The Emergence of Cognitive Control Abilities in Childhood

  • Nina S. Hsu
  • Susanne M. Jaeggi
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 16)


Cognitive control, otherwise known as executive function, refers to our ability to flexibly adjust or regulate habitual actions or behaviors. As a cluster of separable components, it depends heavily on the prefrontal cortex, one of the last brain regions to reach adult maturity. Cognitive control processes are thought to be among the key factors for scholastic success, and thus, underdeveloped cognitive control abilities might contribute to an achievement gap. In this chapter, we first discuss the prolonged maturation of the prefrontal cortex that leads to delayed emergence of cognitive control abilities in children. We briefly describe some of the functional effects of prolonged maturation of the prefrontal cortex. We then discuss how experience and environmental factors such as education and socioeconomic status may affect the development of cognitive control abilities, before turning to cognitive training interventions as a promising avenue for reducing this cognitive “gap” in both healthy children and those with developmental disabilities. Taken together, our hope is that by understanding the interaction of brain development, environmental factors, and the promise of cognitive interventions in children, this knowledge can help to both guide educational achievement and inform educational policy.


Executive function Socioeconomic status Hypofrontality Cognitive intervention Plasticity 


  1. Amso D, Casey BJ (2006) Beyond what develops when neuroimaging may inform how cognition changes with development. Curr Dir Psychol Sci 15:24–29CrossRefGoogle Scholar
  2. Badre D, Wagner AD (2007) Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45:2883–2901. doi: 10.1016/j.neuropsychologia.2007.06.015 PubMedCrossRefGoogle Scholar
  3. Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94Google Scholar
  4. Barkley RA (2001) The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev 11:1–29PubMedCrossRefGoogle Scholar
  5. Bergman Nutley S, Söderqvist S, Bryde S et al (2011) Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Dev Sci 14:591–601. doi: 10.1111/j.1467-7687.2010.01022.x PubMedCrossRefGoogle Scholar
  6. Beveridge M, Jarrold C, Pettit E (2002) An experimental approach to executive fingerprinting in young children. Infant Child Dev 11:107–123. doi: 10.1002/icd.300 CrossRefGoogle Scholar
  7. Blair C (2002) School readiness: integrating cognition and emotion in a neurobiological conceptualization of children’s functioning at school entry. Am Psychol 57:111–127PubMedCrossRefGoogle Scholar
  8. Blair C, Diamond A (2008) Biological processes in prevention and intervention: the promotion of self-regulation as a means of preventing school failure. Dev Psychopathol 20:899–911PubMedCentralPubMedCrossRefGoogle Scholar
  9. Blair C, Razza RP (2007) Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev 78:647–663PubMedCrossRefGoogle Scholar
  10. Booth JR, Burman DD, Meyer JR et al (2003) Neural development of selective attention and response inhibition. NeuroImage 20:737–751. doi: 10.1016/S1053-8119(03)00404-X PubMedCrossRefGoogle Scholar
  11. Botvinick M, Nystrom L, Fissell K et al. (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179–181Google Scholar
  12. Botvinick MM, Braver TS, Barch DM et al (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652PubMedCrossRefGoogle Scholar
  13. Brown TT, Lugar HM, Coalson RS et al (2005) Developmental changes in human cerebral functional organization for word generation. Cereb Cortex 15:275–290. doi: 10.1093/cercor/bhh129 PubMedCrossRefGoogle Scholar
  14. Bunge SA, Dudukovic NM, Thomason ME et al (2002) Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33:301–311PubMedCrossRefGoogle Scholar
  15. Burrage MS, Ponitz CC, McCready EA et al (2008) Age- and schooling-related effects on executive functions in young children: a natural experiment. Child Neuropsychol 14:510–524. doi: 10.1080/09297040701756917 PubMedCrossRefGoogle Scholar
