Skip to main content

Gene–Environment Interactions in the Etiology of Human Violence

Part of the Current Topics in Behavioral Neurosciences book series (CTBN,volume 17)

Abstract

This chapter reviews the current research on gene–environment interactions (G × E) with regard to human violence. Findings are summarized from both behavioral and molecular genetic studies that have investigated the interplay of genetic and environmental factors in terms of influencing violence-related behavior. Together, these studies reveal promising evidence that genetic factors combine with environmental influences to impact on the development of violent behavior and related phenotypes. G × E have been identified for a number of candidate genes implicated in violence. Moreover, the reviewed G × E were found to extend to a broad range of environmental characteristics, including both adverse and favorable conditions. As has been the case with other G × E research, findings have been mixed, with considerable heterogeneity between studies. Lack of replication together with serious methodological limitations remains a major challenge for drawing definitive conclusions about the nature of violence-related G × E. In order to fulfill its potential, it is recommended that future G × E research needs to shift its focus to dissecting the neural mechanisms and the underlying pathophysiological pathways by which genetic variation may influence differential susceptibility to environmental exposures.

Keywords

  • Gene–environment interaction
  • Violence
  • Antisocial behavior
  • Aggression
  • Behavioral genetic studies
  • Molecular genetic studies

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7854_2013_260
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-44281-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)

References

  • Aschard H, Lutz S, Maus B et al (2012) Challenges and opportunities in genome-wide environmental interaction (GWEI) studies. Hum Genet 131:1591–1613

    PubMed Central  PubMed  Google Scholar 

  • Aslund C, Comasco E, Nordquist N et al (2012) Self-reported family socioeconomic status, the 5-HTTLPR genotype, and delinquent behavior in a community-based adolescent population. Aggress Behav. doi:10.1002/ab.21451

    PubMed  Google Scholar 

  • Aslund C, Nordquist N, Comasco E et al (2011) Maltreatment, MAOA, and delinquency: sex differences in gene-environment interaction in a large population-based cohort of adolescents. Behav Genet 41:262–272

    CAS  PubMed  Google Scholar 

  • Baehne CG, Ehlis AC, Plichta MM et al (2009) Tph2 gene variants modulate response control processes in adult ADHD patients and healthy individuals. Mol Psychiatry 14:1032–1039

    CAS  PubMed  Google Scholar 

  • Baker LA, Tuvblad C, Reynolds C et al (2009) Resting heart rate and the development of antisocial behavior from age 9 to 14: genetic and environmental influences. Dev Psychopathol 21:939–960

    PubMed Central  PubMed  Google Scholar 

  • Bakermans-Kranenburg MJ, van Ijzendoorn MH (2006) Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Dev Psychobiol 48:406–409

    CAS  PubMed  Google Scholar 

  • Bakermans-Kranenburg MJ, van Ijzendoorn MH (2011) Differential susceptibility to rearing environment depending on dopamine-related genes: new evidence and a meta-analysis. Dev Psychopathol 23:39–52

    PubMed  Google Scholar 

  • Bakermans-Kranenburg MJ, van Ijzendoorn MH, Pijlman FT et al (2008) Experimental evidence for differential susceptibility: dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Dev Psychol 44:293–300

    PubMed  Google Scholar 

  • Beach SR, Brody GH, Gunter TD et al (2010) Child maltreatment moderates the association of MAOA with symptoms of depression and antisocial personality disorder. J Fam Psychol 24:12–20

    PubMed Central  PubMed  Google Scholar 

  • Beaver KM, Gibson CL, Jennings WG et al (2009) A gene × environment interaction between DRD2 and religiosity in the prediction of adolescent delinquent involvement in a sample of males. Biodemography Soc Biol 55:71–81

    PubMed  Google Scholar 

  • Beaver KM, Sak A, Vaske J et al (2010) Genetic risk, parent-child relations, and antisocial phenotypes in a sample of African–American males. Psychiatry Res 175:160–164

    PubMed  Google Scholar 

  • Beaver KM, Wright JP, DeLisi M et al (2007) Evidence of a gene × environment interaction in the creation of victimization: results from a longitudinal sample of adolescents. Int J Offender Ther Comp Criminol 51:620–645

