Genetic Models of Sensorimotor Gating: Relevance to Neuropsychiatric Disorders

  • Susan B. PowellEmail author
  • Martin Weber
  • Mark A. Geyer
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 12)


Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.


Prepulse inhibition Startle Mouse models Schizophrenia Genetic Mutant 



This work was supported by grants from the National Institute of Mental Health (R01MH042228, R01MH052885, R01MH091407) and by the Veterans Affairs VISN 22 Mental Illness Research, Education, and Clinical Center.


  1. Abel KM, Allin MP, Hemsley DR, Geyer MA (2003) Low dose ketamine increases prepulse inhibition in healthy men. Neuropharmacol 44:729–737Google Scholar
  2. Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, Chen D, Jin P, Zhao X (2008) The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet 17:2047–2057PubMedGoogle Scholar
  3. Allen PD, Schmuck N, Ison JR, Walton JP (2008) Kv1.1 channel subunits are not necessary for high temporal acuity in behavioral and electrophysiological gap detection. Hear Res 246:52–58PubMedGoogle Scholar
  4. Arguello PA, Gogos JA (2010) Cognition in mouse models of schizophrenia susceptibility genes. Schizophr Bull 36:289–300PubMedGoogle Scholar
  5. Asp L, Holtze M, Powell SB, Karlsson H, Erhardt S (2010) Neonatal infection with neurotropic influenza A virus induces the kynurenine pathway in early life and disrupts sensorimotor gating in adult Tap −/− mice. Int J Neuropsychopharmacol 13:475–485PubMedGoogle Scholar
  6. Baker KB, Wray SP, Ritter R, Mason S, Lanthorn TH, Savelieva KV (2010) Male and female Fmr1 knockout mice on C57 albino background exhibit spatial learning and memory impairments. Genes Brain Behav 9:562–574PubMedGoogle Scholar
  7. Barr AM, Fish KN, Markou A, Honer WG (2008) Heterozygous reeler mice exhibit alterations in sensorimotor gating but not presynaptic proteins. Eur J Neurosci 27:2568–2574PubMedGoogle Scholar
  8. Barros CS, Calabrese B, Chamero P, Roberts AJ, Korzus E, Lloyd K, Stowers L, Mayford M, Halpain S, Muller U (2009) Impaired maturation of dendritic spines without disorganization of cortical cell layers in mice lacking NRG1/ErbB signaling in the central nervous system. Proc Natl Acad Sci U S A 106:4507–4512PubMedGoogle Scholar
  9. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647PubMedGoogle Scholar
  10. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, Quinlan EM, Nakazawa K (2010) Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci 13:76–83PubMedGoogle Scholar
  11. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27PubMedGoogle Scholar
  12. Benneyworth MA, Basu AC, Coyle JT (2011) Discordant behavioral effects of psychotomimetic drugs in mice with altered NMDA receptor function. Psychopharmacology (Berl) 213:143–153Google Scholar
  13. Benoit CE, Bastianetto S, Brouillette J, Tse Y, Boutin JA, Delagrange P, Wong T, Sarret P, Quirion R (2010) Loss of quinone reductase 2 function selectively facilitates learning behaviors. J Neurosci 30:12690–12700PubMedGoogle Scholar
  14. Bersudsky Y, Shaldubina A, Kozlovsky N, Woodgett JR, Agam G, Belmaker RH (2008) Glycogen synthase kinase-3beta heterozygote knockout mice as a model of findings in postmortem schizophrenia brain or as a model of behaviors mimicking lithium action: negative results. Behav Pharmacol 19:217–224PubMedGoogle Scholar
  15. Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499PubMedGoogle Scholar
  16. Blackwood DH, Fordyce A, Walker MT, Clair DM, Porteous DJ, Muir WJ (2001) Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69:428–433PubMedGoogle Scholar
  17. Blundell J, Kaeser PS, Sudhof TC, Powell CM (2010) RIM1alpha and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia. J Neurosci 30:5326–5333PubMedGoogle Scholar
  18. Braff DL (2010) Prepulse inhibition of the startle reflex: a window on the brain in schizophrenia. Curr Top Behav Neurosci 4:349–371PubMedGoogle Scholar
  19. Braff DL (2011) Gating in schizophrenia: from genes to cognition (to real world function?). Biol Psychiatry 69:395–396PubMedGoogle Scholar
  20. Braff DL, Freedman R, Schork NJ, Gottesman II (2007) Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr Bull 33:21–32PubMedGoogle Scholar
  21. Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156:234–258Google Scholar
  22. Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49:206–215PubMedGoogle Scholar
  23. Brody SA, Conquet F, Geyer MA (2003) Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci 18:3361–3366PubMedGoogle Scholar
  24. Brody SA, Dulawa SC, Conquet F, Geyer MA (2004) Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Mol Psychiatry 9:35–41PubMedGoogle Scholar
  25. Brody SA, Geyer MA (2004) Interactions of the mGluR5 gene with breeding and maternal factors on startle and prepulse inhibition in mice. Neurotoxic Res 6:79–90Google Scholar