  16. Buschkuehl M, Jaeggi SM, Jonides J (2012) Neuronal effects following working memory training. Dev Cogn Neurosci 2(Suppl 1):S167–179. doi: 10.1016/j.dcn.2011.10.001 PubMedCrossRefGoogle Scholar
  17. Casey B, Galvan A, Hare TA (2005a) Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol 15:239–244. doi: 10.1016/j.conb.2005.03.012 PubMedCrossRefGoogle Scholar
  18. Casey B, Tottenham N, Liston C, Durston S (2005b) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110. doi: 10.1016/j.tics.2005.01.011 PubMedCrossRefGoogle Scholar
  19. Casey BJ, Tottenham N, Fossella J (2002) Clinical, imaging, lesion, and genetic approaches toward a model of cognitive control. Dev Psychobiol 40:237–254. doi: 10.1002/dev.10030 PubMedCrossRefGoogle Scholar
  20. Casey BJ, Trainor RJ, Orendi JL et al (1997) A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cogn Neurosci 9:835–847PubMedCrossRefGoogle Scholar
  21. Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn Sci 16:17–26. doi: 10.1016/j.tics.2011.11.007 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Chrysikou EG, Novick JM, Trueswell JC, Thompson-Schill SL (2011) The other side of cognitive control: can a lack of cognitive control benefit language and cognition? Top Cogn Sci 3:253–256. doi: 10.1111/j.1756-8765.2011.01137.x CrossRefGoogle Scholar
  23. Chrysikou EG, Thompson-Schill SL (2011) Dissociable brain states linked to common and creative object use. Hum Brain Mapp 32:665–675. doi: 10.1002/hbm.21056 PubMedCrossRefGoogle Scholar
  24. Chugani HT, Phelps ME (1986) Maturational changes in cerebral function in infants determined by 18 FDG positron emission tomography. Science 231:840–843PubMedCrossRefGoogle Scholar
  25. Crone EA, Bunge SA, Van Der Molen MW, Ridderinkhof KR (2006a) Switching between tasks and responses: a developmental study. Dev Sci 9:278–287PubMedCrossRefGoogle Scholar
  26. Crone EA, Wendelken C, Donohue S et al (2006b) Neurocognitive development of the ability to manipulate information in working memory. Proc Natl Acad Sci 103:9315–9320PubMedCentralPubMedCrossRefGoogle Scholar
  27. D’Angiulli A, Herdman A, Stapells D, Hertzman C (2008) Children’s event-related potentials of auditory selective attention vary with their socioeconomic status. Neuropsychology 22:293–300PubMedCrossRefGoogle Scholar
  28. Dahlin E, Neely AS, Larsson A et al (2008) Transfer of learning after updating training mediated by the striatum. Science 320:1510–1512PubMedCrossRefGoogle Scholar
  29. Diamond A (1985) Development of the ability to use recall to guide action, as indicated by infants’ performance on AB. Child Dev 56:868–883PubMedCrossRefGoogle Scholar
  30. Diamond A, Lee K (2011) Interventions shown to aid executive function development in children 4 to 12 years old. Science 333:959–964. doi: 10.1126/science.1204529 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Durston S, Thomas KM, Yang Y et al (2002) A neural basis for the development of inhibitory control. Dev Sci 5:F9–F16CrossRefGoogle Scholar
  32. Durston S, Tottenham NT, Thomas KM et al (2003) Differential patterns of striatal activation in young children with and withot ADHD. Biol Psychiatry 53:871–878PubMedCrossRefGoogle Scholar
  33. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon identification of a target letter in a non-search task. Percept Psychophys 16:143–149CrossRefGoogle Scholar
  34. Friedman NP, Miyake A (2004) The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen 133:101–135. doi: 10.1037/0096-3445.133.1.101 PubMedCrossRefGoogle Scholar
  35. Galvan A (2010) Neural plasticity of development and learning. Hum Brain Mapp 31:879–890PubMedCrossRefGoogle Scholar
  36. Gathercole SE, Pickering SJ, Knight C, Stegmann Z (2004) Working memory skills and educational attainment: evidence from national curriculum assessments at 7 and 14 years of age. Appl Cogn Psychol 18:1–16. doi: 10.1002/acp.934 CrossRefGoogle Scholar
  37. German TP, Defeyter MA (2000) Immunity to functional fixedness in young children. Psychon Bull Rev 7:707–712PubMedCrossRefGoogle Scholar
  38. Gerstadt CL, Hong YJ, Diamond A (1994) The relationship between cognition and action: performance of children 3 1/2-7 years old on a stroop-like day-night test. Cognition 53:129–153PubMedCrossRefGoogle Scholar
