Skip to main content

Neurobehavioral Effects from Developmental Methamphetamine Exposure

  • Chapter
  • First Online:
Book cover Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology

Abstract

Intrauterine methamphetamine exposure adversely affects the neurofunctional profile of exposed children, leading to a variety of higher order cognitive deficits, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments (Kiblawi et al. in J Dev Behav Pediatr 34:31–37, 2013; Piper et al. in Pharmacol Biochem Behav 98:432–439 2011; Roussotte et al. in Neuroimage 54:3067–3075, 2011; Twomey et al. in Am J Orthopsychiatry 83:64–72, 2013). In animal models of developmental methamphetamine, both neuroanatomical and behavioral outcomes critically depend on the timing of methamphetamine administration. Methamphetamine exposure during the third trimester human equivalent period of brain development results in well-defined and persistent wayfinding and spatial navigation deficits in rodents (Vorhees et al. in Neurotoxicol Teratol 27:117–134, 2005, Vorhees et al. in Int J Dev Neurosci 26:599–610, 2008; Vorhees et al. in Int J Dev Neurosci 27:289–298, 2009; Williams et al. in Psychopharmacology (Berl) 168:329–338, 2003b), whereas drug delivery during the first and second trimester equivalents produces no such effect (Acuff-Smith et al. in Neurotoxicol Teratol 18:199–215, 1996; Schutova et al. in Physiol Res 58:741–750, 2009a; Slamberova et al. in Naunyn Schmiedebergs Arch Pharmacol 380:109–114, 2009, Slamberova et al. in Physiol Res 63:S547–S558, 2014b). In this review, we examine the impact of developmental methamphetamine on emerging neural circuitry, neurotransmission, receptor changes, and behavioral outcomes in animal models. The review is organized by type of effects and timing of drug exposure (prenatal only, pre- and neonatal, and neonatal only). The findings elucidate functional patterns of interconnected brain structures (e.g., frontal cortex and striatum) and neurotransmitters (e.g., dopamine and serotonin) involved in methamphetamine-induced developmental neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abar B et al (2013) Examining the relationships between prenatal methamphetamine exposure, early adversity, and child neurobehavioral disinhibition. Psychol Addict Behav 27:662–673

    PubMed  Google Scholar 

  • Abar B et al (2014) Cross-national comparison of prenatal methamphetamine exposure on infant and early child physical growth: a natural experiment. Prev Sci 15:767–776

    PubMed  PubMed Central  Google Scholar 

  • Acevedo SF, de Esch IJ, Raber J (2007) Sex- and histamine-dependent long-term cognitive effects of methamphetamine exposure. Neuropsychopharmacology 32:665–672

    CAS  PubMed  Google Scholar 

  • Acevedo SF et al (2008) Role of histamine in short- and long-term effects of methamphetamine on the developing mouse brain. J Neurochem 107:976–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acuff-Smith KD et al (1996) Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol Teratol 18:199–215

    CAS  PubMed  Google Scholar 

  • Adams J et al (1982) Behavioral alterations in rats prenatally exposed to low doses of d-amphetamine. Neurobehav Toxicol Teratol 4:63–70

    CAS  PubMed  Google Scholar 

  • Barenys M et al (2010) MDMA (ecstasy) delays pubertal development and alters sperm quality after developmental exposure in the rat. Toxicol Lett 197:135–142

    CAS  PubMed  Google Scholar 

  • Bartu A, Dusci LJ, Ilett KF (2009) Transfer of methylamphetamine and amphetamine into breast milk following recreational use of methylamphetamine. Br J Clin Pharmacol 67:455–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer SA (1982) Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res 46:315–323

    CAS  PubMed  Google Scholar 

  • Bayer SA et al (1993) Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14:83–144

    CAS  PubMed  Google Scholar 

  • Bernaskova K, Matejovska I, Slamberova R (2011) Postnatal challenge dose of methamphetamine amplifies anticonvulsant effects of prenatal methamphetamine exposure on epileptiform activity induced by electrical stimulation in adult male rats. Exp Neurol 229:282–287

    CAS  PubMed  Google Scholar 

  • Bowyer JF et al (1998) Long-term effects of amphetamine neurotoxicity on tyrosine hydroxylase mRNA and protein in aged rats. J Pharmacol Exp Ther 286:1074–1085

    CAS  PubMed  Google Scholar 

  • Braren SH et al (2014) Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMzeta), dopamine, and glutamate receptors. Front Behav Neurosci 8:438

    PubMed  PubMed Central  Google Scholar 

  • Braun AA et al (2012) Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiol Learn Mem 97:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun A, Amos-Kroohs R, Gutierrez A, Lundgren K, Seroogy K, Skelton M, Vorhees CV, Williams MT (2014) Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati water maze performance while sparing allocentric Morris water maze learning. Neurobiol Learn Mem 118:55–63

