Skip to main content

NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 29))

Abstract

The physiology of NGF is extremely complex, and although the study of this neurotrophin began more than 60 years ago, it is far from being concluded. NGF, its precursor molecule pro-NGF, and their different receptor systems (i.e., TrkA, p75NTR, and sortilin) have key roles in the development and adult physiology of both the nervous and immune systems. Although the NGF receptor system and the pathways activated are similar for all types of cells sensitive to NGF, the effects exerted during embryonic differentiation and in committed mature cells are strikingly different and sometimes opposite. Bearing in mind the pleiotropic effects of NGF, alterations in its expression and synthesis, as well as variations in the types of receptor available and in their respective levels of expression, may have profound effects and play multiple roles in the development and progression of several diseases. In recent years, the use of NGF or of inhibitors of its receptors has been prospected as a therapeutic tool in a variety of neurological diseases and injuries. In this review, we outline the different roles played by the NGF system in various moments of nervous and immune system differentiation and physiology, from embryonic development to aging. The data collected over the past decades indicate that NGF activities are highly integrated among systems and are necessary for the maintenance of homeostasis. Further, more integrated and multidisciplinary studies should take into consideration these multiple and interactive aspects of NGF physiology in order to design new therapeutic strategies based on the manipulation of NGF and its intracellular pathways.

We wish to dedicate this review to the late Prof. Rita Levi-Montalcini, a splendid mentor and physiologist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CGRP:

Calcitonin gene-related peptide

CIPA:

Congenital insensitivity to pain with anhidrosis

CNS:

Central nervous system

CREB:

CRE-binding protein

DRG:

Dorsal root ganglion

EAE:

Experimental autoimmune encephalomyelitis

ERK:

Extracellular signal-regulated kinase

IL:

Interleukin

MAPK:

Mitogen-activated protein kinase

NGF:

Nerve growth factor

NPY:

Neuropeptide Y

NT:

Neurotrophin

p75NTR:

p75neurotrophin receptor

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

PNS:

Peripheral nervous system

SOS:

Son of sevenless

SP:

Substance P

TH:

Tyrosine hydroxylase

TrkA:

Tropomyosin-related kinase A

References

  • Due to the vastness and complexity of the subjects treated in the present review, the list of bibliographic references is far from exhaustive and should be considered as merely representative. The authors apologize for not including the original work of many researchers who have helped to define the physiology of NGF and refer readers to other reviews for further informations.

    Google Scholar 

  • Abir R, Fisch B, Jin S, Barnnet M, Ben-Haroush A, Felz C, Kessler-Icekson G, Feldberg D, Nitke S, Ao A (2005) Presence of NGF and its receptors in ovaries from human fetuses and adults. Mol Hum Reprod 11:229–236

    CAS  PubMed  Google Scholar 

  • Abram M, Wegmann M, Fokuhl V, Sonar S, Luger EO, Kerzel S, Radbruch A, Renz H, Zemlin M (2009) Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation. J Immunol 182:4705–4712

    CAS  PubMed  Google Scholar 

  • Acosta CM, Cortes C, MacPhee H, Namaka MP (2013) Exploring the role of nerve growth factor in multiple sclerosis: implications in myelin repair. CNS Neurol Disord: Drug Targets 12:1242–1256

    CAS  Google Scholar 

  • Acosta C, Cortes C, Altaweel K, MacPhee H, Hoogervorst B, Bhullar H, MacNeil B, Torabi M, Burczynski F, Namaka MP (2015) Immune system induction of nerve growth factor in an animal model of multiple sclerosis: implications in re-myelination and myelin repair. CNS Neurol Disord Drug Targets. PMID: 25801841 (in press)

    Google Scholar 

  • Aloe L, Cozzari C, Calissano P, Levi-Montalcini R (1981) Somatic and behavioral postnatal effects of fetal injections of nerve growth factor antibodies in the rat. Nature 291:413–415

    CAS  PubMed  Google Scholar 

  • Aloe L, Micera A, Bracci-Laudiero L, Vigneti E, Turrini P (1997) Presence of nerve growth factor in the thymus of prenatal and pregnant rats. Thymus 24:221–231

    CAS  PubMed  Google Scholar 

  • Aloe L, Tirassa P, Bracci-Laudiero L (2001) Nerve growth factor in neurological and non-neurological diseases: basic findings and emerging pharmacological prospectives. Curr Pharm Des 7:113–123

    CAS  PubMed  Google Scholar 

  • Antonelli A, Bracci-Laudiero L, Aloe L (2003) Altered plasma nerve growth factor-like immunoreactivity and nerve growth factor-receptor expression in human old age. Gerontology 49:185–190

    CAS  PubMed  Google Scholar 

  • Arredondo LR, Deng C, Ratts RB, Lovett-Racke AE, Holtzman DM, Racke MK (2001) Role of nerve growth factor in experimental autoimmune encephalomyelitis. Eur J Immunol 31:625–633

    CAS  PubMed  Google Scholar 

  • Auffray I, Chevalier S, Froger J, Izac B, Vainchenker W, Gascan H, Coulombel L (1996) Nerve growth factor is involved in the supportive effect by bone marrow derived stromal cells of the factor-dependent human cell line UT-7. Blood 88:1608–1618

    CAS  PubMed  Google Scholar 

  • Baas PW, Luo L (2001) Signaling at the growth cone: the scientific progeny of Cajal meet in Madrid. Neuron 32:981–984

    CAS  PubMed  Google Scholar 

  • Bhargava S (2007) Role of nerve growth factor and its receptor in the morphogenesis of neural tube in early chick embryo. Gen Comp Endocrinol 153:141–146

