NPS: Medical Consequences Associated with Their Intake

  • Fabrizio Schifano
  • Laura Orsolini
  • Duccio Papanti
  • John Corkery
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 32)

Abstract

Over the last decade, the ‘traditional’ drug scene has been supplemented – but not replaced – by the emergence of a range of novel psychoactive substances (NPS), which are either newly created or existing drugs, including medications, now being used in novel ways. By the end of 2014, in excess of 500 NPS had been reported by a large number of countries in the world. Most recent data show, however, that synthetic cathinones, synthetic cannabinoids, and psychedelics/phenethylamines account for the largest number of NPS.

The present chapter aims at providing an overview of the clinical and pharmacological issues relating to these most popular NPS categories. Given the vast range of medical and psychopathological issues associated with the molecules here described, it is crucial for health professionals to be aware of the effects and toxicity of NPS. A general overview of the acute management of NPS adverse events is provided as well, although further studies are required to identify a range of evidence-based, index molecule-focused, treatment strategies. The rapid pace of change in the NPS online market constitutes a major challenge to the provision of current and reliable scientific knowledge on these substances.

Keywords

Drug misuse Hallucinogenic drugs Hallucinogens Novel psychoactive substances Phenethylamines Psychiatric disturbances Synthetic cannabimimetics Synthetic cathinones 

References

  1. 1.
    UNODC (United Nations Office on Drugs and Crime) (2015) World Drug Report. https://www.unodc.org/documents/wdr2015/World_Drug_Report_2015.pdf. Accessed 30 Nov 2015
  2. 2.
    EMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2015) New psychoactive substances in Europe - an update from the EU Early Warning System. Publications Office of the European Union, Luxembourg. http://www.emcdda.europa.eu/publications/2015/new-psychoactive-substances. Accessed 15 Nov 2015
  3. 3.
    EMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2015) Synthetic cannabinoids in Europe. http://www.emcdda.europa.eu/topics/pods/synthetic-cannabinoids. Accessed 29 Nov 2015
  4. 4.
    Daly M (2013) Streets legal. Druglink 28:17Google Scholar
  5. 5.
    Shlosberg D, Zalsman G, Shoval G (2014) Emerging issues in the relationship between adolescent substance use and suicidal behavior. Isr J Psychiatry Relat Sci 51:262–267PubMedGoogle Scholar
  6. 6.
    Auwarter V, Dargan PI, Wood DM (2013) Synthetic cannabinoid receptor agonists. In: Dargan PI, Wood DM (eds) Novel psychoactive substances classification, pharmacology and toxicology. Elsevier, London, pp 317–343CrossRefGoogle Scholar
  7. 7.
    Schifano F, Corazza O, Davey Z, Di Furia L, Farre M, Flesland L, Mannonen M, Pagani S, Peltoniemi T, Pezzolesi C, Scherbaum N, Siemann H, Skutle A, Torrens M, Van Der Kreeft P (2009) Psychoactive drug or mystical incense? Overview of the online available information on Spice products. Int J Cult Ment Health 2:137–144CrossRefGoogle Scholar
  8. 8.
    Thomas BF, Wiley JL, Pollard GT, Grabenauer M (2014) Cannabinoid designer drugs: effects and forensics. In: Pertwee RG (ed) Handbook of cannabis. Oxford University Press, Oxford, pp 710–729CrossRefGoogle Scholar
  9. 9.
    Schifano F, Orsolini L, Papanti GD, Corkery J (2015) Novel psychoactive substances of interest for psychiatry. World Psychiatry 14:15–26PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Martinotti G, Lupi M, Acciavatti A, Cinosi E, Santacroce R, Signorelli MS, Bandini L, Lisi G, Quattrone D, Ciambrone P, Aguglia A, Pinna F, Calò S, Janiri L, di Giannantonio M (2014) Novel psychoactive substances in young adults with and without psychiatric comorbidities. Biomed Res Int. doi:10.1155/2014/815424 Google Scholar
  11. 11.
    Naviglio S, Papanti D, Moressa V, Ventura A (2015) An adolescent with an altered state of mind. BMJ 350:h299PubMedCrossRefGoogle Scholar
  12. 12.
    Vento AE, Martinotti G, Cinosi E (2014) Substance use in the club scene of Rome: a pilot study. Biomed Res Int 2014:617546PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Appendino G, Minassi A, Taglialatela-Scafati O (2014) Recreational drug discovery: natural products as lead structures for the synthesis of smart drugs. Nat Prod Rep 31:880–904PubMedCrossRefGoogle Scholar
  14. 14.
    Abdulrahim D, Bowden-Jones O, on behalf of the NEPTUNE Expert Group (2015) Overview of the effects and harms of club drugs. In: Guidance on the Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances. Novel Psychoactive Treatment UK Network (NEPTUNE), London.Google Scholar
  15. 15.
    Papanti D, Orsolini L, Francesconi G, Schifano F (2014) ‘Noids’ in a nutshell: everything you (don’t) want to know about synthetic cannabimimetics. Adv Dual Diagn 7:137–148CrossRefGoogle Scholar
  16. 16.
    Brents LK, Prather PL (2014) The K2/Spice Phenomenon: emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab Rev 46:72–85PubMedCrossRefGoogle Scholar
  17. 17.
    Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Handsen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pertwee RG (2009) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360–1381CrossRefGoogle Scholar
  19. 19.
    Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL (2013) Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: mechanism underlying greater toxicity? Life Sci 97:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lewin AH, Seltzman HH, Carroll FI, Mascarella SW, Reddy PA (2013) Emergence and properties of spice and bath salts: a medicinal chemistry perspective. Life Sci 97:9–19PubMedCrossRefGoogle Scholar
  21. 21.
    Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioural effects of indoleamine hallucinogens. Neuropharmacology 61:364–381PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wells DL, Ott CA (2011) The new marijuana. Ann Pharmacother 45:414–417PubMedCrossRefGoogle Scholar
  23. 23.