    PubMed  Google Scholar 

  • Brecht ML, Herbeck DM (2014) Pregnancy and fetal loss reported by methamphetamine-using women. Subst Abuse 8:25–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broening HW, Morford LL, Vorhees CV (2005) Interactions of dopamine D1 and D2 receptor antagonists with D-methamphetamine-induced hyperthermia and striatal dopamine and serotonin reductions. Synapse 56:84–93

    CAS  PubMed  Google Scholar 

  • Bubenikova-Valesova V et al (2009) Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int J Dev Neurosci 27:525–530

    CAS  PubMed  Google Scholar 

  • Burchfield DJ et al (1991) Disposition and pharmacodynamics of methamphetamine in pregnant sheep. JAMA 265(15):1968–1973

    CAS  PubMed  Google Scholar 

  • Cabrera TM et al (1993) Prenatal methamphetamine attenuates serotonin mediated renin secretion in male and female rat progeny: evidence for selective long-term dysfunction of serotonin pathways in brain. Synapse 15:198–208

    CAS  PubMed  Google Scholar 

  • Campbell LF, Bedi KS (1989) The effects of undernutrition during early life on spatial learning. Physiol Behav 45:883–890

    CAS  PubMed  Google Scholar 

  • Cappon GD, Vorhees CV (2001) Plasma and brain methamphetamine concentrations in neonatal rats. Neurotoxicol Teratol 23:81–88

    CAS  PubMed  Google Scholar 

  • Cappon GD et al (1996) alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia. Synapse 24:173–181

    CAS  PubMed  Google Scholar 

  • Cappon GD, Morford LL, Vorhees CV (1997) Ontogeny of methamphetamine-induced neurotoxicity and associated hyperthermic response. Brain Res Dev Brain Res 103:155–162

    CAS  PubMed  Google Scholar 

  • Cappon GD, Pu C, Vorhees CV (2000) Time-course of methamphetamine-induced neurotoxicity in rat caudate-putamen after single-dose treatment. Brain Res 863:106–111

    CAS  PubMed  Google Scholar 

  • Cass WA, Manning MW (1999) Recovery of presynaptic dopaminergic functioning in rats treated with neurotoxic doses of methamphetamine. J Neurosci 19:7653–7660

    CAS  PubMed  Google Scholar 

  • Chang L et al (2004) Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res 132:95–106

    CAS  PubMed  Google Scholar 

  • Chang L et al (2007) Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(Suppl 1):16–32

    PubMed  Google Scholar 

  • Chang L et al (2009) Altered neurometabolites and motor integration in children exposed to methamphetamine in utero. Neuroimage 48:391–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chapillon P et al (2002) Effects of pre- and postnatal stimulation on developmental, emotional, and cognitive aspects in rodents: a review. Dev Psychobiol 41:373–387

    CAS  PubMed  Google Scholar 

  • Cho DH et al (1991) Behavioral teratogenicity of methamphetamine. J Toxicol Sci 16(Suppl 1):37–49

    CAS  PubMed  Google Scholar 

  • Cho AK et al (2001) Relevance of pharmacokinetic parameters in animal models of methamphetamine abuse. Synapse 39:161–166

    CAS  PubMed  Google Scholar 

  • Chomchai C et al (2004) Methamphetamine abuse during pregnancy and its health impact on neonates born at Siriraj Hospital, Bangkok, Thailand. Southeast Asian J Trop Med Public Health 35:228–231

    PubMed  Google Scholar 

  • Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    CAS  PubMed  Google Scholar 

  • Clancy B et al (2007a) Extrapolating brain development from experimental species to humans. Neurotoxicology 28:931–937

    PubMed  Google Scholar 

  • Clancy B et al (2007b) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5:79–94

    PubMed  Google Scholar 

  • Cloak CC et al (2009) Lower diffusion in white matter of children with prenatal methamphetamine exposure. Neurology 72:2068–2075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colby JB et al (2012) White matter microstructural alterations in children with prenatal methamphetamine/polydrug exposure. Psychiatry Res 204:140–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford CA et al (2003) Methamphetamine exposure during the preweanling period causes prolonged changes in dorsal striatal protein kinase A activity, dopamine D2-like binding sites, and dopamine content. Synapse 48:131–137

    CAS  PubMed  Google Scholar 

  • Della Grotta S et al (2010) Patterns of methamphetamine use during pregnancy: results from the infant development, environment, and lifestyle (IDEAL) study. Matern Child Health J 14:519–527