  26. Brooks S, Higgs G, Jones L, Dunnett SB (2010) Longitudinal analysis of the behavioural phenotype in Hdh ((CAG)150) Huntington’s disease knock-in mice. Brain Res Bull. May 8. [Epub ahead of print]Google Scholar
  27. Brooks SP, Janghra N, Workman VL, Bayram-Weston Z, Jones L, Dunnett SB (2011) Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Res Bull. Jan 25. [Epub ahead of printGoogle Scholar
  28. Brzόzka MM, Radyushkin K, Wichert SP, Ehrenreich H, Rossner MJ (2010) Cognitive and sensorimotor gating impairments in transgenic mice overexpressing the schizophrenia susceptibility gene Tcf4 in the brain. Biol Psychiatry 68:33–40Google Scholar
  29. Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK (2005) DISC1 and neurocognitive function in schizophrenia. Neuroreport 16:1399–1402PubMedGoogle Scholar
  30. Cadenhead KS, Geyer MA, Braff DL (1993) Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. Am J Psychiatry 150:1862–1867PubMedGoogle Scholar
  31. Cadenhead KS, Swerdlow NR, Shafer KM, Diaz M, Braff DL (2000) Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am J Psychiatry 157:1660–1668PubMedGoogle Scholar
  32. Cahill ME, Xie Z, Day M, Photowala H, Barbolina MV, Miller CA, Weiss C, Radulovic J, Sweatt JD, Disterhoft JF, Surmeier DJ, Penzes P (2009) Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc Natl Acad Sci U S A 106:13058–13063PubMedGoogle Scholar
  33. Caldwell HK, Stephens SL, Young WS 3rd (2009) Oxytocin as a natural antipsychotic: a study using oxytocin knockout mice. Mol Psychiatry 14:190–196PubMedGoogle Scholar
  34. Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A 102:8627–8632PubMedGoogle Scholar
  35. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205–1213PubMedGoogle Scholar
  36. Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91:313–348PubMedGoogle Scholar
  37. Chadman KK, Gong S, Scattoni ML, Boltuck SE, Gandhy SU, Heintz N, Crawley JN (2008) Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 1:147–158PubMedGoogle Scholar
  38. Chavez C, Gogos A, Jones ME, van den Buuse M (2009) Psychotropic drug-induced locomotor hyperactivity and prepulse inhibition regulation in male and female aromatase knockout (ArKO) mice: role of dopamine D1 and D2 receptors and dopamine transporters. Psychopharmacology (Berl) 206:267–279Google Scholar
  39. Chen HH, Stoker A, Markou A (2010) The glutamatergic compounds sarcosine and N-acetylcysteine ameliorate prepulse inhibition deficits in metabotropic glutamate 5 receptor knockout mice. Psychopharmacology (Berl) 209:343–350Google Scholar
  40. Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, Liu XM, Feng GY, Xu YF, Clair D, Li M, Wang JH, Xing YL, Shi JG, He L (2004) Family-based association study of synapsin II and schizophrenia. Am J Hum Genet 75:873–877PubMedGoogle Scholar
  41. Chen Y-JJ, Johnson MA, Lieberman MD, Goodchild RE, Schobel S, Lewandowski N, Rosoklija G, Liu R-C, Gingrich JA, Small S, Moore H, Dwork AJ, Talmage DA, Role LW (2008) Type III Neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 28:6872–6883PubMedGoogle Scholar
  42. Chen YW, Lai WS (2011) Behavioral phenotyping of v-akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience 174:178–189PubMedGoogle Scholar
  43. Chong VZ, Young LT, Mishra RK (2002) cDNA array reveals differential gene expression following chronic neuroleptic administration: implications of synapsin II in haloperidol treatment. J Neurochem 82:1533–1539PubMedGoogle Scholar
  44. Cleva RM, Olive MF (2011) Positive allosteric modulators of type 5 metabotropic glutamate receptors (mGluR5) and their therapeutic potential for the treatment of CNS disorders. Molecules 16:2097–2106PubMedGoogle Scholar
  45. Cole TB, Giordano G, Co AL, Mohar I, Kavanagh TJ, Costa LG (2011) Behavioral characterization of GCLM-knockout mice, a model for enhanced susceptibility to oxidative stress. J Toxicol 2011:157687PubMedGoogle Scholar
  46. Cook MN, Dunning JP, Wiley RG, Chesler EJ, Johnson DK, Miller DR, Goldowitz D (2007) Neurobehavioral mutants identified in an ENU-mutagenesis project. Mamm Genome 18:559–572PubMedGoogle Scholar
  47. Coyle JT (2004) The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 68:1507–1514PubMedGoogle Scholar
  48. Crawley JN (2007) What’s wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice, WileyGoogle Scholar
  49. Csomor PA, Stadler RR, Feldon J, Yee BK, Geyer MA, Vollenweider FX (2008) Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels. Neuropsychopharmacology 33:497–512PubMedGoogle Scholar
  50. Darvas M, Morsch M, Racz I, Ahmadi S, Swandulla D, Zimmer A (2009) Modulation of the Ca2+ conductance of nicotinic acetylcholine receptors by Lypd6. Eur Neuropsychopharmacol 19:670–681PubMedGoogle Scholar
  51. de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, Oostra BA, Willemsen R (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31:127–132PubMedGoogle Scholar
  52. Deakin IH, Law AJ, Oliver PL, Schwab MH, Nave KA, Harrison PJ, Bannerman DM (2009) Behavioural characterization of neuregulin 1 type I overexpressing transgenic mice. Neuroreport 20:1523–1528PubMedGoogle Scholar