    Fisar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 381:563–572PubMedCrossRefGoogle Scholar
  24. 24.
    Ismail F (2002) Important fluorinated drugs in experimental and clinical use. J Fluor Chem 118:27–33CrossRefGoogle Scholar
  25. 25.
    Wilkinson SM, Banister SD, Kassiou M et al (2015) Bioisosteric fluorine in the clandestine design of synthetic cannabinoids. Aust J Chem 68:4–8CrossRefGoogle Scholar
  26. 26.
    Baggaley K (2015) Drugs by design: corrupt chemists tweak compounds faster than law enforcement can call them illegal. Sci News 187:22–25CrossRefGoogle Scholar
  27. 27.
    Papanti D, Schifano F, Botteon G, Bertossi F, Mannix J, Vidoni D, Impagnatiello M, Pascolo-Fabrici E, Bonavigo T (2013) “Spiceophrenia’: a systematic overview of ‘Spice’-related psychopathological issues and a case report. Hum Psychopharmacol 28:379–389PubMedCrossRefGoogle Scholar
  28. 28.
    Winstock AR, Barratt MJ (2013) Synthetic cannabis: a comparison of patterns of use and effect profile with natural cannabis in a large global sample. Drug Alcohol Depend 1:106–111CrossRefGoogle Scholar
  29. 29.
    Spaderna M, Addy PH, D’Souza DC (2013) Spicing things up: synthetic cannabinoids. Psychopharmacology (Berl) 228:525–540CrossRefGoogle Scholar
  30. 30.
    Wessinger WD, Moran JH, Seely KA (2015) Synthetic cannabinoid effects on behavior and motivation. In: Campolongo P, Fattore L (eds) Cannabinoid modulation of emotion, memory, and motivation. Springer, New York, pp 205–224CrossRefGoogle Scholar
  31. 31.
    Wood DM, Dargan PI (2012) Mephedrone (4-methylmethcathinone): what is new in our understanding of its use and toxicity. Prog Neuropsychopharmacol Biol Psychiatry 39:227–233. doi:10.1016/j.pnpbp.2012.04.020 PubMedCrossRefGoogle Scholar
  32. 32.
    Wood DM, Dargan PI (2012) Novel psychoactive substances: how to understand the acute toxicity associated with the use of these substances. Ther Drug Monit 34:363–367PubMedCrossRefGoogle Scholar
  33. 33.
    Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544PubMedCrossRefGoogle Scholar
  34. 34.
    Winstock AR, Barratt MJ (2013) The 12-month prevalence and nature of adverse experiences resulting in emergency medical presentations associated with the use of synthetic cannabinoid products. Hum Psychopharmacol 28:390–393PubMedCrossRefGoogle Scholar
  35. 35.
    Freeman MJ, Rose DZ, Myers MA (2013) Ischemic stroke after use of the synthetic marijuana ‘Spice’. Neurology 81:2090–2093PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hopkins CY, Gilchrist BL (2013) A case of cannabinoid hyperemesis syndrome caused by synthetic cannabinoids. J Emerg Med 45:544–546PubMedCrossRefGoogle Scholar
  37. 37.
    Louh IK, Freeman WD (2014) A ‘spicy’ encephalopathy: synthetic cannabinoids as cause of encephalopathy and seizure. Crit Care 18:553PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Mir A, Obafemi A, Young A et al (2011) Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics 128:e1622–e1627PubMedCrossRefGoogle Scholar
  39. 39.
    Rose DZ, Guerrero WR, Mokin MV (2015) Haemorrhagic stroke following use of the synthetic marijuana “spice”. Neurology 85:1177–1179PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tait RJ, Caldicott D, Mountain D, Hill SL, Lenton S (2015) A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol 54:1–13. doi:10.3109/15563650.2015.1110590 CrossRefGoogle Scholar
  41. 41.
    CDC (2012) Acute kidney injury associated with synthetic cannabinoid use – multiple states. Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep 62:93–98Google Scholar
  42. 42.
    Kasper AM, Ridpath AD, Arnold JK, Chatham-stephens K, Morrison M, Olayinka O, Parker C, Galli R, Cox R, Pteacely N, Anderson J, Kyle PB, Gerona R, Martin C, Schier J, Wolkin A, Dobbs T (2015) Severe illness associated with reported use of synthetic cannabinoids - Mississippi, April 2015. MMWR Morb Mortal Wkly Rep 64:1121–1122PubMedCrossRefGoogle Scholar
  43. 43.
    Sheikh A, Lukšič M, Ferstenberg R, Culpepper-Morgan JA (2014) SPICE/K2 synthetic Marijuana-induced toxic hepatitis treated with N-acetylcysteine. Am J Case Rep 15:584–588PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Spengler E, LaBrecque D (2014) A case of acute liver failure associated with synthetic cannabis use. American College of Gastroenterology Annual Scientific Meeting Abstracts, PhiladelphiaGoogle Scholar
  45. 45.
    Sweeney B, Talebi S, Toro D, Gonzalez K, Menoscal JP, Shaw R, Hassen GW (2015) Hyperthermia and severe rhabdomyolysis from synthetic cannabinoids. Am J Emerg Med 34:121.e1-2; doi:10.1016/j.ajem.2015.05.052
  46. 46.
    Tyndall JA, Gerona R, De Portu G et al (2015) An outbreak of acute delirium from exposure to the synthetic cannabinoid AB-CHMINACA. Clin Toxicol 3:950–956. doi:10.3109/15563650.2015.1100306 CrossRefGoogle Scholar
  47. 47.
    Alhadi S, Tiwari A, Vohra R (2013) High times, low SATS: diffuse pulmonary infiltrates associated with chronic synthetic cannabinoid use. J Med Toxicol 9:199–206PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gunderson EW, Haughey HM, Ait-Daoud N, Joshi AS, Hart CL (2012) ‘Spice’ and ‘K2’ herbal highs: a case series and systematic review of the clinical effects and biopsychosocial implications of synthetic cannabinoid use in humans. Am J Addict 21:320–326PubMedCrossRefGoogle Scholar
  49. 49.