    PubMed  Google Scholar 

  • Beaver KM, Wright JP, DeLisi M et al (2008) Desistance from delinquency: the marriage effect revisited and extended. Soc Sci Res 37:736–752

    PubMed  Google Scholar 

  • Becker K, El Faddagh M, Schmidt MH et al (2008) Interaction of dopamine transporter genotype with prenatal smoke exposure on ADHD symptoms. J Pediatr 152:263–269

    CAS  PubMed  Google Scholar 

  • Belsky J, Bakermans-Kranenburg MJ, van Ijzendoorn MH (2007) For better and for worse: differential susceptibility to environmental influences. Curr Dir Psychol Sci 16:300–304

    Google Scholar 

  • Belsky J, Jonassaint C, Pluess M et al (2009) Vulnerability genes or plasticity genes? Mol Psychiatry 14:746–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belsky J, Pluess M (2009) Beyond diathesis stress: differential susceptibility to environmental influences. Psychol Bull 135:885–908

    PubMed  Google Scholar 

  • Bevilacqua L, Carli V, Sarchiapone M et al (2012) Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Arch Gen Psychiatry 69:62–70

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boutwell BB, Franklin CA, Barnes JC et al (2011) Physical punishment and childhood aggression: the role of gender and gene–environment interplay. Aggress Behav 37:559–568

    PubMed  Google Scholar 

  • Brendgen M, Boivin M, Dionne G et al (2011) Gene–environment processes linking aggression, peer victimization, and the teacher–child relationship. Child Dev 82:2021–2036

    PubMed  Google Scholar 

  • Brendgen M, Boivin M, Vitaro F et al (2008a) Linkages between children’s and their friends’ social and physical aggression: evidence for a gene–environment interaction? Child Dev 79:13–29

    PubMed  Google Scholar 

  • Brendgen M, Boivin M, Vitaro F et al (2008b) Gene-environment interaction between peer victimization and child aggression. Dev Psychopathol 20:455–471

    PubMed  Google Scholar 

  • Brennan PA, Hammen C, Sylvers P et al (2011) Interactions between the COMT Val108/158Met polymorphism and maternal prenatal smoking predict aggressive behavior outcomes. Biol Psychol 87:99–105

    PubMed Central  PubMed  Google Scholar 

  • Buckholtz JW, Meyer-Lindenberg A (2008) MAOA and the neurogenetic architecture of human aggression. Trends Neurosci 31:120–129

    CAS  PubMed  Google Scholar 

  • Button TM, Corley RP, Rhee SH et al (2007) Delinquent peer affiliation and conduct problems: a twin study. J Abnorm Psychol 116:554–564

    PubMed  Google Scholar 

  • Button TM, Scourfield J, Martin N et al (2005) Family dysfunction interacts with genes in the causation of antisocial symptoms. Behav Genet 35:115–120

    PubMed  Google Scholar 

  • Cadoret RJ, Cain CA, Crowe RR (1983) Evidence for gene-environment interaction in the development of adolescent antisocial behavior. Behav Genet 13:301–310

    CAS  PubMed  Google Scholar 

  • Cadoret RJ, Yates WR, Troughton E et al (1995) Genetic–environmental interaction in the genesis of aggressivity and conduct disorders. Arch Gen Psychiatry 52:916–924

    CAS  PubMed  Google Scholar 

  • Caspi A, Hariri AR, Holmes A et al (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167:509–527

    PubMed Central  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    CAS  PubMed  Google Scholar 

  • Caspi A, Moffitt TE, Cannon M et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene × environment interaction. Biol Psychiatry 57:1117–1127

    CAS  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    CAS  PubMed  Google Scholar 

  • Cicchetti D, Rogosch FA, Thibodeau EL (2012) The effects of child maltreatment on early signs of antisocial behavior: genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Dev Psychopathol 24:907–928