    CAS  PubMed  Google Scholar 

  • Bhargava S, Modak SP (2002) Expression of nerve growth factor during the development of nervous system in early chick embryo. Brain Res Dev Brain Res 136:43–49

    CAS  PubMed  Google Scholar 

  • Barker PA, Hussain NK, McPherson PS (2002) Retrograde signaling by the neurotrophins follows a well-worn trk. Trends Neurosci 25:379–381

    CAS  PubMed  Google Scholar 

  • Barouch R, Kazimirsky G, Appel E, Brodie C (2001) Nerve growth factor regulates TNF-alpha production in mouse macrophages via MAPkinase activation. J Leukoc Biol 69:1019–1026

    CAS  PubMed  Google Scholar 

  • Bax B, Blundell TL, Murray-Rust J, McDonald NQ (1997) Structure of mouse 7S NGF: a complex of nerve growth factor with four binding proteins. Structure 5:1275–1285

    CAS  PubMed  Google Scholar 

  • Bayas A, Kruse N, Moriabadi NF, Weber F, Hummel V, Wohleben G, Gold R, Toyka KV, Rieckmann P (2003) Modulation of cytokine mRNA expression by brain-derived neurotrophic factor and nerve growth factor in human immune cells. Neurosci Lett 335:155–158

    CAS  PubMed  Google Scholar 

  • Beigelman A, Levy J, Hadad N, Pinsk V, Haim A, Fruchtman Y, Levy R (2009) Abnormal neutrophil chemotactic activity in children with congenital insensitivity to pain with anhidrosis (CIPA): the role of nerve growth factor. Clin Immunol 130:365–372

    CAS  PubMed  Google Scholar 

  • Berry A, Bindocci E, Alleva E (2012) NGF, brain and behavioral plasticity. Neural Plast 2012:784040. doi:10.1155/2012/784040

    Article  PubMed  PubMed Central  Google Scholar 

  • Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31:24–31

    CAS  PubMed  Google Scholar 

  • Bierl MA, Jones EE, Crutcher KA, Isaacson LG (2005) ‘Mature’ nerve growth factor is a minor species in most peripheral tissues. Neurosci Lett 380:133–137

    CAS  PubMed  Google Scholar 

  • Bierl MA, Isaacson LG (2007) Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiol Aging 28:122–134

    CAS  PubMed  Google Scholar 

  • Bracci-Laudiero L, Vigneti E, Aloe L (1991) In vivo and in vitro effect of NGF on bursa of Fabricius cells during chick embryo development. Int J Neurosci 59:189–198

    Google Scholar 

  • Bracci-Laudiero L, Aloe L, Levi-Montalcini R, Buttinelli C, Schilter D, Gillessen S, Otten U (1992) Multiple sclerosis patients express increased levels of b-nerve growth factor in cerebrospinal fluid. Neurosci Lett 147:9–12

    Google Scholar 

  • Bracci-Laudiero L, Vigneti E, Iannicola C, Aloe L (1993) NGF retards apoptosis in chick embryo bursal cell in vitro. Differentiation 53:61–66

    CAS  PubMed  Google Scholar 

  • Bracci-Laudiero L, Aloe L, Stenfors C, Tirassa P, Theodorsson E, Lundberg T (1996) Nerve growth factor stimulates production of neuropeptide Y in human lymphocytes. NeuroReport 7:485–488

    CAS  PubMed  Google Scholar 

  • Bracci-Laudiero L, Celestino D, Starace G, Antonelli A, Lambiase A, Procoli A, Rumi C, Lai M, Picardi A, Ballatore G, Bonini S, Aloe L (2003) CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol 136:130–139

    CAS  PubMed  Google Scholar 

  • Bracci-Laudiero L, Aloe L, Caroleo MC, Buanne P, Costa N, Starace G, Lundeberg T (2005) Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood 106:3507–3514

    CAS  PubMed  Google Scholar 

  • Britto JM, Tannahill D, Keynes RJ (2000) Life, death and Sonic hedgehog. BioEssays 22:499–502

    CAS  PubMed  Google Scholar 

  • Brodie C, Gelfand EW (1992) Functional nerve growth factor receptors on human B-lymphocytes. Interaction with IL-2. J Immunol 148:3492–3497

    CAS  PubMed  Google Scholar 

  • Brodie C, Gelfand EW (1994) Regulation of immunoglobulin production by nerve growth factor: comparison with anti-CD40. J Neuroimmunol 52:87–96

    CAS  PubMed  Google Scholar 

  • Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci USA 103:6735–6740

    CAS  PubMed  Google Scholar 

  • Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009) Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68:857–869

    CAS  PubMed  Google Scholar 

  • Bullock ED, Johnson EM (1996) Nerve growth factor induces the expression of certain cytokines genes and bcl2 in mast cells: potential role in survival promotion. J Biol Chem 271:27500–27508

    CAS  PubMed  Google Scholar 

  • Cabal-Hierro L, Lazo PS (2012) Signal transduction by tumor necrosis factor receptors. Cell Signal 24:1297–1305

    CAS  PubMed  Google Scholar 

  • Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK, Sancricca C, Nociti V, Tonali PA, Mirabella M (2005) Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scand J Immunol 62:176–182

    CAS  PubMed  Google Scholar 

  • Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci USA 74:4516–4519

    CAS  PubMed  Google Scholar 

  • Campenot RB (1982a) Development of sympathetic neurons in compartmentalized cultures. II. Local control of neurite survival by nerve growth factor. Dev Biol 93:13–21

