The Neural Foundations of Reaction and Action in Aversive Motivation

  • Vincent D. Campese
  • Robert M. Sears
  • Justin M. Moscarello
  • Lorenzo Diaz-Mataix
  • Christopher K. Cain
  • Joseph E. LeDoux
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 27)

Abstract

Much of the early research in aversive learning concerned motivation and reinforcement in avoidance conditioning and related paradigms. When the field transitioned toward the focus on Pavlovian threat conditioning in isolation, this paved the way for the clear understanding of the psychological principles and neural and molecular mechanisms responsible for this type of learning and memory that has unfolded over recent decades. Currently, avoidance conditioning is being revisited, and with what has been learned about associative aversive learning, rapid progress is being made. We review, below, the literature on the neural substrates critical for learning in instrumental active avoidance tasks and conditioned aversive motivation.

Keywords

Avoidance Instrumental Rat Freezing 

References

  1. Adams C (1982) Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q J Exp Psychol 34B:77–98CrossRefGoogle Scholar
  2. Alkon DL (1983) Learning in a marine snail. Sci Am 249:70–85CrossRefPubMedGoogle Scholar
  3. Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31:15481–15489CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amorapanth P, LeDoux JE, Nader K (2000) Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat Neurosci 3:74–79CrossRefPubMedGoogle Scholar
  5. Balleine BW, Dickinson A (1991) Instrumental performance following reinforcer devaluation depends upon incentive learning. Q J Exp Psychol 43B:279–296Google Scholar
  6. Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419CrossRefPubMedGoogle Scholar
  7. Balleine BW, Killcross S (2006) Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci 29:272–279Google Scholar
  8. Blanchard RJ, Blanchard DC (1969a) Crouching as an index of fear. J Comp Physiol Psych 67:370–375CrossRefGoogle Scholar
  9. Blanchard RJ, Blanchard DC (1969b) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68:129–135CrossRefPubMedGoogle Scholar
  10. Blanchard RJ, Blanchard DC (1972) Effects of hippocampal lesions on the Rat’s reaction to a Cat. J Comp Physiol Psychol 78:77–82CrossRefPubMedGoogle Scholar
  11. Bolles RC (1970) Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48CrossRefGoogle Scholar
  12. Bolles RC (1972) Reinforcement, expectancy, and learning. Psychol Rev 79(5):394–409Google Scholar
  13. Bolles RC, Popp RJ (1964) Parameters affecting the acquisition of sidman avoidance. J Exp Anal Behav 7(4):315Google Scholar
  14. Bolles RC, Fanselow MS (1980) A perceptual-defensive-recuperative model of fear and pain. Behav Brain Sci 3:291–323CrossRefGoogle Scholar
  15. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494CrossRefPubMedGoogle Scholar
  16. Bravo-Rivera C, Roman-Ortiz C, Brignoni-Perez E, Sotres-Bayon F, Quirk GJ (2014) Neural structures mediating expression and extinction of platform-mediated avoidance. J Neurosci 34:9736–9742. PMC4099548Google Scholar
  17. Bravo-Rivera C, Roman-Ortiz C, Montesinos-Cartagena M, Quirk GJ (2015) Persistent active avoidance correlates with activity in prelimbic cortex and ventral striatum. Front Behav Neurosci 9:184. http://doi.org/10.3389/fnbeh.2015.00184
  18. Brown JS, Jacobs A (1949) The role of fear in the motivation and acquisition of responses. J Exp Psychol 39:747–759CrossRefPubMedGoogle Scholar
  19. Cain CK, LeDoux JE (2007) Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. J Exp Psychol Anim Behav Process 33:451–463CrossRefPubMedGoogle Scholar
  20. Campese V, McCue M, Lazaro-Munoz G, LeDoux JE, Cain CK (2013) Development of an aversive Pavlovian-to-instrumental transfer task in rat. Front Behav Neurosci 7:176. PMC3840425Google Scholar
  21. Campese VD, Kim J, Lazaro-Munoz G, Pena L, LeDoux JE, Cain CK (2014) Lesions of lateral or central amygdala abolish aversive Pavlovian-to-instrumental transfer in rats. Front Behav Neurosci 8:161. PMC4019882Google Scholar
  22. Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352CrossRefPubMedGoogle Scholar
  23. Carew TJ, Hawkins RD, Kandel ER (1983) Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science 219:397–400CrossRefPubMedGoogle Scholar