  39. Gleitman L, Newport E, Gleitman H (1984) The current status of the Motherese hypothesis. J Child Lang 11:43–79PubMedCrossRefGoogle Scholar
  40. Gogtay N, Giedd JN, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179PubMedCentralPubMedCrossRefGoogle Scholar
  41. Gray JR, Thompson PM (2004) Neurobiology of intelligence: science and ethics. Nat Rev Neurosci 5:471–482. doi: 10.1038/nrn1405 PubMedCrossRefGoogle Scholar
  42. Hackman DA, Farah MJ (2009) Socioeconomic status and the developing brain. Trends Cogn Sci 13:65–73. doi: 10.1016/j.tics.2008.11.003 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hackman DA, Farah MJ, Meaney MJ (2010) Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 11:651–659PubMedCentralPubMedCrossRefGoogle Scholar
  44. Haier RJ, Karama S, Leyba L, Jung RE (2009) MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. Bmc Res Notes 2:174. doi: 10.1186/1756-0500-2-174 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Hare TA, Casey BJ (2005) The neurobiology and development of cognitive and affective control. Cogn Brain Behav 9:273–286Google Scholar
  46. Hoekzema E, Carmona S, Tremols V et al (2010) Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 31:1942–1950. doi: 10.1002/hbm.20988 PubMedCrossRefGoogle Scholar
  47. Hofmann W, Schmeichel BJ, Baddeley AD (2012) Executive functions and self-regulation. Trends Cogn Sci 16:174–180. doi: 10.1016/j.tics.2012.01.006 PubMedCrossRefGoogle Scholar
  48. Holmes J, Gathercole SE, Dunning DL (2009) Adaptive training leads to sustained enhancement of poor working memory in children. Dev Sci 12:F9–F15. doi: 10.1111/j.1467-7687.2009.00848.x PubMedCrossRefGoogle Scholar
  49. Hussey EK, Novick JM (2012) The benefits of executive control training and the implications for language processing. Front Psychol 3:158. doi:  10.3389/fpsyg.2012.00158
  50. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178PubMedCrossRefGoogle Scholar
  51. Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci 105:6829PubMedCentralPubMedCrossRefGoogle Scholar
  52. Jaeggi SM, Buschkuehl M, Jonides J, Shah P (2012) Cogmed and working memory training: current challenges and the search for underlying mechanisms. J Appl Res Mem Cogn 1:211–213. doi: 10.1016/j.jarmac.2012.06.003 CrossRefGoogle Scholar
  53. Jaeggi SM, Buschkuehl M, Jonides J, Shah P (2011) Short- and long-term benefits of cognitive training. Proc Natl Acad Sci USA 108:10081–10086. doi: 10.1073/pnas.1103228108 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Jolles DD, van Buchem MA, Rombouts SARB, Crone EA (2012) Practice effects in the developing brain: a pilot study. Dev Cogn Neurosci 2:S180–S191. doi: 10.1016/j.dcn.2011.09.001 PubMedCrossRefGoogle Scholar
  55. Jolles DD, Crone EA (2012) Training the developing brain: a neurocognitive perspective. Front Hum Neurosci. doi: 10.3389/fnhum.2012.00076 PubMedCentralPubMedGoogle Scholar
  56. Jonides J, Lewis RL, Nee DE et al. (2008) The mind and brain of short-term memory. Annu Rev Psychol 59:193–224. doi:  10.1146/annurev.psych.59.103006.093615 Google Scholar
  57. Karbach J, Kray J (2009) How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev Sci 12:978–990. doi: 10.1111/j.1467-7687.2009.00846.x PubMedCrossRefGoogle Scholar
  58. Kishiyama MM, Boyce WT, Jimenez AM et al (2009) Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci 21:1106–1115PubMedCrossRefGoogle Scholar
  59. Klingberg T, Fernell E, Olesen PJ et al (2005) Computerized training of working memory in children with ADHD—a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry 44:177–186PubMedCrossRefGoogle Scholar
  60. Klingberg T, Forssberg H, Westerberg H (2002) Training of working memory in children with ADHD. J Clin Exp Neuropsychol 24:781–791PubMedCrossRefGoogle Scholar
  61. Kucian K, Grond U, Rotzer S et al (2011) Mental number line training in children with developmental dyscalculia. NeuroImage 57:782–795. doi: 10.1016/j.neuroimage.2011.01.070 PubMedCrossRefGoogle Scholar
  62. Liston C, Watts R, Tottenham N et al (2006) Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cereb Cortex 16:553–560. doi: 10.1093/cercor/bhj003 PubMedCrossRefGoogle Scholar