    Froberg BA, Bauer BD (2012) Pneumorachis, pneumomediastinum, and subcutaneous emphysema after synthetic cannabinoid use. Clin Toxicol 50:705Google Scholar
  50. 50.
    Macfarlane V, Christie G (2015) Synthetic cannabinoid withdrawal: a new demand on detoxification services. Drug Alcohol Rev 34:147–153PubMedCrossRefGoogle Scholar
  51. 51.
    Di Forti M, Marconi A, Carra E, Fraietta S, Trotta A, Bonomo M, Bianconi F, Gardner-Sood P, O’Connor J, Russo M, Stilo SA, Margues TR, Mondelli V, Dazzan P, Pariante C, David AS, Gaughran F, Atakan Z, Iyegbe C, Powell J, Morgan C, Lynskey M, Murray RM (2015) Proportion of patients in south London with first-episode psychosis attributable to use of high potency cannabis: a case-control study. Lancet Psychiatry 2:233–238PubMedCrossRefGoogle Scholar
  52. 52.
    Di Forti M, Morgan C, Dazzan P, Pariante C, Mondelli V, Marques TR, Handley R, Luzi S, Russo M, Paparelli A, Butt A, Stilo SA, Wiffen B, Powell J, Murray RM (2009) High-potency cannabis and the risk of psychosis. Br J Psychiatry 195:488–491PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Brakoulias V (2012) Products containing synthetic cannabinoids and psychosis. Aust N Z J Psychiatry 46:281–282PubMedCrossRefGoogle Scholar
  54. 54.
    Glue P, Al-Shaqsi S, Hancock D, Gale C, Strong B, Schep L (2013) Hospitalisation associated with use of the synthetic cannabinoid K2. N Z Med J 126:18–23PubMedGoogle Scholar
  55. 55.
    Celofiga A, Koprivsek J, Klavz J (2014) Use of synthetic cannabinoids in patients with psychotic disorders: case series. J Dual Diagn 10:168–173PubMedCrossRefGoogle Scholar
  56. 56.
    Oluwabusi OO, Lobach L, Akhtar U, Youngman B, Ambrosini PJ (2012) Synthetic cannabinoid-induced psychosis: two adolescent cases. J Child Adolesc Psychopharmacol 22:393–395PubMedCrossRefGoogle Scholar
  57. 57.
    Ustundag MF, Ozhan Ibis E, Yucel A, Ozcan H (2015) Synthetic cannabis-induced mania. Case Rep Psychiatry 2015:310930. doi:10.1155/2015/310930 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Lászik A, Törő K, Vannai M, Sára-Klausz g, Kócs t, Farkas R, Keller É, Róna K (2015) Self inflicted fatal injuries in association with synthetic cannabinoid abuse. 24th International Meeting on Forensic Medicine Alpe-Adria-Pannonia, AAP 2015 Programme and Abstract BookGoogle Scholar
  59. 59.
    Patton AL, Chimalakonda KC, Moran CL, McCain KR, Radominska-Pandya A, James LP, Kokes C, Moran JH (2013) K2 toxicity: fatal case of psychiatric complications following AM2201 exposure. J Forensic Sci 58:1676–1680. doi:10.1111/1556-4029.12216 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rosenbaum CD, Carreiro SP, Babu KM (2012) Here today, gone tomorrow…and back again? A review of herbal marijuana alternatives (K2, Spice), synthetic cathinones (bath salts), kratom, Salvia divinorum, methoxetamine, and piperazines. J Med Toxicol 8:5–32. doi:10.1007/s13181 CrossRefGoogle Scholar
  61. 61.
    Shanks KG, Dahn T, Terrell AR (2012) Detection of JWH-018 and JWH-073 by UPLC-MS-MS in postmortem whole blood casework. J Anal Toxicol 36:145–152. doi:10.1093/jat/bks013 PubMedCrossRefGoogle Scholar
  62. 62.
    Trecki J, Gerona RR, Schwartz MD (2015) Synthetic cannabinoid-related illnesses and deaths. N Engl J Med 373:103–107PubMedCrossRefGoogle Scholar
  63. 63.
    Rickli A, Hoener MC, Liechti ME (2015) Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 25:365–376. doi:10.1016/j.euroneuro.2014.12.012 PubMedCrossRefGoogle Scholar
  64. 64.
    McElrath K, O’Neill C (2011) Experiences with mephedrone pre-and post-legislative controls: perceptions of safety and sources of supply. Int J Drug Policy 22:120–127. doi:10.1016/j.drugpo.2010.11.001 PubMedCrossRefGoogle Scholar
  65. 65.
    De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97:20–26. doi:10.1016/j.lfs.2013.10.029 PubMedCrossRefGoogle Scholar
  66. 66.
    Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203. doi:10.1038/npp.2011.304 PubMedCrossRefGoogle Scholar
  67. 67.
    Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M et al (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562. doi:10.1038/npp.2012.204 PubMedCrossRefGoogle Scholar
  68. 68.
    Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470. doi:10.1111/j.1476-5381.2012.02145.x PubMedCrossRefGoogle Scholar
  69. 69.
    Gregg RA, Rawls SM (2014) Behavioral pharmacology of designer cathinones: a review of the preclinical literature. Life Sci 97:27–30. doi:10.1016/j.lfs.2013.10.033 PubMedCrossRefGoogle Scholar
  70. 70.
    Schifano F (2015) Novel psychoactive substances (NPS): clinical and pharmacological issues. Drugs Alcohol Today 15:21–27. doi:10.1108/DAT-10-2014-0035 CrossRefGoogle Scholar
  71. 71.
