Connectivity Measurements for Network Imaging

  • Susan M. BowyerEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 21)


Communication across the brain networks is dependent on neuronal oscillations. Detection of the synchronous activation of neurons can be used to determine the well-being of the connectivity in the human brain networks. Well-connected highly synchronous activity can be measured by MEG, EEG, fMRI, and PET and then analyzed with several types of mathematical algorithms. Coherence is one mathematical method that can detect how well 2 or more sensors or brain regions have similar oscillatory activity with each other. Phase synchrony can be used to determine if these oscillatory activities are in sync or out of sync with each other. Correlation is used to determine the strength of interaction between two locations or signals. Granger causality can be used to determine the direction of the information flow in the neuronal brain networks. Statistical analysis can be performed on the connectivity results to verify evidence of normal or abnormal network activity in a patient.


Networks Neuronal oscillations Correlation Coherence Phase synchrony Granger causality 


  1. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523PubMedCrossRefGoogle Scholar
  2. Bonita JD, Ambolode LCC II, Rosenberg BM, Cellucci CJ, Watanabe TAA, Rapp PE, Albano AM (2014) Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures. Cogn Neurodyn 8:1–15PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. PNAS 101(26):9849–9854PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cabral J, Kringelbach ML, Deco G (2014) Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol 114:102–131PubMedCrossRefGoogle Scholar
  5. Castellanos NP, Leyva I, Buldu JM, Bajo R, Paul N, Cuesta P, Ordonez VE, Pascua CL, Bocaletti S, Maestu E, del-Pozo F (2011) Principles of recovery from traumatic brain injury: reorganization of functional networks. Neuroimage 55(3):1189–1199Google Scholar
  6. Chana G, Bousman CA, Money TT, Gibbons A, Gillett P, Dean B, Everall IP (2013) Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front Cell Neurosci 7(95):1–18Google Scholar
  7. Demirci O, Stevense MC, Andreasend NC, Michaela A, Liua J, Whiteh T, Pearlsone JD, Clark VP, Calhouna VD (2009) Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls. Neuroimage 46(2):419–431PubMedCentralPubMedCrossRefGoogle Scholar
  8. Elisevich K, Shukla N, Moran JE, Smith B, Schultz L, Mason K, Barkley GL, Tepley N, Gumenyuk V, Bowyer SM (2011) An assessment of MEG coherence imaging in the study of temporal lobe epilepsy. Epilepsia 52(6):1110–1119PubMedCentralPubMedCrossRefGoogle Scholar
  9. Franaszczuk PJ, Bergey GK (1998) Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr 11(1):13–21PubMedCrossRefGoogle Scholar
  10. French CC, Beaumont JG (1984) A critical review of EEG coherence studies of hemisphere function. Int J Psychophysiol 1(3):241–254PubMedCrossRefGoogle Scholar
  11. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14PubMedCrossRefGoogle Scholar
  12. Gaillard R, Dehaene S, Adam C, Clemenceau S, Hasboun D, Baulac M, Cohen L, Naccache L (2009) Converging intracranial markers of conscious access. PLoS Biol 7:472–492CrossRefGoogle Scholar
  13. Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640PubMedCrossRefGoogle Scholar
  14. Greenblatt RE, Pflieger ME, Ossadtchi AE (2012) Connectivity measures applied to human brain electrophysiological data. J Neurosci Methods 2007(1):1–16CrossRefGoogle Scholar
  15. Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101(35):13050–13055Google Scholar
  16. Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (2002) The neural basis of intermittent motor control in humans. PNAS 99(4):2299–2302PubMedCentralPubMedCrossRefGoogle Scholar
  17. Haenschel C, Linden D (2011) Exploring intermediate phenotypes with eeg: working memory dysfunction in schizophrenia. Behav Brain Res 216:481–495PubMedCrossRefGoogle Scholar
  18. Hamalainen M, Hari R, Ilmoniemi J, Knuutila J, Lounamaa OV (1993) Magnetoencephalography-theory, instrumentation and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497CrossRefGoogle Scholar
  19. Hinkley LB, Vinogradov S, Guggisberg AG, Fisher M, Findlay AM, Nagarajan SS (2011) Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment. Biol Psychiatry 70(12):1134–1142PubMedCentralPubMedCrossRefGoogle Scholar
  20. Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104(24):10240–10245PubMedCentralPubMedCrossRefGoogle Scholar
  21. Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19:466–470PubMedCrossRefGoogle Scholar
  22. Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210PubMedCrossRefGoogle Scholar