    PubMed Central  PubMed  Google Scholar 

  • Cloninger CR, Sigvardsson S, Bohman M et al (1982) Predisposition to petty criminality in Swedish adoptees. II. Cross-fostering analysis of gene–environment interaction. Arch Gen Psychiatry 39:1242–1247

    CAS  PubMed  Google Scholar 

  • Conway CC, Keenan-Miller D, Hammen C et al (2012) Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. J Clin Child Adolesc Psychol 41:53–63

    PubMed Central  PubMed  Google Scholar 

  • Crowe RR (1974) An adoption study of antisocial personality. Arch Gen Psychiatry 31:785–791

    CAS  PubMed  Google Scholar 

  • DeLisi M, Beaver KM, Wright JP et al (2008) The etiology of criminal onset: The enduring salience of nature and nurture. J Crim Justice 36:217–223

    Google Scholar 

  • Derringer J, Krueger RF, Irons DE et al (2010) Harsh discipline, childhood sexual assault, and MAOA genotype: an investigation of main and interactive effects on diverse clinical externalizing outcomes. Behav Genet 40:639–648

    PubMed Central  PubMed  Google Scholar 

  • Dick DM, Meyers JL, Latendresse SJ et al (2011) CHRM2, parental monitoring, and adolescent externalizing behavior: evidence for gene–environment interaction. Psychol Sci 22:481–489

    PubMed Central  PubMed  Google Scholar 

  • Douglas K, Chan G, Gelernter J et al (2011) 5-HTTLPR as a potential moderator of the effects of adverse childhood experiences on risk of antisocial personality disorder. Psychiatr Genet 21:240–248

    PubMed Central  PubMed  Google Scholar 

  • Dresler T, Ehlis AC, Heinzel S et al (2010) Dopamine transporter (SLC6A3) genotype impacts neurophysiological correlates of cognitive response control in an adult sample of patients with ADHD. Neuropsychopharmacology 35:2193–2202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ducci F, Enoch MA, Hodgkinson C et al (2008) Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Mol Psychiatry 13:334–347

    CAS  PubMed  Google Scholar 

  • Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry 168:1041–1049

    PubMed Central  PubMed  Google Scholar 

  • Eaves LJ (2006) Genotype × environment interaction in psychopathology: fact or artifact? Twin Res Hum Genet 9:1–8

    PubMed  Google Scholar 

  • Edwards AC, Dodge KA, Latendresse SJ et al (2010) MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. J Child Psychol Psychiatry 51:679–687

    PubMed Central  PubMed  Google Scholar 

  • Enoch MA, Steer CD, Newman TK et al (2010) Early life stress, MAOA, and gene–environment interactions predict behavioral disinhibition in children. Genes Brain Behav 9:65–74

    PubMed Central  PubMed  Google Scholar 

  • Feinberg ME, Button TM, Neiderhiser JM et al (2007) Parenting and adolescent antisocial behavior and depression: evidence of genotype × parenting environment interaction. Arch Gen Psychiatry 64:457–465

    PubMed  Google Scholar 

  • Fergusson DM, Boden JM, Horwood LJ et al (2012) Moderating role of the MAOA genotype in antisocial behaviour. Br J Psychiatry 200:116–123

    PubMed Central  PubMed  Google Scholar 

  • Fergusson DM, Boden JM, Horwood LJ et al (2011a) MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198:457–463

    PubMed Central  PubMed  Google Scholar 

  • Fergusson DM, Horwood LJ, Miller AL et al (2011b) Life stress, 5-HTTLPR and mental disorder: findings from a 30-year longitudinal study. Br J Psychiatry 198:129–135

    PubMed Central  PubMed  Google Scholar 

  • Flint J, Munafo MR (2007) The endophenotype concept in psychiatric genetics. Psychol Med 37:163–180

    PubMed Central  PubMed  Google Scholar 

  • Foley DL, Eaves LJ, Wormley B et al (2004) Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Arch Gen Psychiatry 61:738–744

    CAS  PubMed  Google Scholar 

  • Frazzetto G, Di Lorenzo G, Carola V et al (2007) Early trauma and increased risk for physical aggression during adulthood: the moderating role of MAOA genotype. PLoS ONE 2:e486