    CAS  PubMed  Google Scholar 

  • Campenot RB (1982b) Development of sympathetic neurons in nerve growth factor. Dev Biol 93:1–12

    CAS  PubMed  Google Scholar 

  • Caneva L, Soligo D, Cattoretti G, De Harven E, Deliliers GL (1995) Immuno-electron microscopy characterization of human bone marrow stromal cells with anti-NGFR antibodies. Blood Cells Mol Dis 21:73–85

    CAS  PubMed  Google Scholar 

  • Carlson SL, Albers KM, Beiting DJ, Parish M, Conner JM, Davis BM (1995) NGF modulates sympathetic innervation of lymphoid tissues. J Neurosci 15:5892–5899

    CAS  PubMed  Google Scholar 

  • Caroleo MC, Costa N, Bracci-Laudiero L, Aloe L (2001) Human monocyte/macrophages activate by exposure to LPS overexpress NGF and NGF receptors. J Neuroimmunol 113:193–201

    CAS  PubMed  Google Scholar 

  • Carriero F, Campioni N, Cardinali B, Pierandrei-Amaldi P (1991) Structure and expression of the nerve growth factor gene in Xenopus oocytes and embryos. Mol Reprod Dev 29:313–322

    CAS  PubMed  Google Scholar 

  • Cattoretti G, Schirò R, Orazi A, Soligo D, Colombo MP (1993) Bone marrow stroma in humans: anti-nerve growth factor receptor antibodies selectively stain reticular cells in vivo and in vitro. Blood 81:1726–1738

    CAS  PubMed  Google Scholar 

  • Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–326

    CAS  PubMed  Google Scholar 

  • Chevalier S, Praloran V, Smith C, Mac Grogan D, Ip NY, Yancopoulos GD, Brachet P, Pouplard A, Gascan H (1994) Expression and functionality of the trkA proto-oncogene product/NGF receptor in undifferentiated hematopoietic cells. Blood 83:1479–1485

    CAS  PubMed  Google Scholar 

  • Ciriaco E, Dall’Aglio C, Hannestad J, Huerta JJ, Laurà R, Germanà G, Vega JA (1996) Localization of TrK neurotrophin receptor-like proteins in avian primary lymphoid organs: thymus and bursa of Fabricius. J Neuroimmunol 69:73–83

    CAS  PubMed  Google Scholar 

  • Colafrancesco V, Villoslada P (2011) Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. Arch Ital Biol 14:183–192

    Google Scholar 

  • Cooper JD, Lindholm D, Sofroniew MV (1994) Reduced transport of 125I-NGF by cholinergic neurons and downregulated TrkA expression in the medial septum of aged rats. Neuroscience 62:625–629

    CAS  PubMed  Google Scholar 

  • Cosker KE, Courchesne SL, Segal RA (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18:270–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotrina ML, González-Hoyuela M, Barbas JA, Rodríguez-Tébar A (2000) Programmed cell death in the developing somites is promoted by nerve growth factor via its p75(NTR) receptor. Dev Biol 228:326–336

    CAS  PubMed  Google Scholar 

  • Cuello AC, Ferretti MT, Iulita MF (2012) Preplaque (‘preclinical’) Aβ-induced inflammation and nerve growth factor deregulation in transgenic models of Alzheimer’s disease-like amyloid pathology. Neurodegener Dis 10:104–107

    CAS  PubMed  Google Scholar 

  • Davies AM (1997) Neurotrophin switching: where does it stand? Curr Opin Neurobiol 7:110–118

    CAS  PubMed  Google Scholar 

  • DeLacalle S, Cooper JD, Svendsen CN, Dunnett SB, Sofroniew MV (1996) Reduced retrograde labeling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience 75:19–27

    CAS  Google Scholar 

  • Deppmann CD, Mihalas S, Sharma N, Lonze BE, Niebur E, Ginty DD (2008) A model for neuronal competition during development. Science 320:369–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Simone R, Micera A, Tirassa P, Aloe L (1996) mRNA for NGF and p75 in the central nervous system of rats affected by experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 22:54–59

    PubMed  Google Scholar 

  • Dissen GA, Garcia-Rudaz C, Ojeda SR (2009) Role of neurotrophic factors in early ovarian development. Semin Reprod Med 27:24–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dissen GA, Hirshfield AN, Malamed S, Ojeda SR (1995) Expression of neurotrophins and their receptors in the mammalian ovary is developmentally regulated: changes at the time of folliculogensis. Endocrinology 136:4681–4692

    CAS  PubMed  Google Scholar 

  • Domeniconi M, Hempstead BL, Chao MV (2007) Pro-NGF secreted by astrocytes promotes motor neuron cell death. Mol Cell Neurosci 34:271–279

    CAS  PubMed  Google Scholar 

  • D’Onofrio M, Paoletti F, Arisi I, Brandi R, Malerba F, Fasulo L, Cattaneo A (2011) NGF and proNGF regulate functionally distinct mRNAs in PC12 cells: an early gene expression profiling. PLoS ONE 6:e20839. doi:10.1371/journal.pone.0020839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadi M, Bashir RM, Heidrick ML, Hamada FM, Refaey HE, Hamed A, Helal G, Baxi MD, Cerutis DR, Lassi NK (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem Int 30:347–374

    CAS  PubMed  Google Scholar 

  • Ebendal T (1992) Function and evolution in the NGF family and its receptors. J Neurosci Res 32:461–470

