may cause moderate impairment of phenylalanine 4-hydroxylase. Pteridines 22:120–125

    CrossRef  Google Scholar 

  67. Opladen T, Okun JG, Burgard P, Blau N, Hoffmann GF (2010) Phenylalanine loading in pediatric patients with dopa-responsive dystonia revised test protocol and pediatric cutoff values. J Inherit Metab Dis 33:697–703

    CAS  PubMed  CrossRef  Google Scholar 

  68. Trefz FK, Scheible D, Frauendienst-Egger G, Korall H, Blau N (2005) Long-term treatment of patients with mild and classical phenylketonuria by tetrahydrobiopterin. Mol Genet Metab 86(Suppl 1):S75–S80

    CAS  PubMed  CrossRef  Google Scholar 

  69. Willoughby RE, Opladen T, Maier T et al (2009) Tetrahydrobiopterin deficiency in human rabies. J Inherit Metab Dis 32:65–72

    CAS  PubMed  CrossRef  Google Scholar 

  70. Pare CM (1965) Treatment of depression. Lancet 1(7392):923–925

    CAS  PubMed  Google Scholar 

  71. Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen-Mersh TG (2002) Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br J Cancer 86:1691–1696

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  72. Hüfner K, Oberguggenberger A, Kohl C et al (2015) Levels in neurotransmitter precursor amino acids correlate with mental health in patients with breast cancer. Psychoneuroendocrinology 60:28–38

    PubMed  CrossRef  CAS  Google Scholar 

  73. Kurz K, Fiegl M, Holzner B et al (2012) Fatigue is related with immune-mediated tryptophan degradation in patients with lung cancer. PLos One 7(5), e36956

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Kurz K, Fiegl M, Holzner B, Giesinger J, Pircher M, Weiss G, Denz HA, Fuchs D (2012) Fatigue in patients with lung cancer is related with accelerated tryptophan breakdown. PLoS One 7, e36956

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  75. Bellmann-Weiler R, Schroecksnadel K, Holzer C, Larcher C, Fuchs D, Weiss G (2008) IFN-γ-mediated pathways in patients with fatigue and chronic EBV-infection. J Affect Disord 108:171–176

    CAS  PubMed  CrossRef  Google Scholar 

  76. Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, Spivey JR, Saito K, Miller AH (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403

    CAS  PubMed  CrossRef  Google Scholar 

  77. Capuron L, Geisler S, Kurz K, Leblhuber F, Sperner-Unterweger B, Fuchs D (2014) Activated immune system and inflammation in healthy ageing: relevance for tryptophan and neopterin metabolism. Curr Pharm Des 20:6048–6057

    CAS  PubMed  CrossRef  Google Scholar 

  78. de Bie J, Guest J, Guillemin GJ, Grant R (2015) Central kynurenine pathway shift with age in women. J Neurochem (in press) doi: 10.1111/jnc.13496

    Google Scholar 

  79. Frick B, Schroecksnadel K, Neurauter G, Leblhuber F, Fuchs D (2004) Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem 37:684–687

    CAS  PubMed  CrossRef  Google Scholar 

  80. Capuron L, Neurauter G, Musselman DL et al (2003) Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry 54:906–914

    CAS  PubMed  CrossRef  Google Scholar 

  81. Schröcksnadel H, Baier-Bitterlich G, Dapunt O, Wachter H, Fuchs D (1996) Decreased plasma tryptophan in pregnancy. Obstet Gynecol 88:47–50

    PubMed  CrossRef  Google Scholar 

  82. Kohl C, Walch T, Huber R et al (2005) Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J Affect Disord 86:135–142

    CAS  PubMed  CrossRef  Google Scholar 

  83. Krause D, Jobst A, Kirchberg F et al (2014) Prenatal immunologic predictors of postpartum depressive symptoms: a prospective study for potential diagnostic markers. Eur Arch Psychiatry Clin Neurosci 264:615–624

    PubMed  CrossRef  Google Scholar 

  84. Wang YQ, Li R, Zhang MQ, Zhang Z, Qu WM, Huang ZL (2015) The neurobiological mechanisms and treatments of REM sleep disturbances in depression. Curr Neuropharmacol 13:543–553

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  85. Wiegand M, Möller AA, Schreiber W et al (1991) Nocturnal sleep EEG in patients with HIV infection. Eur Arch Psychiatry Clin Neurosci 240:153–158