  23. Kelly EF, Lenz JE, Franaszczk PJ, Truong YK (1997) A general statistical framework for frequency-domain analysis of EEG topographic structure. Comput Biomed Res 30:129–164PubMedCrossRefGoogle Scholar
  24. Kubicki M, Westin CF, McCarley RW, Shenton ME (2005) The application of DTI to investigate white matter abnormalities in schizophrenia. Ann NY Acad Sci 1064:134–148PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208PubMedCrossRefGoogle Scholar
  26. Le Bihan D, Mangin JF et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546PubMedCrossRefGoogle Scholar
  27. Llinas RR (1988) The Intrinsic electrophysiological properties of mammalian neurons: a new insight into CNS function. Science 242(4886):1654–1664PubMedCrossRefGoogle Scholar
  28. Llinas RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci USA 88(3):897–901PubMedCentralPubMedCrossRefGoogle Scholar
  29. Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531PubMedCrossRefGoogle Scholar
  30. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ponten SC, Bartolemi F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927PubMedCrossRefGoogle Scholar
  32. Rotarska-Jagiela A, Schönmeyer R, Oertel V, Haenschel C, Vogeley K, Linden DE (2008) The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage 39(4):1522–1532PubMedCrossRefGoogle Scholar
  33. Rowe JB (2010) Connectivity analysis is essential to understand neurological disorders. Front Syst Neurosci 4(144):1–13Google Scholar
  34. Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M (2009) Small world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403–416PubMedCrossRefGoogle Scholar
  35. Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117PubMedCrossRefGoogle Scholar
  36. Sameshima K, Baccala LA (1999) Using partial directed coherence to describe neuronal ensemble interactions. J Neurosci Meth 94(1):93–103CrossRefGoogle Scholar
  37. Sauseng P, Klimesch W (2008) What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev 32(5):1001–1013PubMedCrossRefGoogle Scholar
  38. Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464PubMedCrossRefGoogle Scholar
  39. Siebenhühner F, Weiss SA, Coppola R, Weinberger DR, Bassett DS (2013) Intra- and inter-frequency brain network structure in health and schizophrenia. PLoS ONE 8(8):1–13CrossRefGoogle Scholar
  40. Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen D, Feinberg D, Yacoub E, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. PNAS 109(8):3131–3136PubMedCentralPubMedCrossRefGoogle Scholar
  41. Song J, Tucker DM, Gilbert T, Hou J, Mattson C, Luu P, Holmes MD (2013) Methods for examining electrophysiological coherence in epileptic networks. Front Neurol 4:55PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sporns O (2007) Brain connectivity. Scholarpedia, 2(10):4695Google Scholar
  43. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens PH (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99PubMedCrossRefGoogle Scholar
  44. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlin Biomed Phys 1(3):1–18Google Scholar
  45. Stephan KE, Friston KJ, Frith C (2009) Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35:509–527PubMedCentralPubMedCrossRefGoogle Scholar
  46. Towle VL, Hunter JD, Edgar JC, Chkhenkeli SA, Castelle MC, Frim DM, Kohrman M, Hecox KE (2007) Frequency domain analysis of human subdural recordings. J Clin Neurophysiol 24(2):205–213PubMedCrossRefGoogle Scholar
  47. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2009) Neural synchrony and the development of cortical networks. Trends in Cogn Sci 14(2):72–80CrossRefGoogle Scholar
  48. Uhlhaas PJ, Singer Wolf (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113Google Scholar
  49. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, for the WU-Minn HCP Consortium (2013) The WU-Minn human connectome project: an overview. NeuroImage 80:62−79Google Scholar
  50. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239PubMedCrossRefGoogle Scholar
  51. Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268PubMedCentralPubMedCrossRefGoogle Scholar
  52. Wedeen VJ, Wanga RP, Schmahmannb JD, Bennera T, Tsengc WYI, Daia G, Pandyad DN, Hagmanne P, D’Arceuila H, de Crespignya AJ (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277PubMedCrossRefGoogle Scholar
  53. White T, Magnotta VA, Bockholt HJ, Williams S, Wallace S, Ehrlich S, Mueller BA, Ho BC, Jung RE, Clark VP, Lauriello J, Bustillo JR, Schulz SC, Gollub RL, Andreasen NC, Calhoun VD, Lim KO (2011) Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study. Schizophr Bull 37(1):222–232Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Henry Ford HospitalDetroitUSA

Personalised recommendations