  53. Dejaegere T, Serneels L, Schafer MK, Van Biervliet J, Horre K, Depboylu C, Alvarez-Fischer D, Herreman A, Willem M, Haass C, Hoglinger GU, D’Hooge R, De Strooper B (2008) Deficiency of Aph1B/C-gamma-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proc Natl Acad Sci U S A 105:9775–9780PubMedGoogle Scholar
  54. DeLorey TM, Sahbaie P, Hashemi E, Li WW, Salehi A, Clark DJ (2011) Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3. Behav Brain Res 216(1):36–45PubMedGoogle Scholar
  55. Doherty JM, Masten VL, Powell SB, Ralph RJ, Klamer D, Low MJ, Geyer MA (2008) Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology 33:2648–2656PubMedGoogle Scholar
  56. Duffy L, Cappas E, Scimone A, Schofield PR, Karl T (2008) Behavioral profile of a heterozygous mutant mouse model for EGF-like domain neuregulin 1. Behav Neurosci 122:748–759PubMedGoogle Scholar
  57. Dulawa SC, Hen R, Scearce-Levie K, Geyer MA (1997) Serotonin1B receptor modulation of startle reactivity, habituation, and prepulse inhibition in wild-type and serotonin1B knockout mice. Psychopharmacology (Berl) 132:125–134Google Scholar
  58. Duncan GE, Inada K, Koller BH, Moy SS (2010) Increased sensitivity to kainic acid in a genetic model of reduced NMDA receptor function. Brain Res 1307:166–176PubMedGoogle Scholar
  59. Duncan GE, Moy SS, Perez A, Eddy DM, Zinzow WM, Lieberman JA, Snouwaert JN, Koller BH (2004) Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 153:507–519PubMedGoogle Scholar
  60. Dyck BA, Skoblenick KJ, Castellano JM, Ki K, Thomas N, Mishra RK (2007) Synapsin II knockout mice show sensorimotor gating and behavioural abnormalities similar to those in the phencyclidine-induced preclinical animal model of schizophrenia. Schizophr Res 97:292–293PubMedGoogle Scholar
  61. Dyck BA, Skoblenick KJ, Castellano JM, Ki K, Thomas N, Mishra RK (2009) Behavioral abnormalities in synapsin II knockout mice implicate a causal factor in schizophrenia. Synapse 63:662–672PubMedGoogle Scholar
  62. Eells JB, Lipska BK, Yeung SK, Misler JA, Nikodem VM (2002) Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav Brain Res 136:267–275PubMedGoogle Scholar
  63. Eells JB, Misler JA, Nikodem VM (2006) Early postnatal isolation reduces dopamine levels, elevates dopamine turnover and specifically disrupts prepulse inhibition in Nurr1-null heterozygous mice. Neuroscience 140:1117–1126PubMedGoogle Scholar
  64. Egashira N, Mishima K, Iwasaki K, Oishi R, Fujiwara M (2009) New topics in vasopressin receptors and approach to novel drugs: role of the vasopressin receptor in psychological and cognitive functions. J Pharmacol Sci 109:44–49PubMedGoogle Scholar
  65. Errico F, Rossi S, Napolitano F, Catuogno V, Topo E, Fisone G, D’Aniello A, Centonze D, Usiello A (2008) D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci 28:10404–10414PubMedGoogle Scholar
  66. Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106:17998–18003PubMedGoogle Scholar
  67. Feifel D, Macdonald K, Nguyen A, Cobb P, Warlan H, Galangue B, Minassian A, Becker O, Cooper J, Perry W, Lefebvre M, Gonzales J, Hadley A (2010a) Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol Psychiatry 68:678–680PubMedGoogle Scholar
  68. Feifel D, Pang Z, Shilling PD, Melendez G, Schreiber R, Button D (2010b) Effects of neurotensin-2 receptor deletion on sensorimotor gating and locomotor activity. Behav Brain Res 212:174–178PubMedGoogle Scholar
  69. Feifel D, Pang Z, Shilling PD, Melendez G, Schreiber R, Button D (2010c) Sensorimotor gating in neurotensin-1 receptor null mice. Neuropharmacology 58:173–178PubMedGoogle Scholar
  70. Fendt M, Buchi M, Burki H, Imobersteg S, Ricoux B, Suply T, Sailer AW (2011) Neuropeptide S receptor deficiency modulates spontaneous locomotor activity and the acoustic startle response. Behav Brain Res 217:1–9PubMedGoogle Scholar
  71. Fendt M, Burki H, Imobersteg S, van der Putten H, McAllister K, Leslie JC, Shaw D, Holscher C (2010) The effect of mGlu8 deficiency in animal models of psychiatric diseases. Genes Brain Behav 9:33–44PubMedGoogle Scholar
  72. Francis DD, Szegda K, Campbell G, Martin WD, Insel TR (2003) Epigenetic sources of behavioral differences in mice. Nat Neurosci 6:445–446PubMedGoogle Scholar
  73. Frankland PW, Wang Y, Rosner B, Shimizu T, Balleine BW, Dykens EM, Ornitz EM, Silva AJ (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425PubMedGoogle Scholar
  74. Frankle WG, Lerma J, Laruelle M (2003) The synaptic hypothesis of schizophrenia. Neuron 39:205–216PubMedGoogle Scholar
  75. Fridlund AJ, Cacioppo JT (1986) Guidelines for human electromyographic research. Psychophysiology 23(5):567–589PubMedGoogle Scholar
  76. Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome? Clin Neurosci 3:89–97PubMedGoogle Scholar
  77. Frost WN, Tian LM, Hoppe TA, Mongeluzi DL, Wang J (2003) A cellular mechanism for prepulse inhibition. Neuron 40:991–1001PubMedGoogle Scholar