    CAS  PubMed  Google Scholar 

  • Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci USA 90:10984–10988

    CAS  PubMed  Google Scholar 

  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    CAS  PubMed  Google Scholar 

  • Ernfors P, Hallböök F, Ebendal T, Shooter EM, Radeke MJ, Misko TP, Persson H (1988) Developmental and regional expression of beta-nerve growth factor receptor mRNAin the chick and rat. Neuron 1:983–996

    CAS  PubMed  Google Scholar 

  • Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, Hempstead BL (2001) The cytoplasmic and transmembrane domain of the p75 and TrkA receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695

    CAS  PubMed  Google Scholar 

  • Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220

    CAS  PubMed  Google Scholar 

  • Fahnestock M, Yu G, Coughlin MD (2004) ProNGF: a neurotrophic or an apoptotic molecule? Prog Brain Res 146:101–110

    CAS  PubMed  Google Scholar 

  • Ferrari MP, Mantelli F, Sacchetti M, Antonangeli MI, Cattani F, D’Anniballe G, Sinigaglia F, Ruffini PA, Lambiase A (2014) Safety and pharmacokinetics of escalating doses of human recombinant nerve growth factor. BioDrugs 28:275–283

    CAS  PubMed  Google Scholar 

  • Ferretti MT, Bruno MA, Ducatenzeiler A, Klein WL, Cuello AC (2012) Intracellular Aβ-oligomers and early inflammation in a model of Alzheimer’s disease. Neurobiol Aging 33:1329–1342

    CAS  PubMed  Google Scholar 

  • Flügel A, Matsumuro K, Neumann H, Klinkert WE, Birnbacher R, Lassmann H, Otten U, Wekerle H (2001) Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 31:11–22

    PubMed  Google Scholar 

  • Frade JM, Bovolenta P, Rodríguez-Tébar A (1999) Neurotrophins and other growth factors in the generation of retinal neurons. Microsc Res Tech 45:243–251

    CAS  PubMed  Google Scholar 

  • Fukunaga K, Ishigami T, Kawano T (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: expression and function of forkhead transcription factors in neurons. J Pharmacol Sci 98:205–211

    CAS  PubMed  Google Scholar 

  • Garcia-Suárez O, Germanà A, Hannestad J, Ciriaco E, Silos-Santiago I, Germanà G, Vega JA (2001) Involvement of the NGF receptors (Trka and p75lngfr) in the development and maintenance of the thymus. Ital J Anat Embryol 106:279–285

    PubMed  Google Scholar 

  • Gibbs BF, Zillikens D, Grabbe J (2005) Nerve growth factor influences IgE-mediated human basophil activation: functional properties and intracellular mechanisms compared with IL-3. Int Immunopharmacol 5:735–747

    CAS  PubMed  Google Scholar 

  • Goedert M, Fine A, Dawbarn D, Wilcock GK, Chao MV (1989) Nerve growth factor receptor mRNA distribution in human brain: normal levels in basal forebrain in Alzheimer’s disease. Brain Res Mol Brain Res 5:1–7

    CAS  PubMed  Google Scholar 

  • Greene LA (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol 78:747–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hallböök F (1999) Evolution of the vertebrate neurotrophin and Trk receptor gene families. Curr Opin Neurobiol 9:616–621

    PubMed  Google Scholar 

  • Hamada A, Watanabe N, Ohtomo H, Matsuda H (1996) Nerve growth factor enhances survival and cytotoxic activity of human eosinophils. Br J Haematol 93:299–302

    CAS  PubMed  Google Scholar 

  • Harrington AW, St. Hillaire C, Zweifel LS, Glebova NO, Philippidou P, Halegoua S, Ginty DD (2011) Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 146:421–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington AW, Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14:177–187

    CAS  PubMed  Google Scholar 

  • Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins GA, Koh S, Chen KS, Gage FH (1989) NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3:247–256

    CAS  PubMed  Google Scholar 

  • Howe CL, Mobley WC (2005) Long-distance retrograde neurotrophic signaling. Curr Opin Neurobiol 15:40–48

    CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    CAS  PubMed  Google Scholar 

  • Huh CY, Danik M, Manseau F, Trudeau LE, Williams S (2008) Chronic exposure to nerve growth factor increases acetylcholine and glutamate release from cholinergic neurons of the rat medial septum and diagonal band of Broca via mechanisms mediated by p75NTR. J Neurosci 28:1404–1409

    CAS  PubMed  Google Scholar 

  • Ibáñez CF (2002) Jekyll-Hyde neurotrophins: the story of proNGF. Trends Neurosci 25:284–286

    PubMed  Google Scholar 

  • Inanç B, Elçin AE, Elçin YM (2008) Human embryonic stem cell differentiation on tissue engineering scaffolds: effects of NGF and retinoic acid induction. Tissue Eng Part A 14:955–964

    PubMed  Google Scholar 

  • Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, Awaya Y, Matsuda I (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13:485–488

    CAS  PubMed  Google Scholar 

  • Iulita MF, Cuello AC (2014) Nerve growth factor metabolic dysfunction in Alzheimer’sdisease and Down syndrome. Trends Pharmacol Sci 35:338–348

    CAS  PubMed  Google Scholar 

  • Kannan Y, Ushio H, Koyama H, Okada M, Oikawa M, Yoshihara T, Kaneko M, Matsuda H (1991) Nerve growth factor enhances survival, phagocytosis, and superoxide production of murine neutrophils. Blood 77:1320–1325

    CAS  PubMed  Google Scholar 

  • Kaplan DR, Martin-Zanca D, Parada LF (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350:158–160