  63. Loosli SV, Buschkuehl M, Perrig WJ, Jaeggi SM (2012) Working memory training improves reading processes in typically developing children. Child Neuropsychol 18:62–78. doi: 10.1080/09297049.2011.575772 PubMedCrossRefGoogle Scholar
  64. Mackey AP, Hill SS, Stone SI, Bunge SA (2011) Differential effects of reasoning and speed training in children. Dev Sci 14:582–590. doi: 10.1111/j.1467-7687.2010.01005.x PubMedCrossRefGoogle Scholar
  65. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  66. Miyake A (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognit Psychol 41:49–100. doi: 10.1006/cogp.1999.0734 PubMedCrossRefGoogle Scholar
  67. Morrison AB, Chein JM (2011) Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon Bull Rev 18:46–60Google Scholar
  68. Morton JB, Munakata Y (2002) Active versus latent representations: a neural network model of perseveration, dissociation, and decalage. Dev Psychobiol 40:255–265. doi: 10.1002/dev.10033 PubMedCrossRefGoogle Scholar
  69. Nilsen E, Graham S (2009) The relations between children’s communicative perspective-taking and executive functioning. Cognit Psychol 58:220–249. doi: 10.1016/j.cogpsych.2008.07.002 PubMedCrossRefGoogle Scholar
  70. Noble KG, Farah MJ, McCandliss BD (2006a) Socioeconomic background modulates cognition–achievement relationships in reading. Cogn Dev 21:349–368. doi: 10.1016/j.cogdev.2006.01.007 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Noble KG, Norman MF, Farah MJ (2005) Neurocognitive correlates of socioeconomic status in kindergarten children. Dev Sci 8:74–87PubMedCrossRefGoogle Scholar
  72. Noble KG, Wolmetz ME, Ochs LG et al (2006b) Brain–behavior relationships in reading acquisition are modulated by socioeconomic factors. Dev Sci 9:642–654PubMedCrossRefGoogle Scholar
  73. Noble KG, McCandliss BD, Farah MJ (2007) Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev Sci 10:464–480. doi:  10.1111/j.1467-7687.2007.00600.x Google Scholar
  74. Norman W, Shallice T (1986) Attention to action: willed and automatic control of behavior. Conscious. Self Regul. Adv. Res. Theory, 4th ed. Plenum, New York, pp 1–18Google Scholar
  75. Novick JM, Kan IP, Trueswell JC, Thompson-Schill SL (2009) A case for conflict across multiple domains: memory and language impairments following damage to ventrolateral prefrontal cortex. Cogn Neuropsychol 26:527–567. doi: 10.1080/02643290903519367 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Novick JM, Trueswell JC, Thompson-Schill SL (2005) Cognitive control and parsing: reexamining the role of Broca’s area in sentence comprehension. Cogn Affect Behav Neurosci 5:263–281PubMedCrossRefGoogle Scholar
  77. Nyberg L, Dahlin E, Stigsdotter N, Backman l (2009) Neural correlates of variable working memory load across adult age and skill: dissociative patterns within the fronto-parietal network. Scandanavian J Psychol 50:41–46Google Scholar
  78. Petanjek Z, Judas M, Simic G et al (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci 108:13281–13286. doi: 10.1073/pnas.1105108108 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Pickering SJ (2006) Working memory and education. Academic PressGoogle Scholar
  80. Qin Y, Carter CS, Silk EM et al (2004) The change of the brain activation patterns as children learn algebra equation solving. Proc Natl Acad Sci USA 101:5686–5691PubMedCentralPubMedCrossRefGoogle Scholar
  81. Raizada RDS, Richards TL, Meltzoff A, Kuhl PK (2008) Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage 40:1392–1401. doi: 10.1016/j.neuroimage.2008.01.021 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Rakic P, Bourgeois J-P, Eckenhoff MF et al (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235PubMedCrossRefGoogle Scholar
  83. Ramscar M, Yarlett D (2007) Linguistic self-correction in the absence of feedback: a new approach to the logical problem of language acquisition. Cogn Sci 31:927–960PubMedCrossRefGoogle Scholar
  84. Rubia K, Overmeyer S, Taylor E et al (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 156:891–896PubMedGoogle Scholar