  78. Fukuda T, Hashimoto H, Okayasu N, Kameyama A, Onogi H, Nakagawasai O, Nakazawa T, Kurosawa T, Hao Y, Isaji T, Tadano T, Narimatsu H, Taniguchi N, Gu J (2011) {alpha}1,6-Fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: importance of the balance between the dopamine and serotonin systems. J Biol Chem 286:18434–18443PubMedGoogle Scholar
  79. Galici R, Boggs JD, Miller KL, Bonaventure P, Atack JR (2008) Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity. Behav Pharmacol 19:153–159PubMedGoogle Scholar
  80. Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, Goldman D, Winterer G (2003) Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 54:40–48PubMedGoogle Scholar
  81. Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull 13:643–668PubMedGoogle Scholar
  82. Geyer MA, Dulawa SC (2003) Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8: Unit 8, p 17Google Scholar
  83. Geyer MA, Markou A (2002) The role of preclinical models in the development of psychotropic drugs. In: Davis KL, Charney D, Coyle JT, Nemeroff CB (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott, Williams Wilkins, pp 445–455Google Scholar
  84. Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053PubMedGoogle Scholar
  85. Giakoumaki SG, Bitsios P, Frangou S (2006) The level of prepulse inhibition in healthy individuals may index cortical modulation of early information processing. Brain Res 1078:168–170PubMedGoogle Scholar
  86. Giakoumaki SG, Roussos P, Bitsios P (2008) Improvement of prepulse inhibition and executive function by the COMT inhibitor tolcapone depends on COMT Val158Met polymorphism. Neuropsychopharmacology 33:3058–3068PubMedGoogle Scholar
  87. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 95:9991–9996PubMedGoogle Scholar
  88. Golimbet V, Gritsenko I, Alfimova M, Lebedeva I, Lezheiko T, Abramova L, Kaleda V, Ebstein R (2006) Association study of COMT gene Val158Met polymorphism with auditory P300 and performance on neurocognitive tests in patients with schizophrenia and their relatives. World J Biol Psychiatry 7:238–245PubMedGoogle Scholar
  89. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645PubMedGoogle Scholar
  90. Gottesman II (1991) Schizophrenia Genesis. WH FreemanGoogle Scholar
  91. Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 5:113–119PubMedGoogle Scholar
  92. Graham FK (1975) Presidential address, 1974. The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248PubMedGoogle Scholar
  93. Grant A, Hoops D, Labelle-Dumais C, Prevost M, Rajabi H, Kolb B, Stewart J, Arvanitogiannis A, Flores C (2007) Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. Eur J Neurosci 26:3215–3228PubMedGoogle Scholar
  94. Gray L, van den Buuse M, Scarr E, Dean B, Hannan AJ (2009) Clozapine reverses schizophrenia-related behaviours in the metabotropic glutamate receptor 5 knockout mouse: association with N-methyl-d-aspartic acid receptor up-regulation. Int J Neuropsychopharmacol 12:45–60PubMedGoogle Scholar
  95. Green MF, Butler PD, Chen Y, Geyer MA, Silverstein S, Wynn JK, Yoon JH, Zemon V (2009) Perception measurement in clinical trials of schizophrenia: promising paradigms from CNTRICS. Schizophr Bull 35:163–181PubMedGoogle Scholar
  96. Greenwood TA, Braff DL, Light GA, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RE, Gur RC, Mintz J, Nuechterlein KH, Olincy A, Radant AD, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Schork NJ (2007) Initial heritability analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Arch Gen Psychiatry 64:1242–1250PubMedGoogle Scholar
  97. Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the consortium on the genetics of schizophrenia. Am J PsychiatryGoogle Scholar
  98. Groenink L, Bijlsma EY, van Bogaert MJ, Oosting RS, Olivier B (2011) Serotonin1A receptor deletion does not interact with maternal separation-induced increases in startle reactivity and prepulse inhibition deficits. Psychopharmacology (Berl) 214:353–365Google Scholar
  99. Groenink L, Dirks A, Verdouw PM, de Graaff M, Peeters BW, Millan MJ, Olivier B (2008) CRF1 not glucocorticoid receptors mediate prepulse inhibition deficits in mice overexpressing CRF. Biol Psychiatry 63:360–368PubMedGoogle Scholar
  100. Gruart A, Lopez-Ramos JC, Munoz MD, Delgado-Garcia JM (2008) Aged wild-type and APP, PS1, and APP+PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 30:439–450PubMedGoogle Scholar
  101. Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043PubMedGoogle Scholar
  102. Guo X, Hamilton PJ, Reish NJ, Sweatt JD, Miller CA, Rumbaugh G (2009) Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. Neuropsychopharmacology 34:1659–1672PubMedGoogle Scholar
  103. Han L, Picker JD, Schaevitz LR, Tsai G, Feng J, Jiang Z, Chu HC, Basu AC, Berger-Sweeney J, Coyle JT (2009) Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II. Synapse 63:625–635PubMedGoogle Scholar