    Schifano F (2014) Novel psychoactive substances also known as ‘legal highs’. In: Davies SC (ed) Annual report of the Chief Medical Officer 2013. Public mental health priorities: investing in the evidence. Department of Health, London. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/413196/CMO_web_doc.pdf (2014). Accessed 22 Nov 2015
  72. 72.
    Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41PubMedCrossRefGoogle Scholar
  73. 73.
    Iversen L, White M, Treble R (2014) Designer psychostimulants: pharmacology and differences. Neuropharmacology 87:59–65. doi:10.1016/j.neuropharm.2014.01.015 PubMedCrossRefGoogle Scholar
  74. 74.
    Farrè M, Papaseit E, Pérez-Mañá C, Pujadas M, Fonseca F, Torrens M, De La Torre R, Farre M (2014) Human pharmacology of mephedrone: a dose-finding pilot study. College on Problems of Drug Dependence Meeting, San JuanGoogle Scholar
  75. 75.
    Hyde JF, Browning E, Adams R (1928) Synthetic homologs of d,I-Ephedrine. J Am Chem Soc 50:2287–2292. doi:10.1021/ja01395a032 CrossRefGoogle Scholar
  76. 76.
    L’Italien YJ, Park H, Rebstock LC (1957) Methylaminopropiophenone compounds and methods for producing the same. US Patent 2:802–865Google Scholar
  77. 77.
    de Burnaga Sanchez SJ (1929) Sur un homologue de l’ephedrine. Bull Soc Chim Fr 45:284–286Google Scholar
  78. 78.
    Meltzer P, Butler D, Deschamps JR, Madras BK (2006) 1-(4-methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) analogues: a promising class of monoamine uptake inhibitors. J Med Chem 49:1420–1432PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Boehringer. Boehringer Ingelheim Patent for MDPV (1969) http://catbull.com/alamut/Bibliothek/Boehringer_MDPV_Patent.htm. Accessed 20 Nov 2015
  80. 80.
    Carroll FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolckenhauer SA, Decker AM, Landavazo A, McElroy KT, Navarro HA, Gatch MB, Forster MJ (2009) Synthesis and biological evaluation of bupropion analogues as potential pharmacotherapies for cocaine addiction. J Med Chem 52:6768–6781. doi:10.1021/jm901189z PubMedCrossRefGoogle Scholar
  81. 81.
    Bondarev ML, Bondareva TS, Young R, Glennon RA (2003) Behavioral and biochemical investigations of bupropion metabolites. Eur J Pharmacol 474:85–93PubMedCrossRefGoogle Scholar
  82. 82.
    Vento AE, Schifano F, Gentili F, Pompei F, Corkery JM, Kotzalidis GD et al (2013) Bupropion perceived as a stimulant by two patients with a previous history of cocaine misuse. Ann Ist Super Sanita 49:402–405. doi:10.4415/ANN_13_04_14 PubMedGoogle Scholar
  83. 83.
    Deluca P, Davey Z, Corazza O, Di Furia L, Farre M, Flesland LH, Mannonen M, Majava A, Peltoniemi T, Pasinetti M, Pezzolesi C, Scherbaum N, Siemann H, Skutle A, Torrens M, van der Kreeft P, Iversen E, Schifano F (2012) Identifying emerging trends in recreational drug use; outcomes from the Psychonaut Web Mapping Project. Prog Neuropsychopharmacol Biol Psychiatry 39:221–226. doi:10.1016/j.pnpbp.2012.07.011 PubMedCrossRefGoogle Scholar
  84. 84.
    Coppola M, Mondola R (2012) 3,4-Methylenedioxypyrovalerone (MDPV): chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicol Lett 208:12–15. doi:10.1016/j.toxlet.2011.10.002 PubMedCrossRefGoogle Scholar
  85. 85.
    Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42. doi:10.1007/s13181-011-0193-z PubMedCrossRefGoogle Scholar
  86. 86.
    Dargan PI, Albert S, Wood DM (2010) Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. QJM 103:875–879. doi:10.1093/qjmed/hcq134 PubMedCrossRefGoogle Scholar
  87. 87.
    Corkery JM, Schifano F, Ghodse AH (2012) Mephedrone-related fatalities in the United Kingdom: contextual, clinical and practical issues. In: Gallelli L (ed) Pharmacology. InTech, Rijeka, Croatia, pp 355–380. doi:10.5772/32935. http://www.intechopen.com/books/pharmacology/mephedrone-related-fatalities-in-the-united-kingdom-contextual-clinical-and-practical-issues. Accessed 15 Nov 2015
  88. 88.
    Schifano F, Corkery J, Ghodse AH (2012) Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone; ‘meow meow’) in the UK. J Clin Psychopharmacol 32:710–714. doi:10.1097/JCP.0b013e318266c70c PubMedCrossRefGoogle Scholar
  89. 89.
    Corkery JM, Schifano F, Oyefeso A, Ghodse AH, Tonia T, Naidoo V, Button J (2011) ‘Bundle of fun’ or ‘bunch of problems’? Case series of khat-related deaths in the UK. Drugs Educ Prev Policy 18:408–425. doi:10.3109/09687637.2010.504200 CrossRefGoogle Scholar
  90. 90.
    Loi B, Corkery JM, Claridge H, Goodair C, Chiappini S, Gimeno Clemente C, Schifano F (2015) Deaths of individuals aged 16–24 years in the UK after using mephedrone. Hum Psychopharmacol 30:225–232. doi:10.1002/hup.2423 PubMedCrossRefGoogle Scholar
  91. 91.
    Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, Davey Z, Corkery J, Siemann H, Scherbaum N, Farre’ M, Torrens M, Demetrovics Z, Ghodse AH; Psychonaut Web Mapping; ReDNet Research Groups (2011) Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (Berl) 214:593–602. doi:10.1007/s00213-010-2070-x
  92. 92.
    McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422PubMedGoogle Scholar
  93. 93.
    EMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2014) Perspectives on drugs: injection of synthetic cathinones. Perspectives on Drugs Series, Lisbon, 27 May. http://www.emcdda.europa.eu/topics/pods/synthetic-cathinones-injection. Accessed 15 Nov 2015
  94. 94.
    Giese C, Igoe D, Gibbons Z, Hurley C, Stokes S, McNamara S, Ennis O, O’Donnell K, Keenan E, De Gascun C, Lyons F, Ward M, Danis K, Glynn R, Waters A, Fitzgerald M, outbreak control team (2015) Injection of new psychoactive substance snow blow associated with recently acquired HIV infections among homeless people who inject drugs in Dublin, Ireland, 2015. Eurosurveill 20; issue 40; art 1. doi:10.2807/1560-7917.ES.2015.20.40.30036
  95. 95.
    Sellors K, Jones A, Chan B (2014) Death due to intravenous use of α-pyrrolidinopentiophenone. Med J Aust 201:601–603PubMedCrossRefGoogle Scholar
  96. 96.
    EMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2015) Injection of synthetic cathinones. http://www.emcdda.europa.eu/topics/pods/synthetic-cathinones-injection. Accessed 29 Nov 2015
  97. 97.
    Gannon BM, Reichard EE, Fantegrossi WE (2014) Psychostimulant abuse and HIV infection: cocaine, methamphetamine, and “bath salts” cathinone analogues. Curr Addict Rep 1:237–242PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bourne A, Reid D, Hickson F, Rueda ST, Weatherburn P (2014) The Chemsex study: drug use in sexual settings among gay & bisexual men in Lambeth, Southwark & Lewisham. Sigma Research, London School of Hygiene & Tropical Medicine, LondonGoogle Scholar
  99. 99.
    Kirby T, Thornber-Dunwell M (2013) High-risk drug practices tighten grip on London gay scene. Lancet 381:101–102PubMedCrossRefGoogle Scholar
  100. 100.
    McCall H, Adams N, Mason D, Willis J (2015) What is chemsex and why does it matter? It needs to become a public health priority. BMJ 351:h5790PubMedCrossRefGoogle Scholar
  101. 101.
    Maskell PD, De Paoli G, Seneviratne C, Pounder DJ (2011) Mephedrone (4-methylmethcathinone)-related deaths. J Anal Toxicol 35:188–191PubMedCrossRefGoogle Scholar
  102. 102.
    Torrance H, Cooper G (2010) The detection of mephedrone (4-methylmethcathinone) in 4 fatalities in Scotland. Forensic Sci Int 202:e62–e63. doi:10.1016/j.forsciint.2010.07.014 PubMedCrossRefGoogle Scholar
  103. 103.
    Warrick BJ, Wilson J, Hedge M, Freeman S, Leonard K, Aaron C (2012) Lethal serotonin syndrome after methylone and butylone ingestion. J Med Toxicol 8:65–68. doi:10.1007/s13181-011-0199-6 PubMedCrossRefGoogle Scholar
  104. 104.
    Lee D, Chronister CW, Hoyer J, Goldberger BA (2015) Ethylone-related deaths: toxicological findings. J Anal Toxicol 39:567–571. doi:10.1093/jat/bkv053 PubMedCrossRefGoogle Scholar
  105. 105.
    Dy I, Lankford S (2015) Bath salt thrombosis. J Clin Toxicol 5:230. doi:10.4172/2161-0495.1000230 Google Scholar
  106. 106.
    EMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2015) EMCDDA–Europol Joint Report on a new psychoactive substance: 1-phenyl-2-(1-pyrrolidinyl)-1-pentanone (α-PVP). Publications Office of the European Union, Luxembourg. http://www.emcdda.europa.eu/attachements.cfm/att_242501_EN_TDAS15001ENN.pdf. Accessed 29 Nov 2015
  107. 107.
    Murray BL, Murphy CM, Beuhler MC (2012) Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV). J Med Toxicol 8:69–75. doi:10.1007/s13181-011-0196-9 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ojanperä IA, Heikman PK, Rasanen IJ (2011) Urine analysis of 3,4-methylenedioxypyrovalerone in opioid-dependent patients by gas chromatography-mass spectrometry. Ther Drug Monit 33(2):257–263. doi:10.1097/FTD.0b013e318208b693 PubMedGoogle Scholar
  109. 109.
    Young AC, Schwarz ES, Velez LI, Gardner M (2013) Two cases of disseminated intravascular coagulation due to “bath salts” resulting in fatalities, with laboratory confirmation. Am J Emerg Med 31:445.e3-5. doi:10.1016/j.ajem.2012.05.032
  110. 110.
    Wikström M, Thelander G, Nyström I, Kronstrand R (2010) Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone). J Anal Toxicol 34:594–598PubMedCrossRefGoogle Scholar
  111. 111.
    NISRA (2015) Drug related and drug misuse deaths 2004–2014. Northern Ireland Statistics & Research Agency, Belfast. http://www.nisra.gov.uk/archive/demography/publications/drug_deaths/Drug_Tables_14.xls. Accessed 30 Nov 2015
  112. 112.
    Elliott S, Evans J (2014) A 3-year review of new psychoactive substances in casework. Forensic Sci Int 243:55–60. doi:10.1016/j.forsciint.2014.04.017 PubMedCrossRefGoogle Scholar
  113. 113.
    Fantegrossi WE, Murnane KS, Reissig CJ (2008) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 75:17–33PubMedCrossRefGoogle Scholar
  114. 114.
    Halpern JH, Suzuki J, Huertas PE, Passie T (2011) Hallucinogens. In: Addiction medicine. Springer, pp 1083–1098Google Scholar
  115. 115.
    Sinke C, Halpern JH, Zedler M, Neufeld J, Emrich HM, Passie T (2012) Genuine and drug-induced synesthesia: a comparison. Conscious Cogn 21:1419–1434PubMedCrossRefGoogle Scholar
  116. 116.
