Skip to main content

The Neural Foundations of Reaction and Action in Aversive Motivation

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 27))

Abstract

Much of the early research in aversive learning concerned motivation and reinforcement in avoidance conditioning and related paradigms. When the field transitioned toward the focus on Pavlovian threat conditioning in isolation, this paved the way for the clear understanding of the psychological principles and neural and molecular mechanisms responsible for this type of learning and memory that has unfolded over recent decades. Currently, avoidance conditioning is being revisited, and with what has been learned about associative aversive learning, rapid progress is being made. We review, below, the literature on the neural substrates critical for learning in instrumental active avoidance tasks and conditioned aversive motivation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams C (1982) Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q J Exp Psychol 34B:77–98

    Article  Google Scholar 

  • Alkon DL (1983) Learning in a marine snail. Sci Am 249:70–85

    Article  CAS  PubMed  Google Scholar 

  • Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31:15481–15489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amorapanth P, LeDoux JE, Nader K (2000) Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat Neurosci 3:74–79

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1991) Instrumental performance following reinforcer devaluation depends upon incentive learning. Q J Exp Psychol 43B:279–296

    Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Killcross S (2006) Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci 29:272–279

    Google Scholar 

  • Blanchard RJ, Blanchard DC (1969a) Crouching as an index of fear. J Comp Physiol Psych 67:370–375

    Article  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC (1969b) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68:129–135

    Article  CAS  PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC (1972) Effects of hippocampal lesions on the Rat’s reaction to a Cat. J Comp Physiol Psychol 78:77–82

    Article  CAS  PubMed  Google Scholar 

  • Bolles RC (1970) Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48

    Article  Google Scholar 

  • Bolles RC (1972) Reinforcement, expectancy, and learning. Psychol Rev 79(5):394–409

    Google Scholar 

  • Bolles RC, Popp RJ (1964) Parameters affecting the acquisition of sidman avoidance. J Exp Anal Behav 7(4):315

    Google Scholar 

  • Bolles RC, Fanselow MS (1980) A perceptual-defensive-recuperative model of fear and pain. Behav Brain Sci 3:291–323

    Article  Google Scholar 

  • Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494

    Article  PubMed  Google Scholar 

  • Bravo-Rivera C, Roman-Ortiz C, Brignoni-Perez E, Sotres-Bayon F, Quirk GJ (2014) Neural structures mediating expression and extinction of platform-mediated avoidance. J Neurosci 34:9736–9742. PMC4099548

    Google Scholar 

  • Bravo-Rivera C, Roman-Ortiz C, Montesinos-Cartagena M, Quirk GJ (2015) Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Front Behav Neurosci 9:184. http://doi.org/10.3389/fnbeh.2015.00184

  • Brown JS, Jacobs A (1949) The role of fear in the motivation and acquisition of responses. J Exp Psychol 39:747–759

    Article  CAS  PubMed  Google Scholar 

  • Cain CK, LeDoux JE (2007) Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. J Exp Psychol Anim Behav Process 33:451–463

    Article  PubMed  Google Scholar 

  • Campese V, McCue M, Lazaro-Munoz G, LeDoux JE, Cain CK (2013) Development of an aversive Pavlovian-to-instrumental transfer task in rat. Front Behav Neurosci 7:176. PMC3840425

    Google Scholar 

  • Campese VD, Kim J, Lazaro-Munoz G, Pena L, LeDoux JE, Cain CK (2014) Lesions of lateral or central amygdala abolish aversive Pavlovian-to-instrumental transfer in rats. Front Behav Neurosci 8:161. PMC4019882

    Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Carew TJ, Hawkins RD, Kandel ER (1983) Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science 219:397–400

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Cain CK, LeDoux JE (2010) The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem 17:139–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330:1108–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen DH (1974) The neural pathways and informational flow mediating a conditioned autonomic response. In: Di Cara, LV (ed) Limbic and autonomic nervous system research. Plenum Press, New York, pp 223–275