  104. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68, image 5Google Scholar
  105. Hasenkamp W, Epstein MP, Green A, Wilcox L, Boshoven W, Lewison B, Duncan E (2010) Heritability of acoustic startle magnitude, prepulse inhibition, and startle latency in schizophrenia and control families. Psychiatry Res 178:236–243PubMedGoogle Scholar
  106. Hashimoto R, Hashimoto H, Shintani N, Chiba S, Hattori S, Okada T, Nakajima M, Tanaka K, Kawagishi N, Nemoto K, Mori T, Ohnishi T, Noguchi H, Hori H, Suzuki T, Iwata N, Ozaki N, Nakabayashi T, Saitoh O, Kosuga A, Tatsumi M, Kamijima K, Weinberger DR, Kunugi H, Baba A (2007) Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Mol Psychiatry 12:1026–1032PubMedGoogle Scholar
  107. Heintz N (2001) BAC to the future: the use of BAC transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870PubMedGoogle Scholar
  108. Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T, Cannon TD, Lonnqvist J, Peltonen L (2005) A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry 10:1097–1103PubMedGoogle Scholar
  109. Hessl D, Berry-Kravis E, Cordeiro L, Yuhas J, Ornitz EM, Campbell A, Chruscinski E, Hervey C, Long JM, Hagerman RJ (2009) Prepulse inhibition in fragile X syndrome: feasibility, reliability, and implications for treatment. Am J Med Genet B Neuropsychiatr Genet 150B:545–553PubMedGoogle Scholar
  110. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A 104:14501–14506PubMedGoogle Scholar
  111. Hill RA, Murray SS, Halley PG, Binder MD, Martin SJ, van den Buuse M (2011) Brain-derived neurotrophic factor expression is increased in the hippocampus of 5-HT(2C) receptor knockout mice. Hippocampus 21:434–445PubMedGoogle Scholar
  112. Hitzemann R, Malmanger B, Belknap J, Darakjian P, McWeeney S (2008) Short-term selective breeding for high and low prepulse inhibition of the acoustic startle response; pharmacological characterization and QTL mapping in the selected lines. Pharmacol Biochem Behav 90:525–533PubMedGoogle Scholar
  113. Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189PubMedGoogle Scholar
  114. Hokyo A, Kanazawa T, Uenishi H, Tsutsumi A, Kawashige S, Kikuyama H, Glatt SJ, Koh J, Nishimoto Y, Matsumura H, Motomura N, Yoneda H (2010) Habituation in prepulse inhibition is affected by a polymorphism on the NMDA receptor 2B subunit gene (GRIN2B). Psychiatr Genet 20:191–198PubMedGoogle Scholar
  115. Horii Y, Yamasaki N, Miyakawa T, Shiosaka S (2008) Increased anxiety-like behavior in neuropsin (kallikrein-related peptidase 8) gene-deficient mice. Behav Neurosci 122(3):498–504PubMedGoogle Scholar
  116. Ibi D, Nagai T, Koike H, Kitahara Y, Mizoguchi H, Niwa M, Jaaro-Peled H, Nitta A, Yoneda Y, Nabeshima T, Sawa A, Yamada K (2010) Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 206:32–37PubMedGoogle Scholar
  117. Ishihama T, Ago Y, Shintani N, Hashimoto H, Baba A, Takuma K, Matsuda T (2010) Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice. Behav Brain Res 209:274–280PubMedGoogle Scholar
  118. Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467–8472PubMedGoogle Scholar
  119. Jacobson LH, Cryan JF (2010) Genetic approaches to modeling anxiety in animals. Curr Top Behav Neurosci 2:161–201PubMedGoogle Scholar
  120. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9:984–997PubMedGoogle Scholar
  121. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308PubMedGoogle Scholar
  122. Jones DNC, Gartlon JE, Minassian A, Perry W, Geyer MA (2008) Developing new drugs for schizophrenia: from animals to the clinic. In: Borsini R, McArthur R (eds) Animal and translational models for CNS drug discovery. Psychiatric Disorders Elsevier, New York, pp 199–262Google Scholar
  123. Joober R, Zarate JM, Rouleau GA, Skamene E, Boksa P (2002) Provisional mapping of quantitative trait loci modulating the acoustic startle response and prepulse inhibition of acoustic startle. Neuropsychopharmacol 27:765–781Google Scholar
  124. Kaidanovich-Beilin O, Lipina TV, Takao K, van Eede M, Hattori S, Laliberte C, Khan M, Okamoto K, Chambers JW, Fletcher PJ, Macaulay K, Doble BW, Henkelman M, Miyakawa T, Roder J, Woodgett JR (2009) Abnormalities in brain structure and behavior in GSK-3alpha mutant mice. Mol Brain 2:35PubMedGoogle Scholar
  125. Kapfhamer D, Berger KH, Hopf FW, Seif T, Kharazia V, Bonci A, Heberlein U (2010) Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channel activity. J Neurosci 30:8830–8840PubMedGoogle Scholar
  126. Karl T, Chesworth R, Duffy L, Herzog H (2010a) Acoustic startle response and sensorimotor gating in a genetic mouse model for the Y1 receptor. Neuropeptides 44:233–239PubMedGoogle Scholar
  127. Karl T, Chesworth R, Duffy L, Herzog H (2010b) Schizophrenia-relevant behaviours in a genetic mouse model for Y2 deficiency. Behav Brain Res 207:434–440PubMedGoogle Scholar
  128. Karlsson RM, Tanaka K, Saksida LM, Bussey TJ, Heilig M, Holmes A (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacol 34:1578–1589Google Scholar