    PubMed Central  PubMed  Google Scholar 

  • Gao Y, Raine A (2009) P3 event-related potential impairments in antisocial and psychopathic individuals: a meta-analysis. Biol Psychol 82:199–210

    PubMed  Google Scholar 

  • Gatt JM, Nemeroff CB, Dobson-Stone C et al (2009) Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol Psychiatry 14:681–695

    CAS  PubMed  Google Scholar 

  • Gatt JM, Nemeroff CB, Schofield PR et al (2010) Early life stress combined with serotonin 3A receptor and brain-derived neurotrophic factor valine 66 to methionine genotypes impacts emotional brain and arousal correlates of risk for depression. Biol Psychiatry 68:818–824

    CAS  PubMed  Google Scholar 

  • Gerritsen L, Tendolkar I, Franke B et al (2012) BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Mol Psychiatry 17:597–603

    CAS  PubMed  Google Scholar 

  • Gregory S, ffytche D, Simmons A et al (2012) The antisocial brain: psychopathy matters. Arch Gen Psychiatry 69:962–972

    PubMed  Google Scholar 

  • Guo G, Roettger ME, Cai T (2008) The integration of genetic propensities into social-control models of delinquency and violence among male youths. Am Soc Rev 73:543–568

    Google Scholar 

  • Haberstick BC, Lessem JM, Hopfer CJ et al (2005) Monoamine oxidase A (MAOA) and antisocial behaviors in the presence of childhood and adolescent maltreatment. Am J Med Genet B Neuropsychiatr Genet 135B:59–64

    PubMed  Google Scholar 

  • Heinzel S, Dresler T, Baehne CG et al (2012) COMT × DRD4 epistasis impacts prefrontal cortex function underlying response control. Cereb Cortex 23:1453–1462

    Google Scholar 

  • Huang YY, Cate SP, Battistuzzi C et al (2004) An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29:1498–1505

    CAS  PubMed  Google Scholar 

  • Huebner T, Vloet TD, Marx I et al (2008) Morphometric brain abnormalities in boys with conduct disorder. J Am Acad Child Adolesc Psychiatry 47:540–547

    PubMed  Google Scholar 

  • Huizinga D, Haberstick BC, Smolen A et al (2006) Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biol Psychiatry 60:677–683

    CAS  PubMed  Google Scholar 

  • Hyde LW, Bogdan R, Hariri AR (2011) Understanding risk for psychopathology through imaging gene–environment interactions. Trends Cogn Sci 15:417–427

    PubMed Central  PubMed  Google Scholar 

  • Jaffee SR, Caspi A, Moffitt TE et al (2005) Nature X nurture: genetic vulnerabilities interact with physical maltreatment to promote conduct problems. Dev Psychopathol 17:67–84

    PubMed Central  PubMed  Google Scholar 

  • Jaffee SR, Strait LB, Odgers CL (2012) From correlates to causes: can quasi-experimental studies and statistical innovations bring us closer to identifying the causes of antisocial behavior? Psychol Bull 138:272–295

    PubMed Central  PubMed  Google Scholar 

  • Kahn RS, Khoury J, Nichols WC et al (2003) Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive-impulsive, inattentive, and oppositional behaviors. J Pediatr 143:104–110

    PubMed  Google Scholar 

  • Keune PM, van der Heiden L, Varkuti B et al (2012) Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neurosci Lett 515:191–195

    CAS  PubMed  Google Scholar 

  • Kim-Cohen J, Caspi A, Taylor A et al (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913

    CAS  PubMed  Google Scholar 

  • Kinnally EL, Huang YY, Haverly R et al (2009) Parental care moderates the influence of MAOA-uVNTR genotype and childhood stressors on trait impulsivity and aggression in adult women. Psychiatr Genet 19:126–133

    PubMed Central  PubMed  Google Scholar 

  • Lahey BB, Rathouz PJ, Lee SS et al (2011) Interactions between early parenting and a polymorphism of the child’s dopamine transporter gene in predicting future child conduct disorder symptoms. J Abnorm Psychol 120:33–45