    PubMed  Google Scholar 

  • Derauf C et al (2009) Neuroimaging of children following prenatal drug exposure. Semin Cell Dev Biol 20(4):441–454

    CAS  Google Scholar 

  • Derauf C et al (2012a) Prenatal methamphetamine exposure and inhibitory control among young school-age children. J Pediatr 161:452–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derauf C et al (2012b) Subcortical and cortical structural central nervous system changes and attention processing deficits in preschool-aged children with prenatal methamphetamine and tobacco exposure. Dev Neurosci 34:327–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SD, Bejar R (1989) Echoencephalographic findings in neonates associated with maternal cocaine and methamphetamine use: incidence and clinical correlates. J Pediatr 115:770–778

    CAS  PubMed  Google Scholar 

  • Eastwood E, Allen CN, Raber J (2012) Effects of neonatal methamphetamine and thioperamide exposure on spatial memory retention and circadian activity later in life. Behav Brain Res 230:229–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenoglio KA, Brunson KL, Baram TZ (2006) Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 27:180–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fialova M et al (2015) The effect of prenatal methamphetamine exposure on recognition memory in adult rats. Prague Med Rep 116:31–39

    PubMed  Google Scholar 

  • Frost DO, Cadet JL (2000) Effects of methamphetamine-induced neurotoxicity on the development of neural circuitry: a hypothesis. Brain Res Rev 34:103–118

    CAS  PubMed  Google Scholar 

  • Fukumura M et al (1998) A single dose model of methamphetamine-induced neurotoxicity in rats: effects on neostriatal monoamines and glial fibrillary acidic protein. Brain Res 806:1–7

    CAS  PubMed  Google Scholar 

  • Gil-Mohapel J et al (2010) Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models. Brain Res Rev 64:283–303

    CAS  PubMed  Google Scholar 

  • Gomes-da-Silva J et al (2000) Neonatal methamphetamine in the rat: evidence for gender-specific differences upon tyrosine hydroxylase enzyme in the dopaminergic nigrostriatal system. Ann NY Acad Sci 914:431–438

    CAS  PubMed  Google Scholar 

  • Gomes-da-Silva J et al (2002) Prenatal exposure to methamphetamine in the rat: ontogeny of tyrosine hydroxylase mRNA expression in mesencephalic dopaminergic neurons. Ann NY Acad Sci 965:68–77

    CAS  PubMed  Google Scholar 

  • Gomes-da-Silva J et al (2004) Effects of neonatal exposure to methamphetamine: catecholamine levels in brain areas of the developing rat. Ann NY Acad Sci 1025:602–611

    CAS  PubMed  Google Scholar 

  • Goodlett CR et al (1986) Spatial cue utilization in chronically malnourished rats: task-specific learning deficits. Dev Psychobiol 19:1–15

    CAS  PubMed  Google Scholar 

  • Gould E et al (1991) Adrenal steroids regulate postnatal development of the rat dentate gyrus: II. Effects of glucocorticoids and mineralocorticoids on cell birth. J Comp Neurol 313:486–493

    CAS  PubMed  Google Scholar 

  • Grace CE et al (2008) (+)-Methamphetamine increases corticosterone in plasma and BDNF in brain more than forced swim or isolation in neonatal rats. Synapse 62:110–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grace CE et al (2010a) Effects of inhibiting neonatal methamphetamine-induced corticosterone release in rats by adrenal autotransplantation on later learning, memory, and plasma corticosterone levels. Int J Dev Neurosci 28:331–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grace CE et al (2010b) Neonatal methamphetamine-induced corticosterone release in rats is inhibited by adrenal autotransplantation without altering the effect of the drug on hippocampal serotonin. Neurotoxicol Teratol 32:356–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham DL et al (2013) Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists. Int J Neuropsychopharmacol 16:377–391

    CAS  PubMed  Google Scholar 

  • Herlenius E, Lagercrantz H (2004) Development of neurotransmitter systems during critical periods. Exp Neurol 190(Suppl 1):S8–21

    CAS  PubMed  Google Scholar 

  • Himes SK et al (2014) Risk of neurobehavioral disinhibition in prenatal methamphetamine-exposed young children with positive hair toxicology results. Ther Drug Monit 36:535–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hruba L et al (2008) Does cross-fostering modify the impairing effect of methamphetamine on postnatal development of rat pups? Prague Med Rep 109:50–61

    CAS  PubMed  Google Scholar 

  • Hruba L et al (2009) Does cross-fostering modify the prenatal effect of methamphetamine on learning of adult male rats? Prague Med Rep 110:191–200

    CAS  PubMed  Google Scholar 

  • Hruba L, Vaculin S, Slamberova R (2010) Effect of prenatal and postnatal methamphetamine exposure on nociception in adult female rats. Dev Psychobiol 52:71–77