  129. Karmacharya R, Lynn SK, Demarco S, Ortiz A, Wang X, Lundy MY, Xie Z, Cohen BM, Miller GM, Buttner EA (2011) Behavioral effects of clozapine: involvement of trace amine pathways in C. elegans and M. musculus. Brain Res 1393:91–99PubMedGoogle Scholar
  130. Karper LP, Freeman GK, Grillon C, Morgan CA 3rd, Charney DS, Krystal JH (1996) Preliminary evidence of an association between sensorimotor gating and distractibility in psychosis. J Neuropsychiatry Clin Neurosci 8:60–66PubMedGoogle Scholar
  131. Kato T, Kasai A, Mizuno M, Fengyi L, Shintani N, Maeda S, Yokoyama M, Ozaki M, Nawa H (2010) Phenotypic characterization of transgenic mice overexpressing neuregulin-1. PLoS One 5(12):e14185PubMedGoogle Scholar
  132. Kelly MP, Stein JM, Vecsey CG, Favilla C, Yang X, Bizily SF, Esposito MF, Wand G, Kanes SJ, Abel T (2009) Developmental etiology for neuroanatomical and cognitive deficits in mice overexpressing Galphas, a G-protein subunit genetically linked to schizophrenia. Mol Psychiatry 14(398–415):347Google Scholar
  133. Kim YS, Harry GJ, Kang HS, Goulding D, Wine RN, Kissling GE, Liao G, Jetten AM (2010) Altered cerebellar development in nuclear receptor TAK1/TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia. CerebellumGoogle Scholar
  134. Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123PubMedGoogle Scholar
  135. Koga M, Ishiguro H, Yazaki S, Horiuchi Y, Arai M, Niizato K, Iritani S, Itokawa M, Inada T, Iwata N, Ozaki N, Ujike H, Kunugi H, Sasaki T, Takahashi M, Watanabe Y, Someya T, Kakita A, Takahashi H, Nawa H, Muchardt C, Yaniv M, Arinami T (2009) Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Hum Mol Genet 18:2483–2494PubMedGoogle Scholar
  136. Koh HY, Kim D, Lee J, Lee S, Shin HS (2008) Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cbeta1. Genes Brain Behav 7:120–128PubMedGoogle Scholar
  137. Koumura A, Kakefuda K, Honda A, Ito Y, Tsuruma K, Shimazawa M, Uchida Y, Hozumi I, Satoh M, Inuzuka T, Hara H (2009) Metallothionein-3 deficient mice exhibit abnormalities of psychological behaviors. Neurosci Lett 467:11–14PubMedGoogle Scholar
  138. Krystal J, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacol 169:215–233Google Scholar
  139. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51:199–214PubMedGoogle Scholar
  140. Kumari V, Fannon D, Geyer MA, Premkumar P, Antonova E, Simmons A, Kuipers E (2008) Cortical grey matter volume and sensorimotor gating in schizophrenia. Cortex 44:1206–1214PubMedGoogle Scholar
  141. Kumari V, Gray JA, Geyer MA, ffytche D, Soni W, Mitterschiffthaler MT, Vythelingum GN, Simmons A, Williams SC, Sharma T (2003) Neural correlates of tactile prepulse inhibition: a functional MRI study in normal and schizophrenic subjects. Psychiatry Res 122:99–113PubMedGoogle Scholar
  142. Levenga J, Hayashi S, de Vrij FM, Koekkoek SK, van der Linde HC, Nieuwenhuizen I, Song C, Buijsen RA, Pop AS, Gomezmancilla B, Nelson DL, Willemsen R, Gasparini F, Oostra BA (2011) AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol Dis 42(3):311–317PubMedGoogle Scholar
  143. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324PubMedGoogle Scholar
  144. Lipina TV, Kaidanovich-Beilin O, Patel S, Wang M, Clapcote SJ, Liu F, Woodgett JR, Roder JC (2011) Genetic and pharmacological evidence for schizophrenia-related DISC1 interaction with GSK-3. Synapse 65:234–248PubMedGoogle Scholar
  145. Lipina TV, Niwa M, Jaaro-Peled H, Fletcher PJ, Seeman P, Sawa A, Roder JC (2010) Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Genes Brain Behav 9:777–789PubMedGoogle Scholar
  146. Logue SF, Grauer SM, Paulsen J, Graf R, Taylor N, Sung MA, Zhang L, Hughes Z, Pulito VL, Liu F, Rosenzweig-Lipson S, Brandon NJ, Marquis KL, Bates B, Pausch M (2009) The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol Cell Neurosci 42:438–447PubMedGoogle Scholar
  147. López-Ramos JC, Tomioka Y, Morimatsu M, Yamamoto S, Ozaki K, Ono E, Delgado-García JM (2010) Motor-coordination-dependent learning, more than others, is impaired in transgenic mice expressing pseudorabies virus immediate-early protein IE180. PLoS One 5(8):e12123PubMedGoogle Scholar
  148. Low NC, Hardy J (2007) What is a schizophrenic mouse? Neuron 54:348–349PubMedGoogle Scholar
  149. Lu BY, Martin KE, Edgar JC, Smith AK, Lewis SF, Escamilla MA, Miller GA, Canive JM (2007) Effect of catechol O-methyltransferase val(158)met polymorphism on the p50 gating endophenotype in schizophrenia. Biol Psychiatry 62:822–825PubMedGoogle Scholar
  150. Ludewig K, Geyer MA, Vollenweider FX (2003) Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 54:121–128PubMedGoogle Scholar
  151. Ludewig S, Ludewig K, Geyer MA, Hell D, Vollenweider FX (2002) Prepulse inhibition deficits in patients with panic disorder. Depress Anxiety 15:55–60PubMedGoogle Scholar
  152. Mackeprang T, Kristiansen KT, Glenthoj BY (2002) Effects of antipsychotics on prepulse inhibition of the startle response in drug-naive schizophrenic patients. Biol Psychiatry 52:863–873PubMedGoogle Scholar