    Google Scholar 

  • Coss RG, Biardi JE (1997) Individual variation in the antisnake behavior of California ground squirrels (Spermophilus beecheyi). J Mammal 78(2):294–310

    Article  Google Scholar 

  • Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100:814–824

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc, NY, pp 255–306

    Google Scholar 

  • Davis M, Walker DL, Lee Y (1997) Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci 21(821):305–331

    Article  Google Scholar 

  • Dinsmoor JA (2001) Stimuli inevitably generated by behavior that avoids electric shock are inherently reinforcing. J Exp Anal Behav 75(3):311–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688. PMC430364

    Google Scholar 

  • Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771

    Article  CAS  PubMed  Google Scholar 

  • Estes WK, Skinner BF (1941) Some quantitative properties of anxiety. J Exp Psychol 29:390–400

    Article  Google Scholar 

  • Estes WK (1948) Discriminative conditioning; effects of a Pavlovian conditioned stimulus upon a subsequently established operant response. J Exp Psychol 38:173–177

    Article  CAS  PubMed  Google Scholar 

  • Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232

    Article  CAS  PubMed  Google Scholar 

  • Fanselow MS, Lester LS (1988) A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles RC, Beecher MD (eds) Evolution and learning. Erlbaum, Hillsdale, N.J., pp 185–211

    Google Scholar 

  • Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlovian J Biol Sci 15:177–182

    CAS  Google Scholar 

  • Fanselow MS (1997) Species-specific defense reactions: retrospect and prospect. In: Bouton ME, Fanselow MS (eds) Learning, motivation, and cognition. American Psychological Association, Washington, D. C., pp 321–341

    Google Scholar 

  • Gabriel M, Burhans L, Kashef A (2003) Consideration of a unified model of amygdalar associative functions. Ann N Y Acad Sci 985:206–217

    Article  PubMed  Google Scholar 

  • Gabriel M, Lambert RW, Foster K, Orona E, Sparenborg S, Maiorca RR (1983) Anterior thalamic lesions and neuronal activity in the cingulate and retrosplenial cortices during discriminative avoidance behavior in rabbits. Behav Neurosci 97:675–696

    Article  CAS  PubMed  Google Scholar 

  • Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24:3810–3815

    Article  CAS  PubMed  Google Scholar 

  • Goddard G (1964) Functions of the amygdala. Psychol Rev 62:89–109

    CAS  Google Scholar 

  • Gafford GM, Ressler KJ (2015). Mouse models of fear-related disorders: cell-type-specific manipulations in amygdala. Neuroscience doi: 10.1016/j.neuroscience.2015.06.019

  • Grace AA, Rosenkranz JA (2002) Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 77:489–493

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    Article  CAS  PubMed  Google Scholar 

  • Hinde RA (1966) Animal behaviour. McGraw-Hill, New York

    Google Scholar 

  • Herrnstein RJ, Hineline PN (1966) Negative reinforcement as shock-frequency reduction. J Exp Anal Behav 9(4):421–30

    Google Scholar 

  • Hirsch SM, Bolles RC (1980) Zeitschrift für Tierpsychologie 54(1):71–84

    Google Scholar 

  • Holland PC, Gallagher M (2003) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680–1694

    Article  PubMed  Google Scholar 

  • Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277–1295

    Article  PubMed  Google Scholar 

  • Hull CL (1943) Principles of behavior. Appleton-Century-Crofts, New York

    Google Scholar 

  • Isaacson RL (1982) The limbic system. Plenum Press, New York

    Book  Google Scholar 

  • Johansen JP, Diaz-Mataix L, Hamanaka H, Ozawa T, Ycu E, Koivumaa J, Kumar A, Hou M, Deisseroth K, Boyden ES, LeDoux JE (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc Natl Acad Sci USA 111:E5584–E5592. PMC4280619

    Google Scholar 

  • Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, LeDoux JE (2010) Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci USA 107(28):12692–12697. http://doi.org/10.1073/pnas.1002418107