    CAS  PubMed  Google Scholar 

  • Katoh-Semba R, Semba R, Takeuchi IK, Kato K (1998) Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci Res 31:227–234

    CAS  PubMed  Google Scholar 

  • Kawamoto K, Okada T, Kannan Y, Ushio H, Matsumoto M, Matsuda H (1995) Nerve growth factor prevents apoptosis of rat peritoneal mast cells through the trk proto-oncogene receptor. Blood 86:4638–4644

    CAS  PubMed  Google Scholar 

  • Kerr B, Garcia-Rudaz C, Dorfman M, Paredes A, Ojeda SR (2009) NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reproduction 138:131–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ketschek A, Gallo G (2010) Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci 30:12185–12197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimata H, Yoshida A, Ishioka C, Kusunoki T, Hosoi S, Mikawa H (1991) Nerve growth factor specifically induces human IgG4 production. Eur J Immunol 21:137–141

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Gleich GJ, Butterfield JH, Kita H (2002) Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood 99:2214–2220

    CAS  PubMed  Google Scholar 

  • Kraemer BR, Yoon SO, Carter BD (2014) The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handb Exp Pharmacol 220:121–164

    CAS  PubMed  Google Scholar 

  • Kuruvilla R, Ye H, Ginty DD (2000) Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27:499–512

    CAS  PubMed  Google Scholar 

  • la Sala A, Corinti S, Federici M, Saragovi HU, Girolomoni G (2000) Ligand activation of nerve growth factor receptor TrkA protects monocytes from apoptosis. J Leukoc Biol 68:104–110

    PubMed  Google Scholar 

  • Ladle DR, Pecho-Vrieseling E, Arber S (2007) Assembly of motor circuits in the spinal cord: driven to function by genetic and experience-dependent mechanisms. Neuron 56:270–283

    CAS  PubMed  Google Scholar 

  • Lambiase A, Bonini S, Manni L, Ghinelli E, Tirassa P, Rama P, Aloe L (2002) Intraocular production and release of nerve growth factor after iridectomy. Invest Ophthalmol Vis Sci 43:2334–2340

    PubMed  Google Scholar 

  • Lanave C, Colangelo AM, Saccone C, Alberghina L (2007) Molecular evolution of the neurotrophin family members and their Trk receptors. Gene 394:1–12

    CAS  PubMed  Google Scholar 

  • Laurenzi MA, Barbany G, Timmusk T, Lindgren JA, Persson H (1994) Expression of mRNA encoding neurotrophins and neurotrophin receptors in rat thymus, spleen tissue and immunocompetent cells. Eur J Biochem 223:733–741

    CAS  PubMed  Google Scholar 

  • Lee HW, Na YJ, Jung PK, Kim MN, Kim SM, Chung JS, Kim BS, Kim JB, Moon JO, Yoon S (2008) Nerve growth factor stimulates proliferation, adhesion and thymopoietic cytokine expression in mouse thymic epithelial cells in vitro. Regul Pept 147:72–81

    CAS  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Hamburger V (1951) Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116:321–361

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Booker B (1960) Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc Natl Acad Sci USA 46:384–391

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Cohen S (1960) Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Ann N Y Acad Sci 85:324–341

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1968) Nerve growth factor. Physiol Rev 48:534–569

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini R (1997) The Saga of the nerve growth factor, preliminary studies, discovery, further development. In: World Scientific Series in 20th Century Biology (vol 3). World Scientific, Singapore

    Google Scholar 

  • Li Z, Beutel G, Rhein M, Meyer J, Koenecke C, Neumann T, Yang M, Krauter J, von Neuhoff N, Heuser M, Diedrich H, Göhring G, Wilkens L, Schlegelberger B, Ganser A, Baum C (2009) High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113:2028–2037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay RM, Harmar AJ (1989) Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature 337:362–364

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Bengzon J, Elmr E, Kokaia M (1994) Neurotrophins and brain insults. Trends Neurosci 17:490–496

    CAS  PubMed  Google Scholar 

  • Linher-Melville K, Li J (2013) The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. Reproduction 145:R43–R54

    CAS  PubMed  Google Scholar 

  • Linker R, Gold R, Luhder F (2009) Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol 29:43–68

    CAS  PubMed  Google Scholar 

  • Lomen-Hoerth C, Shooter EM (1995) Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues. J Neurochem 64:1780–1789

    CAS  PubMed  Google Scholar 

  • Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD (2007) A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54:739–754

    CAS  PubMed  Google Scholar 

  • Madden KS, Felten DL (1995) Experimental basis for neuronal-immune interactions. Physiol Rev 75:77–106

    CAS  PubMed  Google Scholar 

  • Majdan M, Walsh GS, Aloyz R, Miller FD (2001) TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J Cell Biol 155:1275–1285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamidipudi V, Li X, Wooten MW (2002) Identification of interleukin 1 receptor-associated kinase as a conserved component in the p75-neurotrophin receptor activation of nuclear factor-kappa B. J Biol Chem 277:28010–28018

    CAS  PubMed  Google Scholar 

  • Mandai K, Guo T, St Hillaire C, Meabon JS, Kanning KC, Bothwell M, Ginty DD (2009) LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63:614–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manca A, Capsoni S, Di Luzio A, Vignone D, Malerba F, Paoletti F, Brandi R, Arisi I, Cattaneo A, Levi-Montalcini R (2012) Nerve growth factor regulates axial rotation during early stages of chick embryo development. Proc Natl Acad Sci USA 109:2009–2014