  153. Mackie S, Millar JK, Porteous DJ (2007) Role of DISC1 in neural development and schizophrenia. Curr Opin Neurobiol 17:95–102PubMedGoogle Scholar
  154. Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A (1997a) Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 42:664–668PubMedGoogle Scholar
  155. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A (1997b) Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacol 17:141–150Google Scholar
  156. Mansuy IM, Bujard H (2000) Tetracycline-regulated gene expression in the brain. Curr Opin Neurobiol 10:593–596PubMedGoogle Scholar
  157. Martin S, Markus MA, Morris BJ, Davisson RL, Lawrence AJ, van den Buuse M (2008) Does angiotensin interact with dopaminergic mechanisms in the brain to modulate prepulse inhibition in mice? Neuropharmacol 54:399–404Google Scholar
  158. Martinez-Gras I, Rubio G, del Manzano BA, Rodriguez-Jimenez R, Garcia-Sanchez F, Bagney A, Leza JC, Borrell J (2009) The relationship between prepulse inhibition and general psychopathology in patients with schizophrenia treated with long-acting risperidone. Schizophr Res 115(2–3):215–221PubMedGoogle Scholar
  159. Matsumoto M, Straub RE, Marenco S, Nicodemus KK, Matsumoto S, Fujikawa A, Miyoshi S, Shobo M, Takahashi S, Yarimizu J, Yuri M, Hiramoto M, Morita S, Yokota H, Sasayama T, Terai K, Yoshino M, Miyake A, Callicott JH, Egan MF, Meyer-Lindenberg A, Kempf L, Honea R, Vakkalanka RK, Takasaki J, Kamohara M, Soga T, Hiyama H, Ishii H, Matsuo A, Nishimura S, Matsuoka N, Kobori M, Matsushime H, Katoh M, Furuichi K, Weinberger DR (2008) The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Natl Acad Sci U S A 105:6133–6138PubMedGoogle Scholar
  160. Matsuo N, Tanda K, Nakanishi K, Yamasaki N, Toyama K, Takao K, Takeshima H, Miyakawa T (2009) Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front Behav Neurosci 3:3PubMedGoogle Scholar
  161. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678–1683PubMedGoogle Scholar
  162. McGlashan TH, Hoffman RE (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 57:637–648PubMedGoogle Scholar
  163. McOmish CE, Burrows E, Howard M, Scarr E, Kim D, Shin HS, Dean B, van den Buuse M, Hannan AJ (2008) Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry 13:661–672PubMedGoogle Scholar
  164. Meincke U, Morth D, Voss T, Thelen B, Geyer MA, Gouzoulis-Mayfrank E (2004) Prepulse inhibition of the acoustically evoked startle reflex in patients with an acute schizophrenic psychosis–a longitudinal study. Eur Arch Psychiatry Clin Neurosci 254:415–421PubMedGoogle Scholar
  165. Mejias R, Adamczyk A, Anggono V, Niranjan T, Thomas GM, Sharma K, Skinner C, Schwartz CE, Stevenson RE, Fallin MD, Kaufmann W, Pletnikov M, Valle D, Huganir RL, Wang T (2011) Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. Proc Natl Acad Sci U S A 108:4920–4925PubMedGoogle Scholar
  166. Menalled L, El-Khodor BF, Patry M, Suarez-Farinas M, Orenstein SJ, Zahasky B, Leahy C, Wheeler V, Yang XW, MacDonald M, Morton AJ, Bates G, Leeds J, Park L, Howland D, Signer E, Tobin A, Brunner D (2009) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35:319–336PubMedGoogle Scholar
  167. Meyer U, Feldon J, Schedlowski M, Yee BK (2005) Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 29:913–947PubMedGoogle Scholar
  168. Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24:479–486PubMedGoogle Scholar
  169. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927PubMedGoogle Scholar
  170. Moore H (2010) The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy. Schizophr Bull 36:1066–1072PubMedGoogle Scholar
  171. Moy SS, Nonneman RJ, Young NB, Demyanenko GP, Maness PF (2009) Impaired sociability and cognitive function in Nrcam-null mice. Behav Brain Res 205:123–131PubMedGoogle Scholar
  172. Nakagawasai O, Onogi H, Mitazaki S, Sato A, Watanabe K, Saito H, Murai S, Nakaya K, Murakami M, Takahashi E, Tan-No K, Tadano T (2010) Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behav Brain Res 208:224–230PubMedGoogle Scholar
  173. Neuner I, Stocker T, Kellermann T, Ermer V, Wegener HP, Eickhoff SB, Schneider F, Shah NJ (2010) Electrophysiology meets fMRI: neural correlates of the startle reflex assessed by simultaneous EMG-fMRI data acquisition. Hum Brain Mapp 31:1675–1685PubMedGoogle Scholar
  174. Nguyen PT, Nakamura T, Hori E, Urakawa S, Uwano T, Zhao J, Li R, Bac ND, Hamashima T, Ishii Y, Matsushima T, Ono T, Sasahara M, Nishijo H (2011) Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-beta gene knockout mice. PLoS One 6:e18004PubMedGoogle Scholar
  175. Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, Tomita K, Lu L, Tomisato S, Jaaro-Peled H, Seshadri S, Hiyama H, Huang B, Kohda K, Noda Y, O’Donnell P, Nakajima K, Sawa A, Nabeshima T (2010) Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65:480–489PubMedGoogle Scholar