    CAS  PubMed  Google Scholar 

  • Hruba L, Schutova B, Slamberova R (2012) Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats. Physiol Behav 105:364–370

    CAS  PubMed  Google Scholar 

  • Jeng W et al (2005) Methamphetamine-enhanced embryonic oxidative DNA damage and neurodevelopmental deficits. Free Radic Biol Med 39:317–326

    CAS  PubMed  Google Scholar 

  • Kaewsuk S et al (2009) Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain. Neurochem Int 55:397–405

    CAS  PubMed  Google Scholar 

  • Kiblawi ZN et al (2013) The effect of prenatal methamphetamine exposure on attention as assessed by continuous performance tests: results from the infant development, environment, and lifestyle study. J Dev Behav Pediatr 34:31–37

    PubMed  PubMed Central  Google Scholar 

  • Kirlic N et al (2013) Cortisol reactivity in two-year-old children prenatally exposed to methamphetamine. J Stud Alcohol Drugs 74:447–451

    PubMed  PubMed Central  Google Scholar 

  • Kokoshka JM et al (1998) Methamphetamine treatment rapidly inhibits serotonin, but not glutamate, transporters in rat brain. Brain Res 799:78–83

    CAS  PubMed  Google Scholar 

  • LaGasse LL et al (2011) Prenatal methamphetamine exposure and neonatal neurobehavioral outcome in the USA and New Zealand. Neurotoxicol Teratol 33:166–175

    CAS  PubMed  Google Scholar 

  • LaGasse LL et al (2012) Prenatal methamphetamine exposure and childhood behavior problems at 3 and 5 years of age. Pediatrics 129:681–688

    PubMed  PubMed Central  Google Scholar 

  • Lauder JM (1990) Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann NY Acad Sci 600:297–313 (discussion 314)

    CAS  PubMed  Google Scholar 

  • Little BB, Snell LM, Gilstrap LC 3rd (1988) Methamphetamine abuse during pregnancy: outcome and fetal effects. Obstet Gynecol 72:541–544

    CAS  PubMed  Google Scholar 

  • Lu LH et al (2009) Effects of prenatal methamphetamine exposure on verbal memory revealed with functional magnetic resonance imaging. J Dev Behav Pediatr 30:185–192

    PubMed  PubMed Central  Google Scholar 

  • Lucot JB et al (1982) Decreased sensitivity of rat pups to long-lasting dopamine and serotonin depletions produced by methylamphetamine. Brain Res 247:181–183

    CAS  PubMed  Google Scholar 

  • Macuchova E, Nohejlova-Deykun K, Slamberova R (2013) Effect of methamphetamine on cognitive functions of adult female rats prenatally exposed to the same drug. Physiol Res 62(Suppl 1):S89–S98

    CAS  PubMed  Google Scholar 

  • Macuchova E, Nohejlova K, Slamberova R (2014) Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine. Behav Brain Res 270:8–17

    CAS  PubMed  Google Scholar 

  • Malinova-Sevcikova M et al (2014) Differences in maternal behavior and development of their pups depend on the time of methamphetamine exposure during gestation period. Physiol Res 63(Suppl 4):S559–S572

    CAS  PubMed  Google Scholar 

  • Mark KA, Soghomonian JJ, Yamamoto BK (2004) High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci 24:11449–11456

    CAS  PubMed  Google Scholar 

  • Matejovska I, Bernaskova K, Slamberova R (2014) Effect of prenatal methamphetamine exposure and challenge dose of the same drug in adulthood on epileptiform activity induced by electrical stimulation in female rats. Neuroscience 257:130–138

    CAS  PubMed  Google Scholar 

  • Mazer C et al (1997) Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res 760:68–73

    CAS  PubMed  Google Scholar 

  • McDonnell-Dowling K, Kelly JP (2015) Sources of variation in the design of preclinical studies assessing the effects of amphetamine-type stimulants in pregnancy and lactation. Behav Brain Res 279:87–99

    CAS  PubMed  Google Scholar 

  • McDonnell-Dowling K, Donlon M, Kelly JP (2014) Methamphetamine exposure during pregnancy at pharmacological doses produces neurodevelopmental and behavioural effects in rat offspring. Int J Dev Neurosci 35:42–51

    CAS  PubMed  Google Scholar 

  • McEwen BS et al (1992) Paradoxical effects of adrenal steroids on the brain: protection versus degeneration. Biol Psychiatry 31:177–199

    CAS  PubMed  Google Scholar 

  • Meaney MJ et al (1988) Stress-induced occupancy and translocation of hippocampal glucocorticoid receptors. Brain Res 445:198–203