    PubMed Central  PubMed  Google Scholar 

  • Lamb DJ, Middeldorp CM, van Beijsterveldt CE et al (2012) Gene–environment interaction in teacher-rated internalizing and externalizing problem behavior in 7- to 12-year-old twins. J Child Psychol Psychiatry 53:818–825

    PubMed  Google Scholar 

  • Langley K, Turic D, Rice F et al (2008) Testing for gene × environment interaction effects in attention deficit hyperactivity disorder and associated antisocial behavior. Am J Med Genet B Neuropsychiatr Genet 147B:49–53

    CAS  PubMed  Google Scholar 

  • Latendresse SJ, Bates JE, Goodnight JA et al (2011) Differential susceptibility to adolescent externalizing trajectories: examining the interplay between CHRM2 and peer group antisocial behavior. Child Dev 82:1797–1814

    PubMed Central  PubMed  Google Scholar 

  • Lee SS (2011) Deviant peer affiliation and antisocial behavior: interaction with Monoamine Oxidase A (MAOA) genotype. J Abnorm Child Psychol 39:321–332

    PubMed Central  PubMed  Google Scholar 

  • Leve LD, Kerr DC, Shaw D et al (2010) Infant pathways to externalizing behavior: evidence of genotype × environment interaction. Child Dev 81:340–356

    PubMed Central  PubMed  Google Scholar 

  • Li JJ, Lee SS (2010) Latent class analysis of antisocial behavior: interaction of serotonin transporter genotype and maltreatment. J Abnorm Child Psychol 38:789–801

    PubMed Central  PubMed  Google Scholar 

  • Lorber MF (2004) Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis. Psychol Bull 130:531–552

    PubMed  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    CAS  PubMed  Google Scholar 

  • Martel MM, Nikolas M, Jernigan K et al (2011) The dopamine receptor D4 gene (DRD4) moderates family environmental effects on ADHD. J Abnorm Child Psychol 39:1–10

    PubMed  Google Scholar 

  • McDermott R, Tingley D, Cowden J et al (2009) Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc Natl Acad Sci USA 106:2118–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meaney MJ (2010) Epigenetics and the biological definition of gene × environment interactions. Child Dev 81:41–79

    PubMed  Google Scholar 

  • Mier D, Kirsch P, Meyer-Lindenberg A (2010) Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 15:918–927

    CAS  PubMed  Google Scholar 

  • Moffitt TE (2005) The new look of behavioral genetics in developmental psychopathology: gene–environment interplay in antisocial behaviors. Psychol Bull 131:533–554

    PubMed  Google Scholar 

  • Moffitt TE, Caspi A, Rutter M (2005) Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 62:473–481

    CAS  PubMed  Google Scholar 

  • Moffitt TE, Caspi A, Rutter M (2006) Measured gene–environment interactions in psychopathology. Perspect Psychol Sci 1:5–27

    Google Scholar 

  • Munafo MR, Flint J (2009) Replication and heterogeneity in gene × environment interaction studies. Int J Neuropsychopharmacol 12:727–729

    CAS  PubMed  Google Scholar 

  • Nilsson KW, Sjoberg RL, Damberg M et al (2006) Role of monoamine oxidase A genotype and psychosocial factors in male adolescent criminal activity. Biol Psychiatry 59:121–127

    CAS  PubMed  Google Scholar 

  • Nobile M, Giorda R, Marino C et al (2007) Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Dev Psychopathol 19:1147–1160

    PubMed  Google Scholar 

  • Nobile M, Rusconi M, Bellina M et al (2010) COMT Val158Met polymorphism and socioeconomic status interact to predict attention deficit/hyperactivity problems in children aged 10–14. Eur Child Adolesc Psychiatry 19:549–557

    PubMed  Google Scholar 

  • Ortiz J, Raine A (2004) Heart rate level and antisocial behavior in children and adolescents: a meta-analysis. J Am Acad Child Adolesc Psychiatry 43:154–162

    PubMed  Google Scholar 

  • Pavlov KA, Chistiakov DA, Chekhonin VP (2012) Genetic determinants of aggression and impulsivity in humans. J Appl Genet 53:61–82