    CAS  PubMed  CrossRef  Google Scholar 

  86. Prather AA, Janicki-Deverts D, Hall MH, Cohen S (2015) Behaviorally assessed sleep and susceptibility to the common cold. Sleep 38:1353–1359

    PubMed  PubMed Central  Google Scholar 

  87. Blair JA, Barford PA, Morar C et al (1984) Tetrahydrobiopterin metabolism in depression. Lancet 2(8395):163

    CAS  PubMed  CrossRef  Google Scholar 

  88. Curtius HC, Niederwieser A, Levine RA, Lovenberg W, Woggon B, Angst J (1983) Successful treatment of depression with tetrahydrobiopterin. Lancet 1(8325):657–658

    CAS  PubMed  CrossRef  Google Scholar 

  89. Woggon B, Angst J, Curtius HC, Niederwieser A (1984) Unsuccessful treatment of depression with tetrahydrobiopterin. Lancet 2(8417-8418):1463

    CAS  PubMed  CrossRef  Google Scholar 

  90. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    CAS  PubMed  CrossRef  Google Scholar 

  91. Hulsken S, Märtin A, Mohajeri MH, Homberg JR (2013) Food-derived serotonergic modulators: effects on mood and cognition. Nutr Res Rev 26:223–234

    CAS  PubMed  CrossRef  Google Scholar 

  92. Strasser B, Geiger D, Schauer M, Gatterer H, Burtscher M, Fuchs D (2016b) Effects of exhaustive aerobic exercise on tryptophan-kynurenine metabolism in trained athletes. Plos One 11(4), e0153617

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  93. Gostner JM, Becker K, Croft KD et al (2014) Regular consumption of black tea increases circulating kynurenine concentrations: a randomized controlled trial. BBA Clin 3:31–35

    PubMed  PubMed Central  CrossRef  Google Scholar 

  94. Fuchs D (2012) Antioxidant intake and allergic disease. Clin Exp Allergy 42:1420–1422

    CAS  PubMed  CrossRef  Google Scholar 

  95. Zaknun D, Schroecksnadel S, Kurz K, Fuchs D (2012) Potential role of antioxidant food supplements, preservatives and colorants in the pathogenesis of allergy and asthma. Int Arch Allergy Immunol 157:113–124

    CAS  PubMed  CrossRef  Google Scholar 

  96. Kositz C, Schroecksnadel K, Grander G, Schennach H, Kofler H, Fuchs D (2008) High serum tryptophan concentration in pollinosis patients is associated with unresponsiveness to pollen extract therapy. Int Arch Allergy Immunol 147:35–40

    CAS  PubMed  CrossRef  Google Scholar 

  97. Wegner M, Helmich I, Machado S et al (2014) Effects of exercise on anxiety and depression disorders: review of meta- analyses and neurobiological mechanisms. CNS Neurol Disord Drug Targets 13:1002–1014

    CAS  PubMed  CrossRef  Google Scholar 

  98. Dunn AL, Trivedi MH, Kampert JB, Clark CG, Chambliss HO (2005) Exercise treatment for depression: efficacy and dose response. Am J Prev Med 28:1–8

    PubMed  CrossRef  Google Scholar 

  99. Hoffman BM, Babyak MA, Craighead WE et al (2011) Exercise and pharmacotherapy in patients with major depression: one-year follow-up of the SMILE study. Psychosom Med 73:127–133

    PubMed  CrossRef  Google Scholar 

  100. Melancon MO, Lorrain D, Dionne IJ (2012) Exercise increases tryptophan availability to the brain in older men age 57-70 years. Med Sci Sports Exerc 44:881–887

    CAS  PubMed  CrossRef  Google Scholar 

  101. Agudelo LZ, Femenía T, Orhan F et al (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159:33–45

    CAS  PubMed  CrossRef  Google Scholar 

  102. Sprenger H, Jacobs C, Nain M et al (1992) Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running. Clin Immunol Immunopathol 63:188–195

    CAS  PubMed  CrossRef  Google Scholar 

  103. Tilz GP, Domej W, Diez-Ruiz A et al (1993) Increased immune activation during and after physical exercise. Immunobiology 188:194–202

    CAS  PubMed  CrossRef  Google Scholar 

  104. Areces F, González-Millán C, Salinero JJ et al (2015) changes in serum free amino acids and muscle fatigue experienced during a half-ironman triathlon. PLoS One 10(9), e0138376