    Chan RHA, Mendelson JE (2014) Hallucinogens. In: Madras B, Kuhar M (eds) The effects of drug abuse on the human nervous system. ElsevierGoogle Scholar
  117. 117.
    Jacob P, Shulgin AT (1994) Structure-activity relationships of classic hallucinogens and their analogs. NIDA Res Monogr 146:74–91PubMedGoogle Scholar
  118. 118.
    Glennon RA (1996) Classical hallucinogens. In: Schuster CR, Kuhar MJ (eds) Handbook of experimental pharmacology: pharmacological aspects of drug dependence. Springer, Basel, Switzerland, pp 343–371CrossRefGoogle Scholar
  119. 119.
    Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181PubMedCrossRefGoogle Scholar
  120. 120.
    Ray TS (2010) Psychedelics and the human receptorome. PLoS One 5, e9019PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bulling S, Schicker K, Zhang YW, Steinkellner T, Stockner T, Gruber CW, Boehm S, Freissmuth M, Rudnick G, Sitte HH, Sandtner W (2012) The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J Biol Chem 287:18524–18534. doi:10.1074/jbc.M112.343681 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Ede F, Szabo A, Winkelman MJ, Luna LE, McKenna DJ (2013) A possibly sigma-1 receptor mediated role of dimethyltryptamine in tissue protection, regeneration, and immunity. J Neural Transm 120:1295–1303CrossRefGoogle Scholar
  123. 123.
    Shulgin A, Shulgin A (1997) TIHKAL: the continuation. Transform Press. http://www.erowid.org/library/books_online/tihkal. Accessed 15 Sept 2014
  124. 124.
    Orsolini L, Papanti GD, Francesconi G, Schifano F (2015) Mind navigators of chemicals’ experimenters? A web-based description of e-psychonauts. Cyberpsychol Behav Soc Netw 18:296–300. doi:10.1089/cyber.2014.0486 PubMedCrossRefGoogle Scholar
  125. 125.
    Monitoring the Future Study (2014) Trends in prevalence of various drugs for 8th graders, 10th graders, and 12th graders. http://www.drugabuse.gov/drugs-abuse/hallucinogens. Accessed 20 Nov 2015
  126. 126.
    National Survey on Drug Use and Health: Trends in prevalence of various drugs for ages 12 or older, ages 12 to 17, ages 18 to 25, and ages 26 or older. http://www.drugabuse.gov/drugs-abuse/hallucinogens (2014). Accessed 20 Nov 2015
  127. 127.
    Heinrich C (2002) Magic mushrooms in religion and alchemy. Park Street Press, RochesterGoogle Scholar
  128. 128.
    Winkelman MJ, Roberts TB (2007) Psychedelic medicine: new evidence for hallucinogenic substances as treatments. Praeger Publishers, WestportGoogle Scholar
  129. 129.
    Studerus EA (2012) Prediction of psilocybin response in healthy volunteers. PLoS One 7, e30800PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gable RS (2007) Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction 102:24–34PubMedCrossRefGoogle Scholar
  131. 131.
    Hoffman A (1980) LSD: my problem child. McGraw-Hill, LondonGoogle Scholar
  132. 132.
    US Department of Justice, Drug Enforcement Administration. LSD in the United States. http://www.usdoj.gov/dea/pubs/lsd/toc.htm. Accessed 13 Nov 2015
  133. 133.
    Brandt SD, Kavanagh PV, Westphal F, Stratford A, Elliott SP, Hoang K, Wallach J, Halbertstadt AL (2015) Return of the lysergamides. Part I: analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test Anal. doi:10.1002/dta.1884
  134. 134.
    Flodrops H, Houdon L, Harvet G, Enaud L, Renouil M (2006) Voluntary intoxication by D-lysergic acid amide (LSA) in a 15-year-old teenager via Internet: new fact of society. Arch Pediatr 13:1158–1159PubMedCrossRefGoogle Scholar
  135. 135.
    Barker SA, Monti JA, Christian ST (1981) N,N-Dimethyltryptamine: an endogenous hallucinogen. Int Rev Neurobiol 22:83–110PubMedCrossRefGoogle Scholar
  136. 136.
    Guichhait RB (1976) Biogenesis of 5-methoxy-N,N-dimethyltryptamine in human pineal gland. J Neurochem 26:187–190Google Scholar
  137. 137.
    Kärkkäinen J, Räisäinen M, Naukarinen H, Spoov J, Rimon R (1988) Urinary excretion of free bufotenin by psychiatric patients. Biol Psychiatry 24:441–446PubMedCrossRefGoogle Scholar
  138. 138.
    Cimino G, De Stefano S (1978) Chemistry of Mediterranean Gorgonians. Simple indole derivatives from Paramuricea chamaeleon. Comptes Rendus Biochem Physiol Ser C 61:361–362CrossRefGoogle Scholar
  139. 139.
    Collins M (2011) Some new psychoactive substances: precursor chemicals and synthesis-driven end-products. Drug Test Anal 3:404–416PubMedCrossRefGoogle Scholar
  140. 140.
    Koike Y, Wada K, Kusano G, Nozoe S, Yokoyama K (1981) Isolation of psilocybin from Psilocybe argentipes and its determination in specimens of some mushrooms. Lloydia 44:362–365Google Scholar
  141. 141.
    Mckenna DJ, Towers GHN (1984) Biochemistry and pharmacology of tryptamines and beta-carbolines: a minireview. J Psychoactive Drugs 16:347–358PubMedCrossRefGoogle Scholar
  142. 142.
    Schultes RE (1979) Hallucinogenic plants: their earliest botanical descriptions. J Psychedelic Drugs 11:13–24PubMedCrossRefGoogle Scholar
  143. 143.
    Brandes JL, Kudrow D, Stark SR, O’Carroll CP, Adelman JU, O’Donnell FJ, Alexander WJ, Spruill SE, Barrett PS, Lener SE (2007) Sumatriptan-naproxen for acute treatment of migraine: a randomized trial. JAMA 297:1443–1454PubMedCrossRefGoogle Scholar
  144. 144.