    CAS  PubMed  Google Scholar 

  • Marmigère F, Carroll P (2014) Neurotrophin signalling and transcription programmes interactions in the development of somatosensory neurons. Handb Exp Pharmacol 220:329–353

    PubMed  Google Scholar 

  • Masoudi R, Ioannou MS, Coughlin MD, Pagadala P, Neet KE, Clewes O, Allen SJ, Dawbarn D, Fahnestock M (2009) Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors. J Biol Chem 284:18424–18433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda H, Coughlin MD, Bienenstock J, Denburg JA (1988) Nerve growth factor promotes human hemapoietic colony growth and differentiation. Proc Natl Acad Sci USA 85:6508–6512

    CAS  PubMed  Google Scholar 

  • Matsuda H, Kannan Y, Ushio H, Kiso Y, Kanemoto T, Suzuki H, Kitamura Y (1991) Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 174:7–14

    CAS  PubMed  Google Scholar 

  • Mayor R, Theveneau E (2013) The neural crest. Development 140:2247–2251

    CAS  PubMed  Google Scholar 

  • McDonald NQ, Hendrickson WA (1993) A structural superfamily of growth factors containing a cystine knot motif. Cell 73:421–424

    CAS  PubMed  Google Scholar 

  • McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-Å resolution crystal structure of nerve growth factor. Nature 354:411–414

    CAS  PubMed  Google Scholar 

  • Melamed I, Levy J, Parvari R, Gelfand EW (2004) A novel lymphocyte signaling defect: trk A mutation in the syndrome of congenital insensitivity to pain and anhidrosis (CIPA). J Clin Immunol 24:441–448

    CAS  PubMed  Google Scholar 

  • Miller FD, Kaplan DR (2001) Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol Life Sci 58:1045–1053

    CAS  PubMed  Google Scholar 

  • Mok SA, Campenot RB (2007) A nerve growth factor-induced retrograde survival signal mediated by mechanisms downstream of TrkA. Neuropharmacology 52:270–278

    CAS  PubMed  Google Scholar 

  • Moscatelli I, Pierantozzi E, Camaioni A, Siracusa G, Campagnolo L (2009) p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells. Exp Cell Res 315:3220–3232

    CAS  PubMed  Google Scholar 

  • Niewiadomska G, Baksalerska-Pazera M, Riedel G (2009) The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 33:791–805

    PubMed  Google Scholar 

  • Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M (2011) The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 221:515–526

    CAS  PubMed  Google Scholar 

  • Noga O, Englmann C, Hanf G, Grützkau A, Guhl S, Kunkel G (2002) Activation of the specific neurotrophin receptors TrkA, TrkB and TrkC influences the function of eosinophils. Clin Exp Allergy 32:1348–1354

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF induced neuronal cell death. Nature 427:843–848

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Willnow TE (2012) Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 35:261–270

    CAS  PubMed  Google Scholar 

  • Nykjaer A, Willnow TE, Petersen CM (2005) p75NTR—live or let die. Curr Opin Neurobiol 15:49–57

    CAS  PubMed  Google Scholar 

  • Øren A, Falk K, Rötzschke O, Bechmann I, Nitsch R, Gimsa U (2004) Production of neuroprotective NGF in astrocyte-T helper cell cocultures is upregulated following antigen recognition. J Neuroimmunol 149:59–65

    PubMed  Google Scholar 

  • Parvaneh Tafreshi A (2006) Nerve growth factor prevents demyelination, cell death and progression of the disease in experimental allergic encephalomyelitis. Iran J Allergy Asthma Immunol 5:177–181

    PubMed  Google Scholar 

  • Patel TD, Kramer I, Kucera J, Niederkofler V, TM Jesell, Arber S, Snider WD (2003) Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38:403–416

    CAS  PubMed  Google Scholar 

  • Pazyra-Murphy MF, Hans A, Courchesne SL, Karch C, Cosker KE, Heerssen HM, Watson FL, Kim T, Greenberg ME, Segal RA (2009) A retrograde neuronal survival response: target-derived neurotrophins regulate MEF2D and bcl-w. J Neurosci 29:6700–6709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzati P, Stanisz AM, Marshall JS, Bienenstock J, Stead RH (1992) Expression of nerve growth factor receptor immunoreactivity on follicular dendritic cells from human mucosa associated lymphoid tissues. Immunology 76:485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prencipe G, Minnone G, Strippoli R, De Pasquale L, Petrini S, Caiello I, Manni L, De Benedetti F, Bracci-Laudiero L (2014) Nerve growth factor downregulates inflammatory response in human monocytes through TrkA. J Immunol 192:3345–3354

    CAS  PubMed  Google Scholar 

  • Purves D (1975) Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J Physiol 252:429–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pyle AD, Lock LF, Donovan PJ (2006) Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24:344–350

    CAS  PubMed  Google Scholar 

  • Ralainirina N, Brons NH, Ammerlaan W, Hoffmann C, Hentges F, Zimmer J (2010) Mouse natural killer (NK) cells express the nerve growth factor receptor TrkA, which is dynamically regulated. PLoS ONE 5:e15053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361:1545–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renné C, Minner S, Küppers R, Hansmann ML, Bräuninger A (2008) Autocrine NGFbeta/TRKA signalling is an important survival factor for Hodgkin lymphoma derived cell lines. Leuk Res 32:163–167

    PubMed  Google Scholar 

  • Resende TP, Ferreira M, Teillet MA, Tavares AT, Andrade RP, Palmeirim I (2010) Sonic hedgehog in temporal control of somite formation. Proc Natl Acad Sci USA 107:12907–12912