    CAS  PubMed  Google Scholar 

  • Melega WP et al (2007) Methamphetamine blood concentrations in human abusers: application to pharmacokinetic modeling. Synapse 61:216–220

    CAS  PubMed  Google Scholar 

  • Melo P et al (2006) Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res 1106:21–29

    CAS  PubMed  Google Scholar 

  • Melo P et al (2008) Correlation of axon size and myelin occupancy in rats prenatally exposed to methamphetamine. Brain Res 1222:61–68

    CAS  PubMed  Google Scholar 

  • Mirjalili T et al (2013) Congenital abnormality effect of methamphetamine on histological, cellular and chromosomal defects in fetal mice. Iran J Reprod Med 11:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriceau S et al (2004) Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups. Int J Dev Neurosci 22:415–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motz BA, Alberts JR (2005) The validity and utility of geotaxis in young rodents. Neurotoxicol Teratol 27:529–533

    CAS  PubMed  Google Scholar 

  • Nguyen D et al (2010) Intrauterine growth of infants exposed to prenatal methamphetamine: results from the infant development, environment, and lifestyle study. J Pediatr 157:337–339

    PubMed  PubMed Central  Google Scholar 

  • Oro AS, Dixon SD (1987) Perinatal cocaine and methamphetamine exposure: maternal and neonatal correlates. J Pediatr 111:571–578

    CAS  PubMed  Google Scholar 

  • Pei L et al (2004) Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 24:1149–1158

    CAS  PubMed  Google Scholar 

  • Peters DA (1984) Prenatal stress: effect on development of rat brain adrenergic receptors. Pharmacol Biochem Behav 21:417–422

    CAS  PubMed  Google Scholar 

  • Piper BJ et al (2011) Abnormalities in parentally rated executive function in methamphetamine/polysubstance exposed children. Pharmacol Biochem Behav 98:432–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plessinger MA (1998) Prenatal exposure to amphetamines—risks and adverse outcomes in pregnancy. Obstet Gynecol Clin N Am 25:119–138

    CAS  Google Scholar 

  • Pu C, Vorhees CV (1993) Developmental dissociation of methamphetamine-induced depletion of dopaminergic terminals and astrocyte reaction in rat striatum. Brain Res Dev Brain Res 72:325–328

    CAS  PubMed  Google Scholar 

  • Quinn R (2005) Comparing rat’s to human’s age: how old is my rat in people years? Nutrition 21:775–777

    PubMed  Google Scholar 

  • Rambousek L et al (2014) Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend 139:138–144

    CAS  PubMed  Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163

    CAS  PubMed  Google Scholar 

  • Ricaurte GA et al (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 235:93–103

    CAS  PubMed  Google Scholar 

  • Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533

    PubMed  PubMed Central  Google Scholar 

  • Richards JB et al (1993) A high-dose methamphetamine regimen results in long-lasting deficits on performance of a reaction-time task. Brain Res 627:254–260

    CAS  PubMed  Google Scholar 

  • Roos A et al (2014) Structural brain changes in prenatal methamphetamine-exposed children. Metab Brain Dis 29:341–349

    CAS  PubMed  Google Scholar 

  • Roos A et al (2015) White matter integrity and cognitive performance in children with prenatal methamphetamine exposure. Behav Brain Res 279:62–67

    CAS  PubMed  Google Scholar 

  • Ross EJ et al (2015) Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 40:61–87

    CAS  PubMed  Google Scholar 

  • Roussotte FF et al (2011) Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: the effects of methamphetamine, alcohol, and polydrug exposure. Neuroimage 54:3067–3075

    CAS  PubMed  Google Scholar 

  • Roussotte FF et al (2012) Frontostriatal connectivity in children during working memory and the effects of prenatal methamphetamine, alcohol, and polydrug exposure. Dev Neurosci 34:43–57

    CAS  PubMed  Google Scholar 

  • Sabol KE et al (2001) Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo. Brain Res 892:122–129

    CAS  PubMed  Google Scholar 

  • Substance Abuse and Mental Health Services Administration (2013) Results from the 2012 national survey on drug use and health: summary of national findings, NSDUH Series H-46, HHS Publication No. (SMA) 13-4795. Rockville, MD: Substance Abuse and Mental Health Services Administration

    Google Scholar 

  • Sapolsky RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1:1–19

    CAS  PubMed  Google Scholar 

  • Sapolsky RM, Meaney MJ (1986) Maturation of the adrenocortical stress response—neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res Rev 11:65–76

    CAS  Google Scholar 

  • Sarkola T et al (2007) Risk factors for out-of-home custody child care among families with alcohol and substance abuse problems. Acta Paediatr 96:1571–1576