  • Johansen JP, Wolff SB, Luthi A, LeDoux JE (2012) Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biol Psychiatry 71:1053–1060

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnston JB (1923) Further contribution to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Article  Google Scholar 

  • Kalish HI (1954) Strength of fear as a function of the number of acquisition and extinction trials. J Exp Psychol 47:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kamin LJ (1956) The effects of termination of the CS and avoidance of the US on avoidance learning. J Comp Physiol Psychol 49:420–424

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Spencer WA (1968) Cellular neurophysiological approaches to the study of learning. Physiol Rev 48:65–134

    CAS  PubMed  Google Scholar 

  • Kapp BS, Frysinger RC, Gallagher M, Haselton JR (1979) Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol Behav 23:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Kapp BS, Whalen PJ, Supple WF, Pascoe JP (1992) Amygdaloid contributions to conditioned arousal and sensory information processing. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 229–254

    Google Scholar 

  • Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355

    Article  CAS  PubMed  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13(4):400–408

    Google Scholar 

  • Killcross S, Robbins TW, Everitt BJ (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388:377–380

    Article  CAS  PubMed  Google Scholar 

  • Lang PJ, Davis M (2006) Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog Brain Res 156:3–29

    Article  PubMed  Google Scholar 

  • Laurent V, Morse AK, Balleine BW (2015) The role of opioid processes in reward and decision-making. Br J Pharmacol 172(2):449–459. doi:10.1111/bph.12818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro-Munoz G, LeDoux JE, Cain CK (2010) Sidman instrumental avoidance initially depends on lateral and Basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol Psychiatry 67:1120–1127

    Article  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE (1992) Emotion and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc, New York, pp 339–351

    Google Scholar 

  • LeDoux JE (1996a) The emotional brain. Simon and Schuster, New York

    Google Scholar 

  • LeDoux J (1996b) Related articles emotional networks and motor control: a fearful view. Prog Brain Res 107:437–446. Review

    Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2014) Coming to terms with fear. Proc Natl Acad Sci USA 111:2871–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE (2015) Anxious. Viking, New York

    Google Scholar 

  • LeDoux JE, Gorman JM (2001) A call to action: overcoming anxiety through active coping. Am J Psychiatry 158:1953–1955

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci, 8(7):2517–2529

    Google Scholar 

  • LeDoux JE, Sakaguchi A, Reis DJ (1983a) Strain difference in fear between spontaneously hypertensive and normotensive rats. Brain Res 227:137–143

    Article  Google Scholar 

  • LeDoux JE, Thompson ME, Iadecola C, Tucker LW, Reis DJ (1983b) Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science 221:576–578

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4:683–698

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Schiller D, Cain C (2009) Emotional reaction and action: from threat processing to goal-directed behavior. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 905–924

    Google Scholar 

  • Levis DJ (1989) The case for a return to a two-factor theory of avoidance: the failure of non-fear interpretations. In: Klein SB, Mowrer RR (eds) Contemporary learning theories: Pavlovian conditioning and the status of traditional learning theory. Lawrence Erlbaum Assn, Hillsdale, pp 227–277

    Google Scholar 

  • Lorenz KZ, Tinbergen N (1938) Taxis und instinktbegriffe in der Eirollbewegung der Graugans. Z Tierpsych 2:1–29

    Article  Google Scholar 

  • Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J Exp Psychol Anim Behav Process 9:225–247

    Article  CAS  PubMed  Google Scholar 

  • Lüthi A, Lüscher C (2014) Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci 17(12):1635

    Google Scholar 

  • Maren S, Fanselow MS (1996) The amygdala and fear conditioning: has the nut been cracked? Neuron 16:237–240

    Article  CAS  PubMed  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    Article  CAS  PubMed  Google Scholar 

  • Martinez RC, Gupta N, Lazaro-Munoz G, Sears RM, Kim S, Moscarello JM, LeDoux JE, Cain CK (2013) Active vs. reactive threat responding is associated with differential c-Fos expression in specific regions of amygdala and prefrontal cortex. Learn Mem 20:446–452. PMCPMC3718200