    CAS  PubMed  Google Scholar 

  • Rezaee F, Rellick SL, Piedimonte G, Akers SM, O’Leary HA, Martin K, Craig MD, Gibson LF (2010) Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway. PLoS ONE 5(3):e9690. doi:10.1371/journal.pone.0009690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rifkin JT, Todd VJ, Anderson LW, Lefcort F (2000) Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Dev Biol 227:465–480

    CAS  PubMed  Google Scholar 

  • Roberti G, Mantelli F, Macchi I, Massaro-Giordano M, Centofanti M (2014) Nerve growth factor modulation of retinal ganglion cell physiology. J Cell Physiol 229:1130–1133

    CAS  PubMed  Google Scholar 

  • Rodríguez-Tébar A, Dechant G, Barde YA (1991) Neurotrophins: structural relatedness and receptor interactions. Philos Trans R Soc Lond B Biol Sci 331:255–258

    PubMed  Google Scholar 

  • Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233

    CAS  PubMed  Google Scholar 

  • Saab CY, Shamaa F, El Sabban ME, Safieh-Garabedian B, Jabbur SJ, Saadé NE (2009) Transient increase in cytokines and nerve growth factor in the rat dorsal root ganglia after nerve lesion and peripheral inflammation. J Neuroimmunol 208:94–103

    CAS  PubMed  Google Scholar 

  • Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA (2000) NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27:279–288

    CAS  PubMed  Google Scholar 

  • Samah B, Porcheray F, Gras G (2008) Neurotrophins modulate monocyte chemotaxis without affecting macrophage function. Clin Exp Immunol 151:476–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Tsuboi Y, Kurosawa H, Sugita K, Eguchi M (2004) Anti-apoptotic effect of nerve growth factor is lost in congenital insensitivity to pain with anhidrosis (CIPA) B lymphocytes. J Clin Immunol 24:302–308

    CAS  PubMed  Google Scholar 

  • Sawada J, Itakura A, Tanaka A, Furusaka T, Matsuda H (2000) Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signalling pathways. Blood 95:2052–2058

    CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221:555–563

    CAS  PubMed  Google Scholar 

  • Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    CAS  PubMed  Google Scholar 

  • Schulte-Herbrüggen O, Braun A, Rochlitzer S, Jockers-Scherübl MC, Hellweg R (2007) Neurotrophic factors–a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 14:2318–2329

    PubMed  Google Scholar 

  • Scott SA, Mufson EJ, Weingartner J, Skau KA, Crutcher KA (1995) Nerve growth factor in Alzheimer’s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neurosci 15:6213–6221

    CAS  PubMed  Google Scholar 

  • Seidah NG, Benjannet S, Pareek S, Savaria D, Hamelin J, Goulet B, Laliberte J, Lazure C, Chrétien M, Murphy RA (1996) Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J 314:951–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Deppmann CD, Harrington AW, St Hillaire C, Chen ZY, Lee FS, Ginty DD (2010) Long-distance control of synapse assembly by target-derived NGF. Neuron 67:422–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Jin Y, Guo W, Chen L, Liu C, Lv X (2012) Blockage of nerve growth factor modulates T cell responses and inhibits allergic inflammation in a mouse model of asthma. Inflamm Res 61:1369–1378

    CAS  PubMed  Google Scholar 

  • Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    PubMed  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    CAS  PubMed  Google Scholar 

  • Soligo M, Protto V, Florenzano F, Bracci-Laudiero L, De Benedetti F, Chiaretti A, Manni L (2015) The mature/pro nerve growth factor ratio is decreased in the brain of diabetic rats: Analysis by ELISA methods. Brain Res. doi:10.1016/j.brainres.2015.08.005

    Article  PubMed  Google Scholar 

  • Susaki Y, Shimizu S, Katakura K, Watanabe N, Kawamoto K, Matsumoto M, Tsudzuki M, Furusaka T, Kitamura Y, Matsuda H (1996) Functional properties of murine macrophages promoted by nerve growth factor. Blood 88:4630–4637

    CAS  PubMed  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    CAS  PubMed  Google Scholar 

  • Thoenen H, Angeletti PU, Levi-Montalcini R, Kettler R (1971) Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine- -hydroxylase in the rat superior cervical ganglia. Proc Natl Acad Sci USA 68:1598–1602

    CAS  PubMed  Google Scholar 

  • Tomellini E, Lagadec C, Polakowska R, Le Bourhis X (2014) Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci 71:2467–2481

    CAS  PubMed  Google Scholar 

  • Tonchev AB, Boneva NB, Kaplamadzhiev DB, Kikuchi M, Mori Y, Sahara S, Yamashima T (2008) Expression of neurotrophin receptors by proliferating glia in postischemic hippocampal CA1 sector of adult monkeys. J Neuroimmunol 205:20–24

    CAS  PubMed  Google Scholar 

  • Torcia M, Bracci-Laudiero L, Lucibello M, Nencioni L, Labardi D, Rubartelli A, Cozzolino F, Aloe L, Garaci E (1996) Nerve growth factor is an autocrine survival factor for memory B lymphocytes. Cell 85:345–356

    CAS  PubMed  Google Scholar 

  • Torcia M, De Chiara G, Nencioni L, Ammendola S, Labardi D, Lucibello M, Rosini P, Marlier LN, Bonini P, Dello Sbarba P, Palamara AT, Zambrano N, Russo T, Garaci E, Cozzolino F (2001) Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem 276:39027–39036