  24. Choi JS, Cain CK, LeDoux JE (2010) The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem 17:139–147CrossRefPubMedPubMedCentralGoogle Scholar
  25. Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330:1108–1112CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cohen DH (1974) The neural pathways and informational flow mediating a conditioned autonomic response. In: Di Cara, LV (ed) Limbic and autonomic nervous system research. Plenum Press, New York, pp 223–275Google Scholar
  27. Coss RG, Biardi JE (1997) Individual variation in the antisnake behavior of California ground squirrels (Spermophilus beecheyi). J Mammal 78(2):294–310CrossRefGoogle Scholar
  28. Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100:814–824CrossRefPubMedGoogle Scholar
  29. Davis M (1992) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc, NY, pp 255–306Google Scholar
  30. Davis M, Walker DL, Lee Y (1997) Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci 21(821):305–331CrossRefGoogle Scholar
  31. Dinsmoor JA (2001) Stimuli inevitably generated by behavior that avoids electric shock are inherently reinforcing. J Exp Anal Behav 75(3):311–333CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688. PMC430364Google Scholar
  33. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771CrossRefPubMedGoogle Scholar
  34. Estes WK, Skinner BF (1941) Some quantitative properties of anxiety. J Exp Psychol 29:390–400CrossRefGoogle Scholar
  35. Estes WK (1948) Discriminative conditioning; effects of a Pavlovian conditioned stimulus upon a subsequently established operant response. J Exp Psychol 38:173–177CrossRefPubMedGoogle Scholar
  36. Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232CrossRefPubMedGoogle Scholar
  37. Fanselow MS, Lester LS (1988) A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles RC, Beecher MD (eds) Evolution and learning. Erlbaum, Hillsdale, N.J., pp 185–211Google Scholar
  38. Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlovian J Biol Sci 15:177–182Google Scholar
  39. Fanselow MS (1997) Species-specific defense reactions: retrospect and prospect. In: Bouton ME, Fanselow MS (eds) Learning, motivation, and cognition. American Psychological Association, Washington, D. C., pp 321–341Google Scholar
  40. Gabriel M, Burhans L, Kashef A (2003) Consideration of a unified model of amygdalar associative functions. Ann N Y Acad Sci 985:206–217CrossRefPubMedGoogle Scholar
  41. Gabriel M, Lambert RW, Foster K, Orona E, Sparenborg S, Maiorca RR (1983) Anterior thalamic lesions and neuronal activity in the cingulate and retrosplenial cortices during discriminative avoidance behavior in rabbits. Behav Neurosci 97:675–696CrossRefPubMedGoogle Scholar
  42. Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24:3810–3815CrossRefPubMedGoogle Scholar
  43. Goddard G (1964) Functions of the amygdala. Psychol Rev 62:89–109Google Scholar
  44. Gafford GM, Ressler KJ (2015). Mouse models of fear-related disorders: cell-type-specific manipulations in amygdala. Neuroscience doi: 10.1016/j.neuroscience.2015.06.019
  45. Grace AA, Rosenkranz JA (2002) Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 77:489–493CrossRefPubMedGoogle Scholar
  46. Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460CrossRefPubMedGoogle Scholar
  47. Hinde RA (1966) Animal behaviour. McGraw-Hill, New YorkGoogle Scholar
  48. Herrnstein RJ, Hineline PN (1966) Negative reinforcement as shock-frequency reduction. J Exp Anal Behav 9(4):421–30Google Scholar
  49. Hirsch SM, Bolles RC (1980) Zeitschrift für Tierpsychologie 54(1):71–84Google Scholar
  50. Holland PC, Gallagher M (2003) Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur J Neurosci 17:1680–1694CrossRefPubMedGoogle Scholar
  51. Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277–1295CrossRefPubMedGoogle Scholar
  52. Hull CL (1943) Principles of behavior. Appleton-Century-Crofts, New YorkGoogle Scholar
  53. Isaacson RL (1982) The limbic system. Plenum Press, New YorkCrossRefGoogle Scholar
  54. Johansen JP, Diaz-Mataix L, Hamanaka H, Ozawa T, Ycu E, Koivumaa J, Kumar A, Hou M, Deisseroth K, Boyden ES, LeDoux JE (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc Natl Acad Sci USA 111:E5584–E5592. PMC4280619Google Scholar
  55. Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, LeDoux JE (2010) Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci USA 107(28):12692–12697. http://doi.org/10.1073/pnas.1002418107