    Hoffmann A, Heim R, Brack A, Kobel H, Frey A, Ott H, Petrzilka T, Troxler F (1959) Psilocybin und Psilocin, zwei psychotrope Wirkstoffe aus mexikanischen Rauschpilzen. Helv Chim Acta 42:1557–1572CrossRefGoogle Scholar
  145. 145.
    Sanders B, Lankenau SE, Bloom JJ, Hathazi D (2008) ‘Research chemicals’: tryptamine and phenylamine use among high-risk youth. SUM 43:389–402Google Scholar
  146. 146.
    UNODC (United Nations Office on Drugs and Crime) (2013) The challenge of new psychoactive substances. United Nations Office on Drugs and Crime, ViennaGoogle Scholar
  147. 147.
    UNODC (United Nations Office on Drugs and Crime) (2013) Early Warning Advisory on New Psychoactive Substances (NPS). October 2013 updateGoogle Scholar
  148. 148.
    UNODC (United Nations Office on Drugs and Crime) (2014) Global synthetic drugs assessment. https://www.unodc.org/documents/scientific/2014_Global_Synthetic_Drugs_Assessment_web.pdf. Accessed 8 Dec 2015
  149. 149.
    Arunotayanun W, Dalley JW, Huang XP, Setola V, Treble R, Iversen L, Roth BL, Gibbons S (2013) An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: emerging ‘Novel Psychoactive Drugs’. Bioorg Med Chem Lett 23:3411–3415PubMedCrossRefGoogle Scholar
  150. 150.
    The Misuse of Drugs Act 1971 (Modification) Order 2005. Office of Public Sector Information. Retrieved 23 September 2014Google Scholar
  151. 151.
    Dargan PI, Wood DM (2013) Novel psychoactive substances: classification, pharmacology and toxicology. ElsevierGoogle Scholar
  152. 152.
    Lessin AW, Long RF, Parkes MW (1965) Central stimulant actions of α-alkyl substituted tryptamine in mice. Br J Pharmacol 24:49–67Google Scholar
  153. 153.
    Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 97:118–122PubMedCrossRefGoogle Scholar
  154. 154.
    Cozzi NV, Gopalakrishnan A, Anderson LL, Feih JT, Shuldin AT, Daley PF, Ruoho AE (2009) Dimethyltryptamine and other hallucinogenic tryptamines exhibit substrate behavior at the serotonin uptake transporter and the vesicle monoamine transporter. J Neural Transm 116:1591–1599PubMedCrossRefGoogle Scholar
  155. 155.
    Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE (2009) The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 323:934–937PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Su TP, Hayashi T, Vaupel DB (2009) When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor. Sci Signal 2:12CrossRefGoogle Scholar
  157. 157.
    Sogawa C, Sogawa N, Tagawa J, Fujino A, Ohyama K, Asanuma M, Funada M, Kitayama S (2007) 5-Methoxy-N,N-diisopropyltryptamine (Foxy), a selective and high affinity inhibitor of serotonin transporter. Toxicol Lett 170:75–82PubMedCrossRefGoogle Scholar
  158. 158.
    Lyttle T, Goldstein D, Gartz J (1996) Bufo. Toads and bufotenine: fact and fiction surrounding an alleged psychedelic. J Psychoactive Drugs 28:267–290PubMedCrossRefGoogle Scholar
  159. 159.
    Shen HW, Jiang XL, Winter JC, Yu AM (2010) Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metab 11:659–666PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Ujvary I (2014) Psychoactive natural products: overview of recent developments. Ann Ist Super Sanità 50:12–27PubMedGoogle Scholar
  161. 161.
    Ambrose JB, Bennett HD, Lee HS, Josephson SA (2010) Cerebral vasculopathy after 4-bromo-2,5-dimethoxyphenethylamine ingestion. Neurologist 16:199–202PubMedCrossRefGoogle Scholar
  162. 162.
    Bosak A, LoVecchio F, Levine M (2013) Recurrent seizures and serotonin syndrome following “2C-I” ingestion. J Med Toxicol 9:196–198PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Topeff JM, Ellsworth H, Willhite LA, Cole JB, Edwards EM (2011) A case series of symptomatic patients, including one fatality, following 2C-E exposure. Clin Toxicol 49:526Google Scholar
  164. 164.
    Nelson ME, Bryant SM, Aks SE (2014) Emerging drugs of abuse. Emerg Med Clin N Am 1–28. doi:10.1016/j.emc.2013.09.001
  165. 165.
    Corazza O, Schifano F, Farre M, Deluca P, Davey Z, Torrens M, Demetrovics Z, Di Furia L, Flesland L, Siemann H, Skutle A, Van Der Kreeft P, Scherbaum N (2011) Designer drugs on the internet: a phenomenon out-of-control? The emergence of hallucinogenic drug Bromo-Dragonfly. Curr Clin Pharmacol 6:125–129Google Scholar
  166. 166.
    DEA US (Drug Enforcement Administration) (2013) Midyear Report 2013. Office of Diversion Control: National Forensic Laboratory Information System. US Drug Enforcement Administration, Springfield, VA. Accessed 1 Oct 2015Google Scholar
  167. 167.
    Uchiyama N, Shimokawa Y, Matsuda S, Kawamura M, Kikura-Hanajiri R, Goda Y (2014) Two new synthetic cannabinoids, AM-2201 benzimidazole analog (FUBIMINA) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM), and three phenethylamine derivatives, 25H-NBOMe 2,4,5-trimethoxybenzyl analog, 25B-NBOMe, and 2C-N-NBOMe, identified in illegal products. Forensic Toxicol 32:105–115CrossRefGoogle Scholar
  168. 168.
    Caldicott DG, Bright SJ, Barratt MJ (2013) NBOMe – a very different kettle of fish. Med J Aust 199:322–323PubMedCrossRefGoogle Scholar
  169. 169.