    CAS  PubMed  Google Scholar 

  • Tsuda T, Wong D, Dolovich J, Bienenstock J, Marshall J, Denburg JA (1991) Synergistic effects of nerve growth factor and granulocytes-macrophage colony-stimulating factor on human basophilic cell differentiation. Blood 77:971–979

    CAS  PubMed  Google Scholar 

  • Tuszynski MH, Blesch A (2004) Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer’s disease. Prog Brain Res 146:441–449

    CAS  PubMed  Google Scholar 

  • Uren RT, Turnley AM (2014) Regulation of neurotrophin receptor (Trk) signaling: suppressor of cytokine signaling 2 (SOCS2) is a new player. Front Mol Neurosci 7:39. doi:10.3389/fnmol.2014.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vantini G, Schiavo N, Di Martino A, Polato P, Triban C, Callegaro L, Toffano G, Leon A (1989) Evidence for a physiological role of nerve growth factor in the central nervous system. Neuron 3:267–273

    CAS  PubMed  Google Scholar 

  • Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hökfelt T (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15:2081–2096

    CAS  PubMed  Google Scholar 

  • Villoslada P, Hauser SL, Bartke I, Unger J, Heald N, Rosenberg D, Cheung SW, Mobley WC, Fisher S, Genain CP (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 2000(191):1799–1806

    Google Scholar 

  • Vogel KS (1993) Development of trophic interactions in the vertebrate peripheral nervous system. Mol Neurobiol 7:363–382

    CAS  PubMed  Google Scholar 

  • Voyvodic JT (1989) Peripheral target regulation of dendritic geometry in the rat superior cervical ganglion. J Neurosci 9:1997–2010

    CAS  PubMed  Google Scholar 

  • Wang H, Wang R, Thrimawithana T, Little PJ, Xu J, Feng ZP, Zheng W (2014) The nerve growth factor signaling and its potential as therapeutic target for glaucoma. Biomed Res Int 2014:759473. doi:10.1155/2014/759473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    CAS  PubMed  Google Scholar 

  • Wang X, Bauer JH, Li Y, Shao Z, Zetoune FS, Cattaneo E, Vincenz C (2001) Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model. J Biol Chem 276:33812–33820

    CAS  PubMed  Google Scholar 

  • Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC (2007) Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 5:325–338

    Google Scholar 

  • Welker P, Grabbe J, Gibbs B, Zuberbier T, Henz BM (2000) Nerve growth factor-beta induces mast-cell marker expression during in vitro culture of human umbilical cord blood cells. Immunology 99:418–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler EF, Gong H, Grimes R, Benoit D, Vazquez L (1998) p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions. J Comp Neurol 391:407–428

    CAS  PubMed  Google Scholar 

  • Willnow TE, Petersen CM, Nykjaer A (2008) VPS10P-domain receptors—regulators of neuronal viability and function. Nat Rev Neurosci 9:899–909

    CAS  PubMed  Google Scholar 

  • Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M (2004) Neural crest cell lineage segregation in the mouse neural tube. Development 131:6153–6162

    CAS  PubMed  Google Scholar 

  • Xia Y, Chen BY, Sun XL, Duan L, Gao GD, Wang JJ, Yung KK, Chen LW (2013) Presence of proNGF-sortilin signaling complex in nigral dopamine neurons and its variation in relation to aging, lactacystin and 6-OHDA insults. Int J Mol Sci 14:14085–14104

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Sobue G, Yamamoto K, Terao S, Mitsuma T (1996) Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous system and nonneural tissues. Neurochem Res 21:929–938

    CAS  PubMed  Google Scholar 

  • Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    CAS  PubMed  Google Scholar 

  • Yan Q, Johnson EM Jr (1988) An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci 8:3481–3498

    CAS  PubMed  Google Scholar 

  • Yan Q, Johnson EM Jr (1989) Immunoistochemical localization and biochemical characterization of nerve growth receptor in adult rat brain. J Comp Neurol 290:585–598

    CAS  PubMed  Google Scholar 

  • Yao L, Zhang D, Bernd P (1994) The onset of neurotrophin and trk mRNA expression in early embryonic tissues of the quail. Dev Biol 165:727–730

    CAS  PubMed  Google Scholar 

  • Ye H, Kuruvilla R, Zweifel LS, Ginty DD (2003) Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons. Neuron 39:57–68

    CAS  PubMed  Google Scholar 

  • Ye X, Mehlen P, Rabizadeh S, VanArsdale T, Zhang H, Shin H, Wang JJ, Leo E, Zapata J, Hauser CA, Reed JC, Bredesen DE (1999) TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem 274:30202–30208

    CAS  PubMed  Google Scholar 

  • Yeiser EC, Rutkoski NJ, Naito A, Inoue J, Carter BD (2004) Neurotrophin signaling through the p75 receptor is deficient in traf6-/- mice. J Neurosci 24:10521–10529

    CAS  PubMed  Google Scholar 

  • Zhang D, Yao L, Bernd P (1996) Expression of neurotrophin trk and p75 receptors in quail embryos undergoing gastrulation and neurulation. Dev Dyn 205:150–161

    CAS  PubMed  Google Scholar 

  • Zhang HT, Li LY, Zou XL, Song XB, Hu YL, Feng ZT, Wang TT (2007) Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains. J Histochem Cytochem 55:1–19

    PubMed  Google Scholar 

  • Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-Induced axon growth is mediated by localized inactivation of GSK-3b and functions of the microtubule plus end binding protein APC. Neuron 42:897–912

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Bracci-Laudiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bracci-Laudiero, L., De Stefano, M.E. (2015). NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_420

Download citation

Publish with us

Policies and ethics