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  105. Strasser B, Gostner JM, Fuchs D (2016) Mood, food, and cognition: role of tryptophan and serotonin. Curr Opin Clin Nutr Metab Care 19:55–61

    CAS  PubMed  CrossRef  Google Scholar 

  106. Burtscher M, Pesta D, Fuchs D, Ledochowski M, Gatterer H (2015) Methodological considerations when evaluating the effectiveness of dietary/supplemental antioxidants in sport. In: Lamprecht M (ed) Antioxidants in sport nutrition. CRC Press/Taylor & Francis, Boca Raton (FL), Chapter 13

    Google Scholar 

  107. Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  108. Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S (2009) The effect of physical exercise on endothelial function. Sports Med 39:797–812

    PubMed  CrossRef  Google Scholar 

  109. Strasser B, Gostner JM, Fuchs D (2015) Carbon monoxide exposure may underlie the increased leukaemia risk in children living next to motor highways. Eur J Epidemiol 30:1329–1330

    PubMed  CrossRef  Google Scholar 

  110. Brzezinski A, Shalitin N, Ever-Hadani P, Schenker JG (1990) Plasma concentrations of tryptophan and dieting. BMJ 301(6744):183

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  111. Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8(1):pii E56

    CrossRef  CAS  Google Scholar 

  112. Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494

    PubMed  PubMed Central  CrossRef  Google Scholar 

  113. Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D (2000) Tryptophan degradation and immune activation in Alzheimer‘s disease. J Neural Transm 107:343–353

    CAS  PubMed  CrossRef  Google Scholar 

  114. Wissmann P, Geisler S, Leblhuber F, Fuchs D (2013) Immune activation in patients with Alzheimer’s disease is associated with high serum phenylalanine concentrations. J Neurol Sci 329:29–33

    CAS  PubMed  CrossRef  Google Scholar 

  115. Leblhuber F, Geisler S, Steiner K, Fuchs D, Schütz B (2015) Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J Neural Transm (Vienna) 122:1319–1322

    CAS  CrossRef  Google Scholar 

  116. Strasser B, Berger K, Fuchs D (2015) Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults. Eur J Nutr 54:101–107

    CAS  PubMed  CrossRef  Google Scholar 

  117. Nakahira K, Choi AM (2015) Carbon monoxide in the treatment of sepsis. Am J Physiol Lung Cell Mol Physiol 309:L1387. doi:10.1152/ajplung.00311.2015

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  118. Geisler S, Mayersbach P, Becker K, Schennach H, Fuchs D, Gostner J (2015) Serum tryptophan, kynurenine, phenylalanine, tyrosine and neopterin concentrations in 100 healthy blood donors. Pteridines 26:31–36

    CAS  CrossRef  Google Scholar 

  119. Widner B, Werner ER, Schennach H, Wachter H, Fuchs D (1997) Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 43:2424–2426

    CAS  PubMed  Google Scholar 

  120. Hara T, Yamakura F, Takikawa O, Hiramatsu R, Kawabe T, Isobe K, Nagase F (2008) Diazotization of kynurenine by acidified nitrite secreted from indoleamine 2,3-dioxygenase-expressing myeloid dendritic cells. J Immunol Methods 332:162–169

    CAS  PubMed  CrossRef  Google Scholar 

  121. Knox WE, Piras MM, Tokuyama K (1966) Induction of tryptophan pyrrolase in rat liver by physiological amounts of hydrocortisone and secreted glucocorticoids. Enzymol Biol Clin (Basel) 7:1–10

    CAS  Google Scholar 

  122. Gleeson M (2013) Bishop NC (2013) URI in athletes: are mucosal immunity and cytokine responses key risk factors? Exerc Sport Sci Rev 41:148–153

    PubMed  CrossRef  Google Scholar 

  123. Nandi M, Kelly P, Vallance P, Leiper J (2008) Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production. Vasc Med 13:29–36

    PubMed  CrossRef  Google Scholar 

  124. Saanijoki T, Nummenmaa L, Eskelinen JJ et al (2015) Affective responses to repeated sessions of high-intensity interval training. Med Sci Sports Exerc 47:2604–2611

    PubMed  CrossRef  Google Scholar 

  125. Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-gamma. Biochem J 262:861–866

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strasser, B., Sperner-Unterweger, B., Fuchs, D., Gostner, J.M. (2016). Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_23

Download citation