    PubMed  Google Scholar 

  • Sato M, Fujiwara Y (1986) Behavioral and neurochemical changes in pups prenatally exposed to methamphetamine. Brain Dev 8:390–396

    CAS  PubMed  Google Scholar 

  • Schaefer TL et al (2006) Comparison of monoamine and corticosterone levels 24 h following (+)methamphetamine, (±)3,4-methylenedioxymethamphetamine, cocaine, (+)fenfluramine or (±)methylphenidate administration in the neonatal rat. J Neurochem 98:1369–1378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer TL et al (2008) Short- and long-term effects of (+)-methamphetamine and (±)-3,4-methylenedioxymethamphetamine on monoamine and corticosterone levels in the neonatal rat following multiple days of treatment. J Neurochem 104:1674–1685

    CAS  PubMed  Google Scholar 

  • Schaefer TL et al (2010) Effects on plasma corticosterone levels and brain serotonin from interference with methamphetamine-induced corticosterone release in neonatal rats. Stress 13:469–480

    CAS  PubMed  Google Scholar 

  • Schutova B et al (2008) Impact of methamphetamine administered prenatally and in adulthood on cognitive functions of male rats tested in Morris water maze. Prague Med Rep 109:62–70

    CAS  PubMed  Google Scholar 

  • Schutova B et al (2009a) Cognitive functions and drug sensitivity in adult male rats prenatally exposed to methamphetamine. Physiol Res 58:741–750

    CAS  PubMed  Google Scholar 

  • Schutova B et al (2009b) Impact of prenatal and acute methamphetamine exposure on behaviour of adult male rats. Prague Med Rep 110:67–78

    CAS  PubMed  Google Scholar 

  • Schutova B et al (2013) Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev Psychobiol 55:232–242

    CAS  PubMed  Google Scholar 

  • Sekine Y et al (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100

    CAS  PubMed  Google Scholar 

  • Semple BD et al (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16

    PubMed  Google Scholar 

  • Shah R et al (2012) Prenatal methamphetamine exposure and short-term maternal and infant medical outcomes. Am J Perinatol 29:391–400

    PubMed  PubMed Central  Google Scholar 

  • Siegel JA, Craytor MJ, Raber J (2010) Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav Pharmacol 21:602–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon SL et al (2000) Cognitive impairment in individuals currently using methamphetamine. Am J Addict 9:222–231

    CAS  PubMed  Google Scholar 

  • Skelton MR et al (2007) Neonatal (+)-methamphetamine increases brain derived neurotrophic factor, but not nerve growth factor, during treatment and results in long-term spatial learning deficits. Psychoneuroendocrinology 32(6):734–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slamberova R (2005) Flurothyl seizures susceptibility is increased in prenatally methamphetamine-exposed adult male and female rats. Epilepsy Res 65:121–124

    CAS  PubMed  Google Scholar 

  • Slamberova R, Rokyta R (2005a) Occurrence of bicuculline-, NMDA- and kainic acid-induced seizures in prenatally methamphetamine-exposed adult male rats. Naunyn Schmiedebergs Arch Pharmacol 372:236–241

    CAS  PubMed  Google Scholar 

  • Slamberova R, Rokyta R (2005b) Seizure susceptibility in prenatally methamphetamine-exposed adult female rats. Brain Res 1060:193–197

    CAS  PubMed  Google Scholar 

  • Slamberova R, Charousova P, Pometlova M (2005a) Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation. Reprod Toxicol 20:103–110

    CAS  PubMed  Google Scholar 

  • Slamberova R, Charousova P, Pometlova M (2005b) Methamphetamine administration during gestation impairs maternal behavior. Dev Psychobiol 46:57–65

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2005c) Learning in the Place navigation task, not the new-learning task, is altered by prenatal methamphetamine exposure. Brain Res Dev Brain Res 157:217–219

    CAS  PubMed  Google Scholar 

  • Slamberova R, Pometlova M, Charousova P (2006) Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog Neuropsychopharmacol Biol Psychiatry 30:82–88

    CAS  PubMed  Google Scholar 

  • Slamberova R, Pometlova M, Rokyta R (2007) Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev Psychobiol 49:312–322

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2008) Does prenatal methamphetamine exposure affect seizure susceptibility in adult rats with acute administration of the same drug? Epilepsy Res 78:33–39

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2009) Effects of a single postnatal methamphetamine administration on NMDA-induced seizures are sex- and prenatal exposure-specific. Naunyn Schmiedebergs Arch Pharmacol 380:109–114

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2010a) Effect of cross-fostering on seizures in adult male offspring of methamphetamine-treated rat mothers. Int J Dev Neurosci 28:429–435