    CAS  PubMed  Google Scholar 

  • Philibert RA, Wernett P, Plume J et al (2011) Gene environment interactions with a novel variable Monoamine Oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biol Psychol 87:366–371

    PubMed Central  PubMed  Google Scholar 

  • Pinsonneault JK, Papp AC, Sadee W (2006) Allelic mRNA expression of X-linked monoamine oxidase a (MAOA) in human brain: dissection of epigenetic and genetic factors. Hum Mol Genet 15:2636–2649

    CAS  PubMed  Google Scholar 

  • Prichard Z, Mackinnon A, Jorm AF et al (2008) No evidence for interaction between MAOA and childhood adversity for antisocial behavior. Am J Med Genet B Neuropsychiatr Genet 147B:228–232

    CAS  PubMed  Google Scholar 

  • Prom-Wormley EC, Eaves LJ, Foley DL et al (2009) Monoamine oxidase A and childhood adversity as risk factors for conduct disorder in females. Psychol Med 39:579–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Propper C, Willoughby M, Halpern CT et al (2007) Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Dev Psychobiol 49:619–632

    CAS  PubMed  Google Scholar 

  • Reif A, Jacob CP, Rujescu D et al (2009) Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Arch Gen Psychiatry 66:41–50

    CAS  PubMed  Google Scholar 

  • Reif A, Rosler M, Freitag CM et al (2007) Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology 32:2375–2383

    CAS  PubMed  Google Scholar 

  • Rhee SH, Waldman ID (2002) Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull 128:490–529

    PubMed  Google Scholar 

  • Roth TL, Sweatt JD (2011) Epigenetic marking of the BDNF gene by early-life adverse experiences. Horm Behav 59:315–320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rowe DC, Almeida DM, Jacobson KC (1999) School context and genetic influences on aggression in adolescence. Psychol Sci 10:277–280

    Google Scholar 

  • Rutter M, Moffitt TE, Caspi A (2006) Gene–environment interplay and psychopathology: multiple varieties but real effects. J Child Psychol Psychiatry 47:226–261

    PubMed  Google Scholar 

  • Sadeh N, Javdani S, Jackson JJ et al (2010) Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. J Abnorm Psychol 119:604–609

    PubMed Central  PubMed  Google Scholar 

  • Sengupta SM, Grizenko N, Schmitz N et al (2006) COMT Val108/158Met gene variant, birth weight, and conduct disorder in children with ADHD. J Am Acad Child Adolesc Psychiatry 45:1363–1369

    PubMed  Google Scholar 

  • Simons RL, Lei MK, Beach SR et al (2011) Social environmental variation, plasticity genes, and aggression: evidence for the differential susceptibility hypothesis. Am Sociol Rev 76:833–912

    PubMed Central  PubMed  Google Scholar 

  • Singh JP, Volavka J, Czobor P et al (2012) A meta-analysis of the Val158Met COMT polymorphism and violent behavior in schizophrenia. PLoS ONE 7:e43423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sjoberg RL, Nilsson KW, Wargelius HL et al (2007) Adolescent girls and criminal activity: role of MAOA-LPR genotype and psychosocial factors. Am J Med Genet B Neuropsychiatr Genet 144B:159–164

    PubMed  Google Scholar 

  • Sonuga-Barke EJ, Oades RD, Psychogiou L et al (2009) Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed emotion: the case of conduct and emotional problems in attention deficit/hyperactivity disorder. J Child Psychol Psychiatry 50:1052–1063

    PubMed  Google Scholar 

  • Taylor A, Kim-Cohen J (2007) Meta-analysis of gene–environment interactions in developmental psychopathology. Dev Psychopathol 19:1029–1037

    PubMed  Google Scholar 

  • Thapar A, Harold G, Rice F et al (2007) The contribution of gene–environment interaction to psychopathology. Dev Psychopathol 19:989–1004

    PubMed  Google Scholar 

  • Thapar A, Langley K, Fowler T et al (2005) Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 62:1275–1278