    Poklis JI, Devers KG, Arbefeville EF, Pearson JM, Houston E, Poklis A (2014) Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci Int 234:e14–e20PubMedCrossRefGoogle Scholar
  170. 170.
    Ralston N, Davies I (2015) Teen jumps to his death after $1.50 drug hit 2013. http://www.smh.com.au/nsw/teen-jumps-to-his-death-after-150-drug-hit-20130606-2nrpe.html#ixzz35BP7Ymmx. Accessed 1 Oct 2015
  171. 171.
    Walterscheid JP, Phillips GT, Lopez AE, Gonsoulin MI, Chen HH, Sanchez LA (2014) Pathological findings in 2 cases of fatal 25I-NBOMe toxicity. Am J Forensic Med Pathol 35:20–25PubMedCrossRefGoogle Scholar
  172. 172.
    Braden MR, Parrish JC, Naylor JC, Nichols DE (2006) Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol Pharmacol 70:1956–1964. doi:10.1124/mol.106.028720 PubMedCrossRefGoogle Scholar
  173. 173.
    Halberstadt AL, Geyer MA (2014) Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology 77(February):200–207. doi:10.1016/j.neuropharm.2013.08.025 PubMedCrossRefGoogle Scholar
  174. 174.
    Wood DM, Sedefov R, Cunningham A, Dargan PI (2015) Prevalence of use and acute toxicity associated with the use of NBOMe drugs. Clin Toxicol (Phila) 53:85–92. doi:10.3109/15563650.2015.1004179 CrossRefGoogle Scholar
  175. 175.
    Kueppers VB, Cooke CT (2015) 25I-NBOMe related death in Australia: a case report. Forensic Sci Int 249:e15–e18. doi:10.1016/j.forsciint.2015.02.010 PubMedCrossRefGoogle Scholar
  176. 176.
    Lowe LM, Peterson BL, Couper FJ (2015) A case review of the first analytically confirmed 25I-NBOMe-related death in Washington State. J Anal Toxicol 39:668–671. doi:10.1093/jat/bkv092 PubMedCrossRefGoogle Scholar
  177. 177.
    Suzuki J, Poklis JL, Poklis A (2014) “My friend said it was good LSD”: a suicide attempt following analytically confirmed 25I-NBOMe ingestion. J Psychoactive Drugs 46:379–382. doi:10.1080/02791072.2014.960111 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Suzuki J, Dekker MA, Valenti ES, Arbelo Cruz FA, Correa AM, Poklis JL, Poklis A (2015) Toxicities associated with NBOMe ingestion-a novel class of potent hallucinogens: a review of the literature. Psychosomatics 56:129–139. doi:10.1016/j.psym.2014.11.002 PubMedCrossRefGoogle Scholar
  179. 179.
    Lawn W, Barratt M, Williams M, Horne A, Winstock A (2014) The NBOMe hallucinogenic drug series: patterns of use, characteristics of users and self-reported effects in a large international sample. J Psychopharmacol 28:780–788. doi:10.1177/0269881114523866 PubMedCrossRefGoogle Scholar
  180. 180.
    Shanks KG, Sozio T, Behonick GS (2015) Fatal intoxications with 25B-NBOMe and 25I-NBOMe in Indiana during 2014. J Anal Toxicol 39:602–606. doi:10.1093/jat/bkv058 PubMedCrossRefGoogle Scholar
  181. 181.
    Wood DM, Davies S, Puchnarewicz M, Button J, Archer R, Ovaska H, Ramsey J, Lee T, Holt DW, Dargan PI (2010) Recreational use of mephedrone (4-methylmethcathinone, 4-MMC) with associated sympathomimetic toxicity. J Med Toxicol 6:327–330. doi:10.1007/s13181-010-0018-5 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Wood DM, Davies S, Puchnarewicz M, Button J, Archer R, Ramsey J, Lee T, Holt DW, Dargan PI (2009) Recreational Use of 4-methylmethcathinone (4-MMC) presenting with sympathomimetic toxicity and confirmed by toxicological screening. Clin Toxicol 47:733CrossRefGoogle Scholar
  183. 183.
    Wood DM, Greene SL, Dargan PI (2010) Clinical pattern of toxicity associated with the novel synthetic cathinone mephedrone. Emerg Med J 28:280–282PubMedCrossRefGoogle Scholar
  184. 184.
    Fass JA, Fass AD, Garcia AS (2012) Synthetic cathinones (bath salts): legal status and patterns of abuse. Ann Pharmacother 46:436–441. doi:10.1345/aph.1Q628 PubMedCrossRefGoogle Scholar
  185. 185.
    Wilson B, Tavakoli H, DeCecchis D, Mahadev V (2013) Synthetic cannabinoids, synthetic cathinones, and other emerging drugs of abuse. Psychiatr Ann 43:558–564CrossRefGoogle Scholar
  186. 186.
    Mas-Morey P, Visser MH, Winkelmolen L, Touw DJ (2013) Clinical toxicology and management of intoxications with synthetic cathinones (“bath salts”). J Pharm Pract 26:353–357. doi:10.1177/0897190012465949 PubMedCrossRefGoogle Scholar
  187. 187.
    Winstock AR, Marsden J, Mitcheson L (2010) What should be done about mephedrone? BMJ 340:c1605. doi:10.1136/bmj.c1605 PubMedCrossRefGoogle Scholar
  188. 188.
    Newcombe R (2009) Mephedrone: the use of mephedrone (M-cat,meow) in Middlesbrough. Lifeline Publications, Manchester. http://www.lifeline.org.uk/articles/the-use-of-mephedrone-m-cat-meow-in-middlesbrough/. Accessed 29 Nov 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fabrizio Schifano
    • 1
  • Laura Orsolini
    • 1
  • Duccio Papanti
    • 1
  • John Corkery
    • 1
  1. 1.Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical SciencesUniversity of HertfordshireHatfieldUK

Personalised recommendations