  56. Johansen JP, Wolff SB, Luthi A, LeDoux JE (2012) Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biol Psychiatry 71:1053–1060CrossRefPubMedPubMedCentralGoogle Scholar
  57. Johnston JB (1923) Further contribution to the study of the evolution of the forebrain. J Comp Neurol 35:337–481CrossRefGoogle Scholar
  58. Kalish HI (1954) Strength of fear as a function of the number of acquisition and extinction trials. J Exp Psychol 47:1–9CrossRefPubMedGoogle Scholar
  59. Kamin LJ (1956) The effects of termination of the CS and avoidance of the US on avoidance learning. J Comp Physiol Psychol 49:420–424CrossRefPubMedGoogle Scholar
  60. Kandel ER, Spencer WA (1968) Cellular neurophysiological approaches to the study of learning. Physiol Rev 48:65–134PubMedGoogle Scholar
  61. Kapp BS, Frysinger RC, Gallagher M, Haselton JR (1979) Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol Behav 23:1109–1117CrossRefPubMedGoogle Scholar
  62. Kapp BS, Whalen PJ, Supple WF, Pascoe JP (1992) Amygdaloid contributions to conditioned arousal and sensory information processing. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 229–254Google Scholar
  63. Kida S, Josselyn SA, de Ortiz SP, Kogan JH, Chevere I, Masushige S, Silva AJ (2002) CREB required for the stability of new and reactivated fear memories. Nat Neurosci 5:348–355CrossRefPubMedGoogle Scholar
  64. Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13(4):400–408Google Scholar
  65. Killcross S, Robbins TW, Everitt BJ (1997) Different types of fear-conditioned behaviour mediated by separate nuclei within amygdala. Nature 388:377–380CrossRefPubMedGoogle Scholar
  66. Lang PJ, Davis M (2006) Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog Brain Res 156:3–29CrossRefPubMedGoogle Scholar
  67. Laurent V, Morse AK, Balleine BW (2015) The role of opioid processes in reward and decision-making. Br J Pharmacol 172(2):449–459. doi:10.1111/bph.12818 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lazaro-Munoz G, LeDoux JE, Cain CK (2010) Sidman instrumental avoidance initially depends on lateral and Basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol Psychiatry 67:1120–1127CrossRefPubMedPubMedCentralGoogle Scholar
  69. LeDoux JE (1992) Emotion and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc, New York, pp 339–351Google Scholar
  70. LeDoux JE (1996a) The emotional brain. Simon and Schuster, New YorkGoogle Scholar
  71. LeDoux J (1996b) Related articles emotional networks and motor control: a fearful view. Prog Brain Res 107:437–446. ReviewGoogle Scholar
  72. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184CrossRefPubMedGoogle Scholar
  73. LeDoux JE (2014) Coming to terms with fear. Proc Natl Acad Sci USA 111:2871–2878CrossRefPubMedPubMedCentralGoogle Scholar
  74. LeDoux JE (2015) Anxious. Viking, New YorkGoogle Scholar
  75. LeDoux JE, Gorman JM (2001) A call to action: overcoming anxiety through active coping. Am J Psychiatry 158:1953–1955CrossRefPubMedGoogle Scholar
  76. LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci, 8(7):2517–2529Google Scholar
  77. LeDoux JE, Sakaguchi A, Reis DJ (1983a) Strain difference in fear between spontaneously hypertensive and normotensive rats. Brain Res 227:137–143CrossRefGoogle Scholar
  78. LeDoux JE, Thompson ME, Iadecola C, Tucker LW, Reis DJ (1983b) Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science 221:576–578CrossRefPubMedGoogle Scholar
  79. LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4:683–698PubMedGoogle Scholar
  80. LeDoux JE, Schiller D, Cain C (2009) Emotional reaction and action: from threat processing to goal-directed behavior. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 905–924Google Scholar
  81. Levis DJ (1989) The case for a return to a two-factor theory of avoidance: the failure of non-fear interpretations. In: Klein SB, Mowrer RR (eds) Contemporary learning theories: Pavlovian conditioning and the status of traditional learning theory. Lawrence Erlbaum Assn, Hillsdale, pp 227–277Google Scholar
  82. Lorenz KZ, Tinbergen N (1938) Taxis und instinktbegriffe in der Eirollbewegung der Graugans. Z Tierpsych 2:1–29CrossRefGoogle Scholar
  83. Lovibond PF (1983) Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J Exp Psychol Anim Behav Process 9:225–247CrossRefPubMedGoogle Scholar
  84. Lüthi A, Lüscher C (2014) Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci 17(12):1635Google Scholar
