Neurotoxicology of Synthetic Cathinone Analogs

  • Mariana Angoa-PérezEmail author
  • John H. Anneken
  • Donald M. Kuhn
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 32)


The present review briefly explores the neurotoxic properties of methcathinone, mephedrone, methylone, and methylenedioxypyrovalerone (MDPV), four synthetic cathinones most commonly found in “bath salts.” Cathinones are β-keto analogs of the commonly abused amphetamines and display pharmacological effects resembling cocaine and amphetamines, but despite their commonalities in chemical structures, synthetic cathinones possess distinct neuropharmacological profiles and produce unique effects. Among the similarities of synthetic cathinones with their non-keto analogs are their targeting of monoamine systems, the release of neurotransmitters, and their stimulant properties. Most of the literature on synthetic cathinones has focused on describing their properties as psychostimulants, their behavioral effects on locomotion, memory, and potential for abuse, whereas descriptions of their neurotoxic properties are not abundant. The biochemical gauges of neurotoxicity induced by non-keto analogs are well studied in humans and experimental animals and include their ability to induce neuroinflammation, oxidative stress, excitotoxicity, temperature alterations as well as dysregulation of neurotransmitter systems and induce changes in monoamine transporters and receptors. These neurotoxicity gauges will serve as parameters to discuss the effects of the four previously mentioned synthetic cathinones alone or in combination with either another cathinone or with some of their non-keto analogs. Bath salts are not a defined combination of drugs and may consist of one synthetic cathinone compound or combinations of more cathinones. Furthermore, this review also presents some of the mechanisms that are thought to underlie this toxicity. A better understanding of the cellular and molecular mechanisms involved in the synthetic cathinones-induced neurotoxicity should contribute to generate modern therapeutic approaches to prevent or attenuate the adverse consequences of use of these drugs in humans.


MDPV Mephedrone Methcathinone Methylone Neurotoxicity Synthetic cathinones 


  1. 1.
    Yamamoto BK, Moszczynska A, Gudelsky GA (2010) Amphetamine toxicities: classical and emerging mechanisms. Ann N Y Acad Sci 1187:101–121CrossRefGoogle Scholar
  2. 2.
    Moratalla R, Khairnar A, Simola N, Granado N, Garcia-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2015) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Prog NeurobiolGoogle Scholar
  3. 3.
    Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7CrossRefGoogle Scholar
  4. 4.
    Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354CrossRefGoogle Scholar
  5. 5.
    Rubio-Araiz A, Perez-Hernandez M, Urrutia A, Porcu F, Borcel E, Gutierrez-Lopez MD, O’Shea E, Colado MI (2014) 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors. Int J Neuropsychopharmacol 17:1243–1255CrossRefGoogle Scholar
  6. 6.
    Rockhold RW, Carlton FB Jr, Corkern R, Derouen L, Bennett JG, Hume AS (1997) Methcathinone intoxication in the rat: abrogation by dextrorphan. Ann Emerg Med 29:383–391CrossRefGoogle Scholar
  7. 7.
    Shortall SE, Green AR, Swift KM, Fone KC, King MV (2013) Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia. Br J Pharmacol 168:966–977CrossRefGoogle Scholar
  8. 8.
    Gygi MP, Fleckenstein AE, Gibb JW, Hanson GR (1997) Role of endogenous dopamine in the neurochemical deficits induced by methcathinone. J Pharmacol Exp Ther 283:1350–1355PubMedGoogle Scholar
  9. 9.
    Gygi MP, Gibb JW, Hanson GR (1996) Methcathinone: an initial study of its effects on monoaminergic systems. J Pharmacol Exp Ther 276:1066–1072PubMedGoogle Scholar
  10. 10.
    McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422CrossRefGoogle Scholar
  11. 11.
    Sparago M, Wlos J, Yuan J, Hatzidimitriou G, Tolliver J, Dal Cason TA, Katz J, Ricaurte G (1996) Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): a new drug of abuse. J Pharmacol Exp Ther 279:1043–1052PubMedGoogle Scholar
  12. 12.
    Cozzi NV, Foley KF (2003) Methcathinone is a substrate for the serotonin uptake transporter. Pharmacol Toxicol 93:219–225CrossRefGoogle Scholar
  13. 13.
    Cozzi NV, Sievert MK, Shulgin AT, Jacob P 3rd, Ruoho AE (1999) Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol 381:63–69CrossRefGoogle Scholar
  14. 14.