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2010b) Challenge dose of methamphetamine affects kainic acid-induced seizures differently depending on prenatal methamphetamine exposure, sex, and estrous cycle. Epilepsy Behav 19:26–31

    PubMed  Google Scholar 

  • Slamberova R et al (2011) Impact of prenatal methamphetamine exposure on the sensitivity to the same drug in adult male rats. Prague Med Rep 112:102–114

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2012a) Do prenatally methamphetamine-exposed adult male rats display general predisposition to drug abuse in the conditioned place preference test? Physiol Res 61(Suppl 2):S129–S138

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2012b) Does prenatal methamphetamine exposure induce cross-sensitization to cocaine and morphine in adult male rats? Prague Med Rep 113:189–205

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2013) Gender differences in the effect of prenatal methamphetamine exposure and challenge dose of other drugs on behavior of adult rats. Physiol Res 62(Suppl 1):S99–S108

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2014a) Effect of amphetamine on adult male and female rats prenatally exposed to methamphetamine. Prague Med Rep 115:43–59

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2014b) Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol Res 63(Suppl 4):S547–S558

    CAS  PubMed  Google Scholar 

  • Slamberova R et al (2015) Do the effects of prenatal exposure and acute treatment of methamphetamine on anxiety vary depending on the animal model used? Behav Brain Res 292:361–369

    CAS  PubMed  Google Scholar 

  • Smith LM et al (2001) Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero. Pediatrics 107:227–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith L et al (2003) Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J Dev Behav Pediatr 24:17–23

    PubMed  Google Scholar 

  • Smith LM et al (2006) The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics 118:1149–1156

    PubMed  Google Scholar 

  • Smith KJ et al (2007) Methamphetamine exposure antagonizes N-methyl-D-aspartate receptor-mediated neurotoxicity in organotypic hippocampal slice cultures. Brain Res 1157:74–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LM et al (2008) Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol Teratol 30:20–28

    CAS  PubMed  Google Scholar 

  • Smith LM et al (2011) Motor and cognitive outcomes through three years of age in children exposed to prenatal methamphetamine. Neurotoxicol Teratol 33:176–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LM et al (2015) Developmental and behavioral consequences of prenatal methamphetamine exposure: a review of the infant development, environment, and lifestyle (IDEAL) study. Neurotoxicol Teratol 51:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243:398–400

    CAS  PubMed  Google Scholar 

  • Sowell ER et al (2010) Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. J Neurosci 30:3876–3885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer D et al (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    CAS  PubMed  Google Scholar 

  • Twomey J et al (2013) Prenatal methamphetamine exposure, home environment, and primary caregiver risk factors predict child behavioral problems at 5 years. Am J Orthopsychiatry 83:64–72

    PubMed  PubMed Central  Google Scholar 

  • Volkow ND et al (2001a) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418

    CAS  PubMed  Google Scholar 

  • Volkow ND et al (2001b) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (1994a) Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits. Psychopharmacology 114:392–401

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (1994b) Methamphetamine exposure during early postnatal development in rats: II. Hypoactivity and altered responses to pharmacological challenge. Psychopharmacology 114:402–408

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (1996) Neonatal methamphetamine-induced long-term acoustic startle facilitation in rats as a function of prepulse stimulus intensity. Neurotoxicol Teratol 18:135–139

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (1998) CYP2D1 polymorphism in methamphetamine-treated rats: genetic differences in neonatal mortality and effects on spatial learning and acoustic startle. Neurotoxicol Teratol 20:265–273

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (1999) Genetic differences in spatial learning between Dark Agouti and Sprague-Dawley strains: possible correlation with the CYP2D2 polymorphism in rats treated neonatally with methamphetamine. Pharmacogenetics 9(2):171–181

    Google Scholar 

  • Vorhees CV et al (2000) Adult learning deficits after neonatal exposure to D-methamphetamine: selective effects on spatial navigation and memory. J Neurosci 20:4732–4739

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (2004) Exposure to 3,4-methylenedioxymethamphetamine (MDMA) on postnatal days 11-20 induces reference but not working memory deficits in the Morris water maze in rats: implications of prior learning. Int J Dev Neurosci 22(5–6):247–259

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (2005) Periadolescent rats (P41-50) exhibit increased susceptibility to d-methamphetamine-induced long-term spatial and sequential learning deficits compared to juvenile (P21–30 or P31–40) or adult rats (P51–60). Neurotoxicol Teratol 27:117–134