  85. Maren S, Fanselow MS (1996) The amygdala and fear conditioning: has the nut been cracked? Neuron 16:237–240CrossRefPubMedGoogle Scholar
  86. Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931CrossRefPubMedGoogle Scholar
  87. Martinez RC, Gupta N, Lazaro-Munoz G, Sears RM, Kim S, Moscarello JM, LeDoux JE, Cain CK (2013) Active vs. reactive threat responding is associated with differential c-Fos expression in specific regions of amygdala and prefrontal cortex. Learn Mem 20:446–452. PMCPMC3718200Google Scholar
  88. Matthews TJ, McHugh TG, Carr LD (1974) Pavlovian and instrumental determinants of response suppression in the pigeon. J Comp Physiol Psychol 87(3):500–506CrossRefPubMedGoogle Scholar
  89. McAllister WR, McAllister DE (1971) Behavioral measurement of conditioned fear. In: Brush FR (ed) Aversive conditioning and learning. Academic Press, New York, pp 105–179Google Scholar
  90. McCue MG, LeDoux JE, Cain CK (2014) Medial amygdala lesions selectively block aversive pavlovian-instrumental transfer in rats. Front Behav Neurosci 8:329. PMC4166994Google Scholar
  91. McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611CrossRefPubMedGoogle Scholar
  92. Miller NE (1948) Studies of fear as an acquirable drive: I. Fear as motivation and fear reduction as reinforcement in the learning of new responses. J Exp Psychol 38:89–101CrossRefPubMedGoogle Scholar
  93. Miller NE (1951) Learnable drives and rewards. In: Stevens SS (ed) Handbook of experimental psychology. Wiley, New York, pp 435–472Google Scholar
  94. Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823Google Scholar
  95. Mowrer OH, Lamoreaux RR (1946) Fear as an intervening variable in avoidance conditioning. J Comp Psychol 39:29–50CrossRefPubMedGoogle Scholar
  96. Mowrer OH (1947) On the dual nature of learning: a reinterpretation of “conditioning” and “problem solving”. Harvard Educ Rev 17:102–148Google Scholar
  97. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–352. http://doi.org/10.1038/nature13294
  98. Nadler N, Delgado MR, Delamater AR (2011) Pavlovian to instrumental transfer of control in a human learning task. Emotion 11:1112–1123. PMC3183152Google Scholar
  99. Niv Y, Joel D, Dayan P (2006) A normative perspective on motivation. Trends Cogn Sci 10(8):375–381. (Epub 2006 Jul 13)Google Scholar
  100. Oleson EB, Gentry RN, Chioma VC, Cheer JF (2012) Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. J Neurosci 17;32(42):14804–14808. doi:10.1523/JNEUROSCI.3087-12.2012
  101. Overmier JB, Brackbill RM (1977) On the independence of stimulus evocation of fear and fear evocation of responses. Behav Res Ther 15:51–56CrossRefPubMedGoogle Scholar
  102. Overmier JB, Lawry JA (1979) Pavlovian conditioning and the mediation of avoidance behavior. In: Bower G (ed) The psychology of learning and motivation, vol 13. Academic Press, New York, pp 1–55Google Scholar
  103. Patterson J, Overmier JB (1981) A transfer of control test for contextual associations. Anim Learn Behav 9:316–321CrossRefGoogle Scholar
  104. Overmier JB, Payne RJ (1971) Facilitation of instrumental avoidance learning by prior appetitive Pavlovian conditioning to the cue. Acta Neurobiol Exp (Wars) 31:341–349Google Scholar
  105. Pascoe JP, Kapp BS (1985) Electrophysiological characteristics of amygdaloid central nucleus neurons in the awake rabbit. Brain Res Bull 14(4):331–338Google Scholar
  106. Pavlov IP (1927) Conditioned reflexes. Dover, New YorkGoogle Scholar
  107. Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford University Press, Oxford, pp 31–115Google Scholar
  108. Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391Google Scholar
  109. Poremba A., Gabriel M (1999) Amygdala neurons mediate acquisition but not maintenance of instrumental avoidance behavior in rabbits. J Neurosci 19:9635–9641Google Scholar
  110. Quirk GJ, Repa C, LeDoux JE (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15:1029–1039CrossRefPubMedGoogle Scholar
  111. Ramirez F, Moscarello JM, LeDoux JE, Sears RM (2015) Active avoidance requires a serial Basal amygdala to nucleus accumbens shell circuit. J Neurosci 35:3470–3477CrossRefPubMedPubMedCentralGoogle Scholar
  112. Rescorla RA, Lolordo VM (1965) Inhibition of avoidance behavior. J Comp Physiol Psychol 59:406–412CrossRefPubMedGoogle Scholar
  113. Rescorla RA (1968) Pavlovian conditioned fear in Sidman avoidance learning. J Comp Physiol Psychol 65(1):55–60Google Scholar