    Metzger RR, Haughey HM, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE (2000) Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J Pharmacol Exp Ther 295:1077–1085PubMedGoogle Scholar
  15. 15.
    Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470CrossRefGoogle Scholar
  16. 16.
    Glennon RA, Yousif M, Naiman N, Kalix P (1987) Methcathinone: a new and potent amphetamine-like agent. Pharmacol Biochem Behav 26:547–551CrossRefGoogle Scholar
  17. 17.
    Angoa-Perez M, Kane MJ, Francescutti DM, Sykes KE, Shah MM, Mohammed AM, Thomas DM, Kuhn DM (2012) Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 120:1097–1107PubMedPubMedCentralGoogle Scholar
  18. 18.
    Angoa-Perez M, Kane MJ, Herrera-Mundo N, Francescutti DM, Kuhn DM (2014) Effects of combined treatment with mephedrone and methamphetamine or 3,4-methylenedioxymethamphetamine on serotonin nerve endings of the hippocampus. Life Sci 97:31–36CrossRefGoogle Scholar
  19. 19.
    Anneken JH, Angoa-Perez M, Kuhn DM (2015) 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: beta-ketoamphetamine modulation of neurotoxicity by the dopamine transporter. J Neurochem 133:211–222CrossRefGoogle Scholar
  20. 20.
    Lopez-Arnau R, Martinez-Clemente J, Rodrigo T, Pubill D, Camarasa J, Escubedo E (2015) Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone. Toxicol Appl Pharmacol 286:27–35CrossRefGoogle Scholar
  21. 21.
    Motbey CP, Clemens KJ, Apetz N, Winstock AR, Ramsey J, Li KM, Wyatt N, Callaghan PD, Bowen MT, Cornish JL, McGregor IS (2013) High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine. J Psychopharmacol 27:823–836CrossRefGoogle Scholar
  22. 22.
    Motbey CP, Karanges E, Li KM, Wilkinson S, Winstock AR, Ramsay J, Hicks C, Kendig MD, Wyatt N, Callaghan PD, McGregor IS (2012) Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion. PLoS One 7, e45473CrossRefGoogle Scholar
  23. 23.
    Angoa-Perez M, Kane MJ, Briggs DI, Francescutti DM, Sykes CE, Shah MM, Thomas DM, Kuhn DM (2013) Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. J Neurochem 125:102–110CrossRefGoogle Scholar
  24. 24.
    Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203CrossRefGoogle Scholar
  25. 25.
    Martinez-Clemente J, Lopez-Arnau R, Abad S, Pubill D, Escubedo E, Camarasa J (2014) Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One 9, e99002CrossRefGoogle Scholar
  26. 26.
    Shortall SE, Spicer CH, Ebling FJ, Green AR, Fone KC, King MV (2015) Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone. Addict BiolGoogle Scholar
  27. 27.
    Wright MJ Jr, Angrish D, Aarde SM, Barlow DJ, Buczynski MW, Creehan KM, Vandewater SA, Parsons LH, Houseknecht KL, Dickerson TJ, Taffe MA (2012) Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats. PLoS One 7, e44652CrossRefGoogle Scholar
  28. 28.
    den Hollander B, Rozov S, Linden AM, Uusi-Oukari M, Ojanpera I, Korpi ER (2013) Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacol Biochem Behav 103:501–509CrossRefGoogle Scholar
  29. 29.
    Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE, Wigmore PM, Ebling FJ, Richard Green A, Fone KC, King MV (2013) Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol 23:1085–1095CrossRefGoogle Scholar
  30. 30.
    Ciudad-Roberts A, Camarasa J, Ciudad CJ, Pubill D, Escubedo E (2015) Alcohol enhances the psychostimulant and conditioning effects of mephedrone in adolescent mice; postulation of unique roles of D3 receptors and BDNF in place preference acquisition. Br J Pharmacol 172:4970–4984CrossRefGoogle Scholar
  31. 31.
    den Hollander B, Sundstrom M, Pelander A, Ojanpera I, Mervaala E, Korpi ER, Kankuri E (2014) Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci 141:120–131CrossRefGoogle Scholar
  32. 32.
    Cameron KN, Kolanos R, Solis E Jr, Glennon RA, De Felice LJ (2013) Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter. Br J Pharmacol 168:1750–1757CrossRefGoogle Scholar
  33. 33.
    Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815CrossRefGoogle Scholar
  34. 34.
    Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J (2012) Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol 167:407–420CrossRefGoogle Scholar
  35. 35.