  85. Rueda MR, Rothbart MK, McCandliss BD et al (2005) Training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci USA 102:14931–14936PubMedCentralPubMedCrossRefGoogle Scholar
  86. Shah P, Buschkuehl M, Jaeggi SM, Jonides J (2012) Cognitive training for ADHD: The importance of individual differences. J Appl Res Mem Cogn 1:204–205. doi: 10.1016/j.jarmac.2012.06.003 CrossRefGoogle Scholar
  87. Shaywitz BA, Shaywitz SE, Blachman BA et al (2004) Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biol Psychiatry 55:926–933. doi: 10.1016/j.biopsych.2003.12.019 PubMedCrossRefGoogle Scholar
  88. Sheridan MA, Sarsour K, Jutte D et al (2012) The impact of social disparity on prefrontal function in childhood. PLoS ONE 7:e35744. doi: 10.1371/journal.pone.0035744 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Shimamura AP (2000) The role of the prefrontal cortex in dynamic filtering. Psychobiology 28:207–218Google Scholar
  90. Smith E, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661PubMedCrossRefGoogle Scholar
  91. Sowell ER, Peterson BS, Thompson PM et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315PubMedCrossRefGoogle Scholar
  92. Stevens C, Fanning J, Coch D et al (2008) Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophysiological evidence from language-impaired and typically developing children. Brain Res 1205:55–69. doi: 10.1016/j.brainres.2007.10.108 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Stevens C, Lauinger B, Neville H (2009) Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds. Dev Sci 12:634–646PubMedCentralPubMedCrossRefGoogle Scholar
  94. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662CrossRefGoogle Scholar
  95. Temple E, Deutsch GK, Poldrack RA et al (2003) Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc Natl Acad Sci 100:2860–2865PubMedCentralPubMedCrossRefGoogle Scholar
  96. Thompson-Schill SL, Bedny M, Goldberg RF (2005) The frontal lobes and the regulation of mental activity. Curr Opin Neurobiol 15:219–224. doi: 10.1016/j.conb.2005.03.006 PubMedCrossRefGoogle Scholar
  97. Thompson-Schill SL, D’Esposito M, Aguirre GK, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci USA 94:14792–14797PubMedCentralPubMedCrossRefGoogle Scholar
  98. Thompson-Schill SL, Ramscar M, Chrysikou EG (2009) Cognition without control when a little frontal lobe goes a long way. Curr Dir Psychol Sci 18:259–263PubMedCentralPubMedCrossRefGoogle Scholar
  99. Thorell LB, Lindqvist S, Bergman Nutley S et al. (2009) Training and transfer effects of executive functions in preschool children. Dev Sci 12:106–113 doi: 10.1111/j.1467-7687.2008.00745.x Google Scholar
  100. Trueswell JC, Sekerina I, Hill NM, Logrip ML (1999) The kindergarten-path effect: studying on-line sentence processing in young children. Cognition 73:89–134PubMedCrossRefGoogle Scholar
  101. Turkeltaub PE, Gareau L, Flowers DL et al (2003) Development of neural mechanisms for reading. Nat Neurosci 6:767–773PubMedCrossRefGoogle Scholar
  102. Ursache A, Blair C, Raver CC (2012) The promotion of self-regulation as a means of enhancing school readiness and early achievement in children at risk for school failure. Child Dev Perspect 6:122–128. doi: 10.1111/j.1750-8606.2011.00209.x CrossRefGoogle Scholar
  103. Wass SV, Scerif G, Johnson MH (2012) Training attentional control and working memory—Is younger, better? Dev Rev 32:360–387. doi: 10.1016/j.dr.2012.07.001 CrossRefGoogle Scholar
  104. Wendelken C, Munakata Y, Baym C et al (2012) Flexible rule use: common neural substrates in children and adults. Dev Cogn Neurosci 2:329–339. doi: 10.1016/j.dcn.2012.02.001 PubMedCrossRefGoogle Scholar
  105. Yamada Y, Stevens C, Dow M et al (2011) Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: an fMRI study. NeuroImage 57:704–713. doi: 10.1016/j.neuroimage.2010.10.057 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PsychologyCenter for Advanced Study of LanguageCollege ParkUSA
  2. 2.Program in Neuroscience and Cognitive Science (NACS)University of MarylandCollege ParkUSA
  3. 3.Center for Advanced Study of LanguageUniversity of MarylandCollege ParkUSA

Personalised recommendations