  114. Rogan MT, LeDoux JE (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15:127–136CrossRefPubMedGoogle Scholar
  115. Romanski LM, Clugnet MC, Bordi F, LeDoux JE (1993) Somatosensory and auditory convergence in the lateral nucleus of the amygdala. Behav Neurosci 107(3):444–450Google Scholar
  116. Rosen JB (2004) The neurobiology of conditioned and unconditioned fear: a neurobehavioral system analysis of the amygdala. Behav Cogn Neurosci Rev 3:23–41CrossRefPubMedGoogle Scholar
  117. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88CrossRefPubMedGoogle Scholar
  118. Sarter MF, Markowitsch HJ (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci 99:342–380CrossRefPubMedGoogle Scholar
  119. Schneiderman N, Francis J, Sampson LD, Schwaber JS (1974) CNS integration of learned cardiovascular behavior. In: DiCara LV (ed) Limbic and autonomic nervous system research. Plenum, New York, pp 277–309Google Scholar
  120. Schroeder BW, Shinnick-Gallagher P (2004) Fear memories induce a switch in stimulus response and signaling mechanisms for long-term potentiation in the lateral amygdala. Eur J Neurosci 20:549–556CrossRefPubMedGoogle Scholar
  121. Schroeder BW, Shinnick-Gallagher P (2005) Fear learning induces persistent facilitation of amygdala synaptic transmission. Eur J Neurosci 22(7):1775–1783Google Scholar
  122. Setlow B, Holland PC, Gallagher M (2002) Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive pavlovian second-order conditioned responses. Behav Neurosci 116:267–275CrossRefPubMedGoogle Scholar
  123. Sidman M (1953) Avoidance conditioning with brief shock and no extero- ceptive warning signal. Science 118:157–158Google Scholar
  124. Shettleworth SJ (1978) Reinforcement and the organization of behavior in golden hamsters: Pavlovian conditioning with food and shock USs. J Exp Psychol Anim Behav Process 4:152–169CrossRefPubMedGoogle Scholar
  125. Shiflett MW, Balleine BW (2010) At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci 32(10):1735–1743. doi: 10.1111/j.1460-9568.2010.07439.x. (Epub Oct 7)
  126. Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New YorkGoogle Scholar
  127. Solomon RL, Wynne LC (1954) Traumatic avoidance learning: the principles of anxiety conservation and partial irreversibility. Psychol Rev 61:353CrossRefPubMedGoogle Scholar
  128. Thompson RF (1976) The search for the engram. Am Psychol 31:209–227CrossRefPubMedGoogle Scholar
  129. Thorndike EL (1898) Animal intelligence: an experimental study of the associative processes in animals. Psychol Monogr 2:109CrossRefGoogle Scholar
  130. Thorpe WH (1963) Learning and instinct in animals. Methuen, LondonGoogle Scholar
  131. Tinbergen N (1951) The study of instinct. Oxford University Press, New YorkGoogle Scholar
  132. Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300CrossRefPubMedGoogle Scholar
  133. Walters ET, Carew TJ, Kandel ER (1979) Classical conditioning in Aplysia californica. Proc Natl Acad Sci USA 76:6675–6679CrossRefPubMedPubMedCentralGoogle Scholar
  134. Watson JB (1929) Behaviorism. W. W. Norton, New YorkGoogle Scholar
  135. Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49:381–391CrossRefPubMedGoogle Scholar
  136. Weisman RG, Litner JS (1969) The course of Pavlovian excitation and inhibition of fear in rats. J Comp Physiol Psychol 69:667–672CrossRefPubMedGoogle Scholar
  137. Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of pavlovian fear conditioning. J Neurosci 26:12387–12396CrossRefPubMedGoogle Scholar
  138. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476Google Scholar
  139. Yiu AP, Mercaldo V, Yan C, Richards B, Rashid AJ, Hsiang HL, Pressey J, Mahadevan V, Tran MM, Kushner SA, Woodin MA, Frankland P, Josselyn SA (2014) Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 6;83(3):722–735. doi: 10.1016/j.neuron.2014.07.017
  140. Zimmerman JM, Rabinak CA, McLachlan IG, Maren S (2007) The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learn Mem 14:634–644Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Vincent D. Campese
    • 1
  • Robert M. Sears
    • 2
  • Justin M. Moscarello
    • 1
  • Lorenzo Diaz-Mataix
    • 1
  • Christopher K. Cain
    • 2
  • Joseph E. LeDoux
    • 1
    • 2
  1. 1.Center for Neural ScienceNYUNew YorkUSA
  2. 2.Emotional Brain Institute at NYU and Nathan Kline InstituteNew YorkUSA

Personalised recommendations