    Martinez-Clemente J, Escubedo E, Pubill D, Camarasa J (2012) Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol 22:231–236CrossRefGoogle Scholar
  36. 36.
    Rickli A, Hoener MC, Liechti ME (2015) Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 25:365–376CrossRefGoogle Scholar
  37. 37.
    Budzynska B, Boguszewska-Czubara A, Kruk-Slomka M, Kurzepa J, Biala G (2015) Mephedrone and nicotine: oxidative stress and behavioral interactions in animal models. Neurochem Res 40:1083–1093CrossRefGoogle Scholar
  38. 38.
    Lopez-Arnau R, Martinez-Clemente J, Abad S, Pubill D, Camarasa J, Escubedo E (2014) Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse. Psychopharmacology (Berl) 231:3119–3129CrossRefGoogle Scholar
  39. 39.
    Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J (2014) Serotonergic impairment and memory deficits in adolescent rats after binge exposure of methylone. J Psychopharmacol 28:1053–1063CrossRefGoogle Scholar
  40. 40.
    Kiyatkin EA, Kim AH, Wakabayashi KT, Baumann MH, Shaham Y (2015) Effects of social interaction and warm ambient temperature on brain hyperthermia induced by the designer drugs methylone and MDPV. Neuropsychopharmacology 40:436–445CrossRefGoogle Scholar
  41. 41.
    Piao YS, Hall FS, Moriya Y, Ito M, Ohara A, Kikura-Hanajiri R, Goda Y, Lesch KP, Murphy DL, Uhl GR, Sora I (2015) Methylone-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Behav Pharmacol 26:345–352CrossRefGoogle Scholar
  42. 42.
    Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137CrossRefGoogle Scholar
  43. 43.
    Sogawa C, Sogawa N, Ohyama K, Kikura-Hanajiri R, Goda Y, Sora I, Kitayama S (2011) Methylone and monoamine transporters: correlation with toxicity. Curr Neuropharmacol 9:58–62CrossRefGoogle Scholar
  44. 44.
    Aarde SM, Creehan KM, Vandewater SA, Dickerson TJ, Taffe MA (2015) In vivo potency and efficacy of the novel cathinone alpha-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: self-administration and locomotor stimulation in male rats. Psychopharmacology (Berl) 232:3045–3055CrossRefGoogle Scholar
  45. 45.
    Adam A, Gerecsei LI, Lepesi N, Csillag A (2014) Apoptotic effects of the ‘designer drug’ methylenedioxypyrovalerone (MDPV) on the neonatal mouse brain. Neurotoxicology 44:231–236CrossRefGoogle Scholar
  46. 46.
    Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC (2013) In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology 38:563–573CrossRefGoogle Scholar
  47. 47.
    King HE, Wetzell B, Rice KC, Riley AL (2014) 3,4-Methylenedioxypyrovalerone (MDPV)-induced conditioned taste avoidance in the F344/N and LEW rat strains. Pharmacol Biochem Behav 126:163–169CrossRefGoogle Scholar
  48. 48.
    Merluzzi AP, Hurwitz ZE, Briscione MA, Cobuzzi JL, Wetzell B, Rice KC, Riley AL (2014) Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats. Dev Psychobiol 56:943–954CrossRefGoogle Scholar
  49. 49.
    Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562CrossRefGoogle Scholar
  50. 50.
    Chapy H, Smirnova M, Andre P, Schlatter J, Chiadmi F, Couraud PO, Scherrmann JM, Decleves X, Cisternino S (2015) Carrier-mediated cocaine transport at the blood-brain barrier as a putative mechanism in addiction liability. Int J Neuropsychopharmacol 18CrossRefGoogle Scholar
  51. 51.
    Simmler LD, Wandeler R, Liechti ME (2013) Bupropion, methylphenidate, and 3,4-methylenedioxypyrovalerone antagonize methamphetamine-induced efflux of dopamine according to their potencies as dopamine uptake inhibitors: implications for the treatment of methamphetamine dependence. BMC Res Notes 6:220CrossRefGoogle Scholar
  52. 52.
    Numachi Y, Ohara A, Yamashita M, Fukushima S, Kobayashi H, Hata H, Watanabe H, Hall FS, Lesch KP, Murphy DL, Uhl GR, Sora I (2007) Methamphetamine-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Eur J Pharmacol 572:120–128CrossRefGoogle Scholar
  53. 53.
