Skip to main content

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 21))

Abstract

The hallmark of menopause is the marked reduction of estradiol levels due to ovarian failure. This, among other factors result in hot flashes, the most common menopausal symptom. Hot flashes (HFs) can be measured objectively, both inside and outside the laboratory, using sternal skin conductance, an electrical measure of sweating. We have found that HFs are triggered by small elevations in core body temperature (T C ), acting within a greatly reduced thermoneutral zone. This reduction is caused by elevated central sympathetic activation, among other factors. There is a circadian rhythm of HFs peaking at 1825 h. Imaging studies have shown that hot flash activation begins in the brainstem, followed by the insula and by the prefrontal cortex. HFs in the first, but not the second half of the night can produce awakenings and arousals. This is because rapid eye movement (REM) sleep suppresses thermoregulatory effector responses, which include hot flashes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ansonoff MA, Etgen AM (2001) Receptor phosphorylation mediates estradiol reduction of alpha 2-adrenoceptor coupling to G protein in the hypothalamus of female rats. Endocrine 14:165–174

    Article  CAS  PubMed  Google Scholar 

  • Askel S, Schomberg DW, Tyrey L et al (1976) Vasomotor symptoms, serum estrogens, gonadotropin levels in surgical menopause. Am J Obstet Gynecol 126:165–169

    Google Scholar 

  • Brück K, Zeisberger E (1990) Adaptive changes in thermoregulation and their neuropharmacological basis. In: Schönbaum E, Lomax P (eds) Thermoregulation: physiology and biochemistry. Pergamon, New York, pp 255–307

    Google Scholar 

  • Carpenter JS, Gilchrist JM, Chen K et al (2004) Hot flashes, core body temperature, and metabolic parameters in breast cancer survivors. Menopause 11:375–381

    Article  PubMed  Google Scholar 

  • Casper RF, Yen SSC (1981) Menopausal flushes: effect of pituitary gonadotropin desensitization by a potent luteinizing hormone releasing factor agonist. J Clin Endocrinol Metab 53:1056–1058

    Article  CAS  PubMed  Google Scholar 

  • Casper RF, Yen SSC, Wilkes MM (1979) Menopausal flushes: a neuroendocrine link with pulsatile luteinizing hormone secretion. Science 204:823–825

    Article  Google Scholar 

  • Charney DS, Heninger GR, Sternberg DE (1982) Assessment of α2-adrenergic autoreceptor function in humans: effects of oral yohimbine. Life Sci 30:2033–2041

    Article  CAS  PubMed  Google Scholar 

  • de Bakker IPM, Everaerd W (1996) Measurement of menopausal hot flushes: validation and cross-validation. Maturitas 24:87–98

    Article  Google Scholar 

  • DeFazio J, Meldrum DR, Laufer L et al (1983) Induction of hot flashes in premenopausal women treated with a long-acting GnRH agonist. J Clin Endocrinol Metab 56:445–448

    Article  CAS  PubMed  Google Scholar 

  • DeFazio J, Vorheugen C, Chetkowski R et al (1984) The effects of naloxone on hot flashes and gonadotropin secretion in postmenopausal women. J Clin Endocrinol Metab 58:578–581

    Article  CAS  PubMed  Google Scholar 

  • Diwadkar VA, Murphy ER, Freedman RR (2013) Temporal sequencing of brain activations during naturally occurring thermoregulatory events. Cereb cortex Jun 19 [Epub ahead of print]

    Google Scholar 

  • Etgen AM, Ansonoff MA, Quesada A (2001) Mechanisms of ovarian steroid regulation of norepinephrine receptor-mediated signal transduction in the hypothalamus: implications for female reproductive physiology. Horm Behav 40:169–177

    Article  CAS  PubMed  Google Scholar 

  • Feldman BM, Voda A, Groseth E (1985) The prevalence of hot flash and associated variables among perimenopausal women. Res Nurs Health 8:261–268

    Article  CAS  PubMed  Google Scholar 

  • Freedman RR (1989) Laboratory and ambulatory monitoring of menopausal hot flashes. Psychophysiology 26:573–579

    Article  CAS  PubMed  Google Scholar 

  • Freedman RR (1998) Biochemical, metabolic, and vascular mechanisms in menopausal hot flushes. Fertil Steril 70:1–6