    Google Scholar 

  • Matthews TJ, McHugh TG, Carr LD (1974) Pavlovian and instrumental determinants of response suppression in the pigeon. J Comp Physiol Psychol 87(3):500–506

    Article  CAS  PubMed  Google Scholar 

  • McAllister WR, McAllister DE (1971) Behavioral measurement of conditioned fear. In: Brush FR (ed) Aversive conditioning and learning. Academic Press, New York, pp 105–179

    Google Scholar 

  • McCue MG, LeDoux JE, Cain CK (2014) Medial amygdala lesions selectively block aversive pavlovian-instrumental transfer in rats. Front Behav Neurosci 8:329. PMC4166994

    Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611

    Article  CAS  PubMed  Google Scholar 

  • Miller NE (1948) Studies of fear as an acquirable drive: I. Fear as motivation and fear reduction as reinforcement in the learning of new responses. J Exp Psychol 38:89–101

    Article  CAS  PubMed  Google Scholar 

  • Miller NE (1951) Learnable drives and rewards. In: Stevens SS (ed) Handbook of experimental psychology. Wiley, New York, pp 435–472

    Google Scholar 

  • Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823

    Google Scholar 

  • Mowrer OH, Lamoreaux RR (1946) Fear as an intervening variable in avoidance conditioning. J Comp Psychol 39:29–50

    Article  CAS  PubMed  Google Scholar 

  • Mowrer OH (1947) On the dual nature of learning: a reinterpretation of “conditioning” and “problem solving”. Harvard Educ Rev 17:102–148

    Google Scholar 

  • Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352. http://doi.org/10.1038/nature13294

  • Nadler N, Delgado MR, Delamater AR (2011) Pavlovian to instrumental transfer of control in a human learning task. Emotion 11:1112–1123. PMC3183152

    Google Scholar 

  • Niv Y, Joel D, Dayan P (2006) A normative perspective on motivation. Trends Cogn Sci 10(8):375–381. (Epub 2006 Jul 13)

    Google Scholar 

  • Oleson EB, Gentry RN, Chioma VC, Cheer JF (2012) Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J Neurosci 17;32(42):14804–14808. doi:10.1523/JNEUROSCI.3087-12.2012

  • Overmier JB, Brackbill RM (1977) On the independence of stimulus evocation of fear and fear evocation of responses. Behav Res Ther 15:51–56

    Article  CAS  PubMed  Google Scholar 

  • Overmier JB, Lawry JA (1979) Pavlovian conditioning and the mediation of avoidance behavior. In: Bower G (ed) The psychology of learning and motivation, vol 13. Academic Press, New York, pp 1–55

    Google Scholar 

  • Patterson J, Overmier JB (1981) A transfer of control test for contextual associations. Anim Learn Behav 9:316–321

    Article  Google Scholar 

  • Overmier JB, Payne RJ (1971) Facilitation of instrumental avoidance learning by prior appetitive Pavlovian conditioning to the cue. Acta Neurobiol Exp (Wars) 31:341–349

    CAS  Google Scholar 

  • Pascoe JP, Kapp BS (1985) Electrophysiological characteristics of amygdaloid central nucleus neurons in the awake rabbit. Brain Res Bull 14(4):331–338

    Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Dover, New York

    Google Scholar 

  • Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford University Press, Oxford, pp 31–115

    Google Scholar 

  • Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391

    Google Scholar 

  • Poremba A., Gabriel M (1999) Amygdala neurons mediate acquisition but not maintenance of instrumental avoidance behavior in rabbits. J Neurosci 19:9635–9641

    Google Scholar 

  • Quirk GJ, Repa C, LeDoux JE (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Moscarello JM, LeDoux JE, Sears RM (2015) Active avoidance requires a serial Basal amygdala to nucleus accumbens shell circuit. J Neurosci 35:3470–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescorla RA, Lolordo VM (1965) Inhibition of avoidance behavior. J Comp Physiol Psychol 59:406–412