    Crean RD, Davis SA, Von Huben SN, Lay CC, Katner SN, Taffe MA (2006) Effects of (+/-)3,4-methylenedioxymethamphetamine, (+/-)3,4-methylenedioxyamphetamine and methamphetamine on temperature and activity in rhesus macaques. Neuroscience 142:515–525CrossRefGoogle Scholar
  54. 54.
    Cappon GD, Morford LL, Vorhees CV (1997) Ontogeny of methamphetamine-induced neurotoxicity and associated hyperthermic response. Brain Res Dev Brain Res 103:155–162CrossRefGoogle Scholar
  55. 55.
    Dafters RI (1995) Hyperthermia following MDMA administration in rats: effects of ambient temperature, water consumption, and chronic dosing. Physiol Behav 58:877–882CrossRefGoogle Scholar
  56. 56.
    Makisumi T, Yoshida K, Watanabe T, Tan N, Murakami N, Morimoto A (1998) Sympatho-adrenal involvement in methamphetamine-induced hyperthermia through skeletal muscle hypermetabolism. Eur J Pharmacol 363:107–112CrossRefGoogle Scholar
  57. 57.
    Paulson PE, Robinson TE (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19:56–65CrossRefGoogle Scholar
  58. 58.
    Yoshida K, Morimoto A, Makisumi T, Murakami N (1993) Cardiovascular, thermal and behavioral sensitization to methamphetamine in freely moving rats. J Pharmacol Exp Ther 267:1538–1543PubMedGoogle Scholar
  59. 59.
    Miller ML, Creehan KM, Angrish D, Barlow DJ, Houseknecht KL, Dickerson TJ, Taffe MA (2013) Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug Alcohol Depend 127:248–253CrossRefGoogle Scholar
  60. 60.
    Gregg RA, Rawls SM (2014) Behavioral pharmacology of designer cathinones: a review of the preclinical literature. Life Sci 97:27–30CrossRefGoogle Scholar
  61. 61.
    Aarde SM, Angrish D, Barlow DJ, Wright MJ Jr, Vandewater SA, Creehan KM, Houseknecht KL, Dickerson TJ, Taffe MA (2013) Mephedrone (4-methylmethcathinone) supports intravenous self-administration in Sprague-Dawley and Wistar rats. Addict Biol 18:786–799CrossRefGoogle Scholar
  62. 62.
    Froberg BA, Levine M, Beuhler MC, Judge BS, Moore PW, Engebretsen KM, McKeown NJ, Rosenbaum CD, Young AC, Rusyniak DE (2015) Acute methylenedioxypyrovalerone toxicity. J Med Toxicol 11:185–194CrossRefGoogle Scholar
  63. 63.
    Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788CrossRefGoogle Scholar
  64. 64.
    Kita T, Wagner GC, Nakashima T (2003) Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. J Pharmacol Sci 92:178–195CrossRefGoogle Scholar
  65. 65.
    Baumann MH, Wang X, Rothman RB (2007) 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology (Berl) 189:407–424CrossRefGoogle Scholar
  66. 66.
    Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202CrossRefGoogle Scholar
  67. 67.
    Capela JP, Carmo H, Remiao F, Bastos ML, Meisel A, Carvalho F (2009) Molecular and cellular mechanisms of ecstasy-induced neurotoxicity: an overview. Mol Neurobiol 39:210–271CrossRefGoogle Scholar
  68. 68.
    Imam SZ, el-Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W Jr, Ali SF (2001) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939:366–380CrossRefGoogle Scholar
  69. 69.
    Motbey CP, Hunt GE, Bowen MT, Artiss S, McGregor IS (2012) Mephedrone (4-methylmethcathinone, ‘meow’): acute behavioural effects and distribution of Fos expression in adolescent rats. Addict Biol 17:409–422CrossRefGoogle Scholar
  70. 70.
    Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339:530–536CrossRefGoogle Scholar
  71. 71.
    Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol 164:1949–1958CrossRefGoogle Scholar
  72. 72.
    Toborek M, Seelbach MJ, Rashid CS, Andras IE, Chen L, Park M, Esser KA (2013) Voluntary exercise protects against methamphetamine-induced oxidative stress in brain microvasculature and disruption of the blood-brain barrier. Mol Neurodegener 8:22CrossRefGoogle Scholar
  73. 73.
    Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131CrossRefGoogle Scholar
  74. 74.
    Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 97:37–44CrossRefGoogle Scholar
  75. 75.