    Article  Google Scholar 

  • Freedman RR (2009) Patient satisfaction with miniature, ambulatory, postmenopausal hot flash recorder. Open Med Devices J 1:1–2

    Google Scholar 

  • Freedman RR (2010) Objective or subjective measurement of hot flashes in clinical trials: Quo Vadis. Maturitas 67:99–100

    Article  PubMed  Google Scholar 

  • Freedman RR, Blacker CM (2002) Estrogen raises the sweating threshold in postmenopausal women with hot flashes. Fertil Steril 77:487–490

    Article  PubMed  Google Scholar 

  • Freedman RR, Dinsay R (2000) Clonidine raises the sweating threshold in symptomatic but not in asymptomatic postmenopausal women. Fertil Steril 74:20–23

    Article  CAS  PubMed  Google Scholar 

  • Freedman RR, Krell W (1999) Reduced thermoregulatory null zone in postmenopausal women with hot flashes. Am J Obstet Gynecol 181:66–70

    Article  CAS  PubMed  Google Scholar 

  • Freedman RR, Roehrs TA (2004) Lack of sleep disturbance from menopausal hot flashes. Fertil Steril 82:138–144

    Article  PubMed  Google Scholar 

  • Freedman RR, Roehrs TA (2006) Effects of REM sleep and ambient temperature on hot flash-induced sleep disturbance. Menopause 13:576–583

    Article  PubMed  Google Scholar 

  • Freedman RR, Roehrs TA (2007) Sleep disturbance in menopause. Menopause 14:826–829

    Article  PubMed  Google Scholar 

  • Freedman RR, Wasson S (2007) Miniature, hygrometric hot flash recorder. Fertil Steril 88:494–496

    Article  PubMed Central  PubMed  Google Scholar 

  • Freedman RR, Woodward S (1995) Altered shivering threshold in postmenopausal women with hot flashes. Menopause 2:163–168

    Google Scholar 

  • Freedman RR, Woodward S (1996) Core body temperature during menopausal hot flushes. Fertil Steril 65:1141–1144

    CAS  PubMed  Google Scholar 

  • Freedman RR, Woodward S, Sabharwal SC (1990) Adrenergic mechanism in menopausal hot flushes. Obstet Gynecol 76:573–578

    CAS  PubMed  Google Scholar 

  • Freedman RR, Woodward S, Norton D (1992) Laboratory and ambulatory monitoring of menopausal hot flushes: comparison of symptomatic and asymptomatic women. J Psychophysiol 6:162–166

    Google Scholar 

  • Freedman RR, Norton D, Woodward S et al (1995) Core body temperature and circadian rhythm of hot flashes in menopausal women. J Clin Endocrinol Metab 80:2354–2358

    CAS  PubMed  Google Scholar 

  • Freedman RR, Benton MD, Genik RJ II et al (2006) Cortical activation during menopausal hot flashes. Fertil Steril 85:674–678

    Article  PubMed  Google Scholar 

  • Freedman RR, Kruger ML, Wasson SL (2011) Heart rate variability in menopausal hot flashes during sleep. Menopause 18:1–4

    Article  Google Scholar 

  • Gambone J, Meldrum DR, Laufer L et al (1984) Further delineation of hypothalamic dysfunction responsible for menopausal hot flashes. J Clin Endocrinol Metab 59:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg J, Swinhoe J, O’Reilly B (1981) Cardiovascular responses during the menopausal hot flush. Br J Obstet Gynaecol 88:925–930

    Article  CAS  PubMed  Google Scholar 

  • Gold EB, Colvin A, Avis N et al (2006) Longitudinal analysis of the association between vasomotor symptoms and race/ethnicity across the menopausal transition: study of women’s health across the nation. Am J Pub Health 96:1–10

    Article  Google Scholar 

  • Goldberg M, Robertson D (1983) Yohimbine: a pharmacological probe for study of α2-adrenoceptor. Pharmacol Rev 35:143–180

    CAS  PubMed  Google Scholar 

  • Hanisch LJ, Palmer SC, Donahue A et al (2007) Validation of sternal skin conductance for detection of hot flashes in prostate cancer survivors. Psychophysiol 44:189–193

    Article  Google Scholar 

  • Insel PA, Motulsky HJ (1987) Physiologic and pharmacologic regulation of adrenergic receptors. In: Insel PA (ed) Adrenergic receptors in man. Marcel Dekker, New York, pp 201–236