    CAS  PubMed  Google Scholar 

  • Thomas D (2010) Gene–environment-wide association studies: emerging approaches. Nat Rev Genet 11:259–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tikkanen R, Ducci F, Goldman D et al (2010) MAOA alters the effects of heavy drinking and childhood physical abuse on risk for severe impulsive acts of violence among alcoholic violent offenders. Alcohol Clin Exp Res 34:853–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tremblay RE, Szyf M (2010) Developmental origins of chronic physical aggression and epigenetics. Epigenomics 2:495–499

    CAS  PubMed  Google Scholar 

  • Tuvblad C, Baker LA (2011) Human aggression across the lifespan: genetic propensities and environmental moderators. Adv Genet 75:171–214

    PubMed Central  PubMed  Google Scholar 

  • Tuvblad C, Grann M, Lichtenstein P (2006) Heritability for adolescent antisocial behavior differs with socioeconomic status: gene–environment interaction. J Child Psychol Psychiatry 47:734–743

    PubMed  Google Scholar 

  • Uher R, McGuffin P (2008) The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry 13:131–146

    CAS  PubMed  Google Scholar 

  • van der Vegt EJ, Oostra BA, Arias-Vasquez A et al (2009) High activity of monoamine oxidase A is associated with externalizing behaviour in maltreated and nonmaltreated adoptees. Psychiatr Genet 19:209–211

    PubMed  Google Scholar 

  • van Lier P, Boivin M, Dionne G et al (2007) Kindergarten children’s genetic vulnerabilities interact with friends’ aggression to promote children’s own aggression. J Am Acad Child Adolesc Psychiatry 46:1080–1087

    PubMed  Google Scholar 

  • Vaughn M, DeLisi M, Beaver KM et al (2009) DAT1 and 5-HTT are associated with pathological criminal behavior in a nationally representative sample of youth. Crim Just Behav 36:1103–1114

    Google Scholar 

  • Viding E, McCrory EJ (2012) Genetic and neurocognitive contributions to the development of psychopathy. Dev Psychopathol 24:969–983

    PubMed  Google Scholar 

  • Wagner S, Baskaya O, Anicker NJ et al (2010) The catechol o-methyltransferase (COMT) val(158)met polymorphism modulates the association of serious life events (SLE) and impulsive aggression in female patients with borderline personality disorder (BPD). Acta Psychiatr Scand 122:110–117

    CAS  PubMed  Google Scholar 

  • Wakschlag LS, Kistner EO, Pine DS et al (2010) Interaction of prenatal exposure to cigarettes and MAOA genotype in pathways to youth antisocial behavior. Mol Psychiatry 15:928–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh ND, Dalgleish T, Dunn VJ et al (2012) 5-HTTLPR-environment interplay and its effects on neural reactivity in adolescents. Neuroimage 63:1670–1680

    CAS  PubMed  Google Scholar 

  • Wang D, Szyf M, Benkelfat C et al (2012) Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS ONE 7:e39501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weder N, Yang BZ, Douglas-Palumberi H et al (2009) MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 65:417–424

    CAS  PubMed  Google Scholar 

  • Wermter AK, Laucht M, Schimmelmann BG et al (2010) From nature versus nurture, via nature and nurture, to gene × environment interaction in mental disorders. Eur Child Adolesc Psychiatry 19:199–210

    PubMed  Google Scholar 

  • White MG, Bogdan R, Fisher PM et al (2012) FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav 11:869–878

    CAS  PubMed  Google Scholar 

  • Widom CS, Brzustowicz LM (2006) MAOA and the “cycle of violence”: childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biol Psychiatry 60:684–689

    CAS  PubMed  Google Scholar 

  • Young SE, Smolen A, Hewitt JK et al (2006) Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: failure to confirm in adolescent patients. Am J Psychiatry 163:1019–1025

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Laucht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laucht, M., Brandeis, D., Zohsel, K. (2013). Gene–Environment Interactions in the Etiology of Human Violence. In: Miczek, K., Meyer-Lindenberg, A. (eds) Neuroscience of Aggression. Current Topics in Behavioral Neurosciences, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2013_260

Download citation