    Stepens A, Groma V, Skuja S, Platkajis A, Aldins P, Eksteina I, Martinsone I, Bricis R, Donaghy M (2014) The outcome of the movement disorder in methcathinone abusers: clinical, MRI and manganesemia changes, and neuropathology. Eur J Neurol 21:199–205CrossRefGoogle Scholar
  76. 76.
    Levin OS (2005) “Ephedron” encephalopathy. Zh Nevrol Psikhiatr Im S S Korsakova 105:12–20PubMedGoogle Scholar
  77. 77.
    Kelly JP (2011) Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 3:439–453CrossRefGoogle Scholar
  78. 78.
    Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (2003) In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates. J Pharmacol Exp Ther 307:138–145CrossRefGoogle Scholar
  79. 79.
    Gudelsky GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists. Eur J Pharmacol 264:325–330CrossRefGoogle Scholar
  80. 80.
    Pifl C, Reither H, Hornykiewicz O (2015) The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol 755:119–126CrossRefGoogle Scholar
  81. 81.
    Bonano JS, Banks ML, Kolanos R, Sakloth F, Barnier ML, Glennon RA, Cozzi NV, Partilla JS, Baumann MH, Negus SS (2015) Quantitative structure-activity relationship analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172:2433–2444CrossRefGoogle Scholar
  82. 82.
    Sakloth F, Kolanos R, Mosier PD, Bonano JS, Banks ML, Partilla JS, Baumann MH, Negus SS, Glennon RA (2015) Steric parameters, molecular modeling and hydropathic interaction analysis of the pharmacology of para-substituted methcathinone analogues. Br J Pharmacol 172:2210–2218CrossRefGoogle Scholar
  83. 83.
    Baumann MH, Partilla JS, Lehner KR (2013) Psychoactive “bath salts”: not so soothing. Eur J Pharmacol 698:1–5CrossRefGoogle Scholar
  84. 84.
    Kolanos R, Solis E Jr, Sakloth F, De Felice LJ, Glennon RA (2013) Deconstruction of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Neurosci 12:1524–1529CrossRefGoogle Scholar
  85. 85.
    Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87:206–213CrossRefGoogle Scholar
  86. 86.
    Kiyatkin EA, Sharma HS (2009) Acute methamphetamine intoxication: brain hyperthermia, blood-brain barrier, brain edema, and morphological cell abnormalities. Int Rev Neurobiol 88:65–100CrossRefGoogle Scholar
  87. 87.
    O’Shea E, Urrutia A, Green AR, Colado MI (2014) Current preclinical studies on neuroinflammation and changes in blood-brain barrier integrity by MDMA and methamphetamine. Neuropharmacology 87:125–134CrossRefGoogle Scholar
  88. 88.
    Coelho-Santos V, Leitao RA, Cardoso FL, Palmela I, Rito M, Barbosa M, Brito MA, Fontes-Ribeiro CA, Silva AP (2015) The TNF-alpha/NF-kappaB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J Cereb Blood Flow Metab 35:1260–1271CrossRefGoogle Scholar
  89. 89.
    Lopez-Arnau R, Martinez-Clemente J, Carbo M, Pubill D, Escubedo E, Camarasa J (2013) An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as “bath salts”. Prog Neuropsychopharmacol Biol Psychiatry 45:64–72CrossRefGoogle Scholar
  90. 90.
    Coppola M, Mondola R (2012) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol Lett 211:144–149CrossRefGoogle Scholar
  91. 91.
    Sitte HH, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36:41–50CrossRefGoogle Scholar
  92. 92.
    Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1–19CrossRefGoogle Scholar
  93. 93.
    De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97:20–26CrossRefGoogle Scholar
  94. 94.
    Araujo AM, Valente MJ, Carvalho M, Dias da Silva D, Gaspar H, Carvalho F, de Lourdes Bastos M, Guedes de Pinho P (2015) Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of ‘legal high’ packages containing synthetic cathinones. Arch Toxicol 89:757–771CrossRefGoogle Scholar
  95. 95.
    Thomas DM, Francescutti-Verbeem DM, Kuhn DM (2008) The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. J Neurochem 105:605–616CrossRefGoogle Scholar
  96. 96.
    Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535CrossRefGoogle Scholar
  97. 97.
    Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47:368–373PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Mariana Angoa-Pérez
    • 1
    • 2
    Email author
  • John H. Anneken
    • 1
    • 2
  • Donald M. Kuhn
    • 1
    • 2
  1. 1.Research & Development ServiceJohn D. Dingell VA Medical CenterDetroitUSA
  2. 2.Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitUSA

Personalised recommendations