    Google Scholar 

  • Jeffcoate SL (1981) Climacteric flushing: clinical and endocrine response to infusion of naloxone. Br J Obstet Gynaecol 88:919–924

    Article  PubMed  Google Scholar 

  • Kopin IJ, Blombery P, Ebert MH et al (1984) Disposition and metabolism of MHPG-CD3 in humans: plasma MHPG as the principal pathway of norepinephrine metabolism and as an important determinant in CSF levels of MHPG. In: Usdin E et al (eds) Frontiers in biochemical and pharmacological research in depression. Raven, New York, pp 57–68

    Google Scholar 

  • Kravitz HM, Ganz PA, Bromberger J et al (2003) Sleep difficulty in women at midlife: a community survey of sleep and the menopausal transition. Menopause 10:19–28

    PubMed  Google Scholar 

  • Kronenberg F (1990) Hot flashes: epidemiology and physiology. Ann N Y Acad Sci 592:52–86

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg F, Cote LJ, Linkie DM et al (1984) Menopausal hot flashes: thermoregulatory, cardiovascular, and circulating catecholamine and LH changes. Maturitas 6:31–43

    Article  CAS  PubMed  Google Scholar 

  • Meldrum DR, Erlik Y, Lu JKH et al (1981) Objectively recorded hot flushes in patients with pituitary insufficiency. J Clin Endocrinol Metab 52:684–687

    Article  CAS  PubMed  Google Scholar 

  • Molnar GW (1975) Body temperature during menopausal hot flashes. J Appl Physiol: Respir Environ Exerc Physiol 38:499–503

    CAS  Google Scholar 

  • Mulley G, Mitchell RA, Tattersall RB (1977) Hot flushes after hypophysectomy. BMJ 2:1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • North American Menopause Society (2007) Menopause practice: a clinician’s guide. Normal physiology, pp 19–27

    Google Scholar 

  • Sastre M, Garcia-Sevilla JA (1994) Density of alpha-2A adrenoceptors and Gi proteins in the human brain: ratio of high-affinity agonist sites to antagonist sites and effect of age. J Pharmacol Exp Ther 269:1062–1072

    CAS  PubMed  Google Scholar 

  • Savage MV, Brengelmann GL (1996) Control of skin blood flow in the neutral zone of human body temperature regulation. J Appl Physiol 80:1249–1257

    CAS  PubMed  Google Scholar 

  • Schindler AE, Muller D, Keller E et al (1979) Studies with clonidine (Dixarit) in menopausal women. Arch Gynecol 227:341–347

    Article  CAS  PubMed  Google Scholar 

  • Starke K, Gothert M, Kilbringer H (1989) Modulation of neurotransmitter release of presynaptic autoreceptors. Physiol Rev 69:864–989

    CAS  PubMed  Google Scholar 

  • Stone AA, Shiffman S, Schwartz JE et al (2003) Patient compliance with paper and electronic diaries. Control Clin Trials 24:182–199

    Article  PubMed  Google Scholar 

  • Takarangi MK, Garry M, Loftus EF (2006) Dear diary, is plastic better than paper? I can’t remember. Comment on Green, Bolger, Shrout, and Reis. Psychol Methods 11:119–122

    Article  PubMed  Google Scholar 

  • Tataryn IV, Meldrum DR, Lu KH et al (1979) FSH, and skin temperature during menopausal hot flush. J Clin Endocrinol Metab 49:152–154

    Article  CAS  PubMed  Google Scholar 

  • Tataryn IV, Lomax P, Bajorek JG et al (1980) Postmenopausal hot flushes: a disorder of thermoregulation. Maturitas 2:101–107

    Article  CAS  PubMed  Google Scholar 

  • Young T, Rabago D, Zgierska A et al (2003) Objective and subjective sleep quality in premenopausal, perimenopausal, and postmenopausal women in the Wisconsin Sleep Cohort Study. Sleep 26:667–672

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Merit Award, R37-AG05233 and by R01-MH63089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Freedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freedman, R.R. (2014). Postmenopausal Physiological Changes. In: Kumari, V., Bob, P., Boutros, N. (eds) Electrophysiology and Psychophysiology in Psychiatry and Psychopharmacology. Current Topics in Behavioral Neurosciences, vol 21. Springer, Cham. https://doi.org/10.1007/7854_2014_325

Download citation

Publish with us

Policies and ethics