    CAS  PubMed  Google Scholar 

  • Vorhees CV et al (2008) Effects of neonatal (+)-methamphetamine on path integration and spatial learning in rats: effects of dose and rearing conditions. Int J Dev Neurosci 26:599–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorhees CV et al (2009) Effects of (+)-methamphetamine on path integration and spatial learning, but not locomotor activity or acoustic startle, align with the stress hyporesponsive period in rats. Int J Dev Neurosci 27:289–298

    CAS  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2014) Assessing spatial learning and memory in rodents. ILAR J 55(2):310–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorhees CV, Skelton MR, Williams MT (2007) Age-dependent effects of neonatal methamphetamine exposure on spatial learning. Behav Pharmacol 18(5–6):549–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vrajova M et al (2014) Age-related differences in NMDA receptor subunits of prenatally methamphetamine-exposed male rats. Neurochem Res 39:2040–2046

    CAS  PubMed  Google Scholar 

  • Wagner GC et al (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    CAS  PubMed  Google Scholar 

  • Wallace TL, Gudelsky GA, Vorhees CV (1999) Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat. J Neurosci 19:9141–9148

    CAS  PubMed  Google Scholar 

  • Weissman AD, Caldecott-Hazard S (1993) In utero methamphetamine effects: I. Behavior and monoamine uptake sites in adult offspring. Synapse 13:241–250

    CAS  PubMed  Google Scholar 

  • Wells PG et al (2005) Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 207:354–366

    PubMed  Google Scholar 

  • Wijetunga M et al (2003) Crystal methamphetamine-associated cardiomyopathy: Tip of the iceberg? J Toxicol Clin Toxicol 41:981–986

    CAS  PubMed  Google Scholar 

  • Williams MT et al (2000) Preweaning treatment with methamphetamine induces increases in both corticosterone and ACTH in rats. Neurotoxicol Teratol 22:751–759

    CAS  PubMed  Google Scholar 

  • Williams MT et al (2002) Methamphetamine exposure from postnatal day 11 to 20 causes impairments in both behavioral strategies and spatial learning in adult rats. Brain Res 958:312–321

    CAS  PubMed  Google Scholar 

  • Williams MT et al (2003a) Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood. Brain Res Dev Brain Res 147:163–175

    CAS  PubMed  Google Scholar 

  • Williams MT, Moran MS, Vorhees CV (2003b) Refining the critical period for methamphetamine-induced spatial deficits in the Morris water maze. Psychopharmacology 168:329–338

    CAS  PubMed  Google Scholar 

  • Williams MT et al (2003c) Developmental D-methamphetamine treatment selectively induces spatial navigation impairments in reference memory in the Morris water maze while sparing working memory. Synapse 48:138–148

    CAS  PubMed  Google Scholar 

  • Williams MT et al (2006) Ontogeny of the adrenal response to (+)-methamphetamine in neonatal rats: the effect of prior drug exposure. Stress 9:153–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MT, Moran MS, Vorhees CV (2004a) Behavioral and growth effects induced by low dose methamphetamine administration during the neonatal period in rats. Int J Dev Neurosci 22:273–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MT, Brown RW, Vorhees CV (2004b) Neonatal methamphetamine administration induces region-specific long-term neuronal morphological changes in the rat hippocampus, nucleus accumbens and parietal cortex. Eur J Neurosci 19(12):3165–3170

    PubMed  Google Scholar 

  • Won L et al (2001) Methamphetamine concentrations in fetal and maternal brain following prenatal exposure. Neurotoxicol Teratol 23(4):349–354

    CAS  PubMed  Google Scholar 

  • Won L, Bubula N, Heller A (2002) Fetal exposure to methamphetamine in utero stimulates development of serotonergic neurons in three-dimensional reaggregate tissue culture. Synapse 43:139–144

    CAS  PubMed  Google Scholar 

  • Wong AW et al (2008) Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J Neurosci 28:9047–9054

    CAS  PubMed  Google Scholar 

  • Wouldes TA et al (2014) Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years. Neurotoxicol Teratol 42:77–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y et al (1992) Teratogenic effects of methamphetamine in mice. Nihon Hoigaku Zasshi 46:126–131

    CAS  PubMed  Google Scholar 

  • Yu S et al (2015) Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015:103969

    PubMed  PubMed Central  Google Scholar 

  • Zabaneh R et al (2012) The effects of prenatal methamphetamine exposure on childhood growth patterns from birth to 3 years of age. Am J Perinatol 29:203–210

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Jablonski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jablonski, S.A., Williams, M.T., Vorhees, C.V. (2015). Neurobehavioral Effects from Developmental Methamphetamine Exposure. In: Kostrzewa, R.M., Archer, T. (eds) Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology. Current Topics in Behavioral Neurosciences, vol 29. Springer, Cham. https://doi.org/10.1007/7854_2015_405

Download citation

Publish with us

Policies and ethics