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA (1968) Pavlovian conditioned fear in Sidman avoidance learning. J Comp Physiol Psychol 65(1):55–60

    Google Scholar 

  • Rogan MT, LeDoux JE (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15:127–136

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Clugnet MC, Bordi F, LeDoux JE (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav Neurosci 107(3):444–450

    Google Scholar 

  • Rosen JB (2004) The neurobiology of conditioned and unconditioned fear: a neurobehavioral system analysis of the amygdala. Behav Cogn Neurosci Rev 3:23–41

    Article  PubMed  Google Scholar 

  • Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88

    Article  CAS  PubMed  Google Scholar 

  • Sarter MF, Markowitsch HJ (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci 99:342–380

    Article  CAS  PubMed  Google Scholar 

  • Schneiderman N, Francis J, Sampson LD, Schwaber JS (1974) CNS integration of learned cardiovascular behavior. In: DiCara LV (ed) Limbic and autonomic nervous system research. Plenum, New York, pp 277–309

    Google Scholar 

  • Schroeder BW, Shinnick-Gallagher P (2004) Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala. Eur J Neurosci 20:549–556

    Article  PubMed  Google Scholar 

  • Schroeder BW, Shinnick-Gallagher P (2005) Fear learning induces persistent facilitation of amygdala synaptic transmission. Eur J Neurosci 22(7):1775–1783

    Google Scholar 

  • Setlow B, Holland PC, Gallagher M (2002) Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive pavlovian second-order conditioned responses. Behav Neurosci 116:267–275

    Article  PubMed  Google Scholar 

  • Sidman M (1953) Avoidance conditioning with brief shock and no extero- ceptive warning signal. Science 118:157–158

    Google Scholar 

  • Shettleworth SJ (1978) Reinforcement and the organization of behavior in golden hamsters: Pavlovian conditioning with food and shock USs. J Exp Psychol Anim Behav Process 4:152–169

    Article  CAS  PubMed  Google Scholar 

  • Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 32(10):1735–1743. doi: 10.1111/j.1460-9568.2010.07439.x. (Epub Oct 7)

  • Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New York

    Google Scholar 

  • Solomon RL, Wynne LC (1954) Traumatic avoidance learning: the principles of anxiety conservation and partial irreversibility. Psychol Rev 61:353

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF (1976) The search for the engram. Am Psychol 31:209–227

    Article  CAS  PubMed  Google Scholar 

  • Thorndike EL (1898) Animal intelligence: an experimental study of the associative processes in animals. Psychol Monogr 2:109

    Article  Google Scholar 

  • Thorpe WH (1963) Learning and instinct in animals. Methuen, London

    Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, New York

    Google Scholar 

  • Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300

    Article  CAS  PubMed  Google Scholar 

  • Walters ET, Carew TJ, Kandel ER (1979) Classical conditioning in Aplysia californica. Proc Natl Acad Sci USA 76:6675–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson JB (1929) Behaviorism. W. W. Norton, New York

    Google Scholar 

  • Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49:381–391

    Article  CAS  PubMed  Google Scholar 

  • Weisman RG, Litner JS (1969) The course of Pavlovian excitation and inhibition of fear in rats. J Comp Physiol Psychol 69:667–672

    Article  CAS  PubMed  Google Scholar 

  • Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of pavlovian fear conditioning. J Neurosci 26:12387–12396

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476

    Google Scholar 

  • Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HL, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland P, Josselyn SA (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 6;83(3):722–735. doi: 10.1016/j.neuron.2014.07.017

  • Zimmerman JM, Rabinak CA, McLachlan IG, Maren S (2007) The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learn Mem 14:634–644

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent D. Campese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Campese, V.D., Sears, R.M., Moscarello, J.M., Diaz-Mataix, L., Cain, C.K., LeDoux, J.E. (2015). The Neural Foundations of Reaction and Action in Aversive Motivation. In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_401

Download citation

Publish with us

Policies and ethics