  176. Nusbaum MP, Contreras D (2004) Sensorimotor gating: startle submits to presynaptic inhibition. Curr Biol 14:R247–R249PubMedGoogle Scholar
  177. O’Tuathaigh CM, Babovic D, O’Meara G, Clifford JJ, Croke DT, Waddington JL (2007) Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 31:60–78PubMedGoogle Scholar
  178. O’Tuathaigh CM, Desbonnet L, Moran PM, Kirby BP, Waddington JL (2011) Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. Curr Top Behav Neurosci 7:87–119PubMedGoogle Scholar
  179. O’Tuathaigh CM, Desbonnet L, Waddington JL (2009) Neuregulin-1 signaling in schizophrenia: ‘Jack of all trades’ or master of some? Expert Rev Neurother 9:1–3PubMedGoogle Scholar
  180. Ohgake S, Shimizu E, Hashimoto K, Okamura N, Koike K, Koizumi H, Fujisaki M, Kanahara N, Matsuda S, Sutoh C, Matsuzawa D, Muramatsu H, Muramatsu T, Iyo M (2009) Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry 33:541–546PubMedGoogle Scholar
  181. Oliver PL, Davies KE (2009) Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Hum Mol Genet 18:4576–4589PubMedGoogle Scholar
  182. Oliveros A, Heckman MG, Corena-McLeod DPM, Williams K, Boules M, Richelson E (2010) Sensorimotor gating in NTS1 and NTS2 null mice: effects of d-amphetamine, dizocilpine, clozapine and NT69L. J Exp Biol 213:4232–4239PubMedGoogle Scholar
  183. Oranje B, Gispen-de Wied CC, Verbaten MN, Kahn RS (2002) Modulating sensory gating in healthy volunteers: the effects of ketamine and haloperidol. Biol Psychiatry 52:887–895PubMedGoogle Scholar
  184. Ortiz-Abalia J, Sahun I, Altafaj X, Andreu N, Estivill X, Dierssen M, Fillat C (2008) Targeting Dyrk1A with AAVshRNA attenuates motor alterations in TgDyrk1A, a mouse model of down syndrome. Am J Hum Genet 83:479–488PubMedGoogle Scholar
  185. Otte DM, Bilkei-Gorzo A, Filiou MD, Turck CW, Yilmaz O, Holst MI, Schilling K, Abou-Jamra R, Schumacher J, Benzel I, Kunz WS, Beck H, Zimmer A (2009) Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 19:339–348PubMedGoogle Scholar
  186. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, Chen J (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28:8709–8723PubMedGoogle Scholar
  187. Paylor R, Yuva-Paylor LA, Nelson DL, Spencer CM (2008) Reversal of sensorimotor gating abnormalities in Fmr1 knockout mice carrying a human Fmr1 transgene. Behav Neurosci 122:1371–1377PubMedGoogle Scholar
  188. Perry W, Braff DL (1994) Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry 151:363–367PubMedGoogle Scholar
  189. Perry W, Geyer MA, Braff DL (1999) Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Arch Gen Psychiatry 56:277–281PubMedGoogle Scholar
  190. Perry W, Minassian A, Feifel D, Braff DL (2001) Sensorimotor gating deficits in bipolar disorder patients with acute psychotic mania. Biol Psychiatry 50:418–424PubMedGoogle Scholar
  191. Perry W, Minassian A, Lopez B, Maron L, Lincoln A (2007) Sensorimotor gating deficits in adults with autism. Biol Psychiatry 61:482–486PubMedGoogle Scholar
  192. Petrovsky N, Quednow BB, Ettinger U, Schmechtig A, Mossner R, Collier DA, Kuhn KU, Maier W, Wagner M, Kumari V (2010) Sensorimotor gating is associated with CHRNA3 polymorphisms in schizophrenia and healthy volunteers. Neuropsychopharmacology 35:1429–1439PubMedGoogle Scholar
  193. Pietropaolo S, Delage P, Cayzac S, Crusio WE, Cho YH (2011) Sex-dependent changes in social behaviors in motor pre-symptomatic r6/1 mice. PLoS One 6:e19965PubMedGoogle Scholar
  194. Porteous DJ, Thomson P, Brandon NJ, Millar JK (2006) The genetics and biology of Disc1—an emerging role in psychosis and cognition. Biol Psychiatry 60:123–131PubMedGoogle Scholar
  195. Powell SB, Young JW, Ong JC, Caron MG, Geyer MA (2008) Atypical antipsychotics clozapine and quetiapine attenuate prepulse inhibition deficits in dopamine transporter knockout mice. Behav Pharmacol 19:562–565PubMedGoogle Scholar
  196. Powell SB, Zhou X, Geyer MA (2009) Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 204:282–294PubMedGoogle Scholar
  197. Quednow BB, Wagner M, Mossner R, Maier W, Kuhn K-U (2008) Sensorimotor gating of schizophrenia patients depends on catechol O-Methyltransferase Val158Met polymorphism. Schizophr Bull: sbn088Google Scholar
  198. Radyushkin K, Hammerschmidt K, Boretius S, Varoqueaux F, El-Kordi A, Ronnenberg A, Winter D, Frahm J, Fischer J, Brose N, Ehrenreich H (2009) Neuroligin-3-deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes Brain Behav 8:416–425PubMedGoogle Scholar
  199. Ralph RJ, Paulus MP, Fumagalli F, Caron MG, Geyer MA (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21:305–313PubMedGoogle Scholar
  200. Ralph RJ, Varty GB, Kelly MA, Wang YM, Caron MG, Rubinstein M, Grandy DK, Low MJ, Geyer MA (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633PubMedGoogle Scholar
  201. Ransome MI, Turnley AM (2008) Growth hormone signaling and hippocampal neurogenesis: insights from genetic models. Hippocampus 18:1034–1050PubMedGoogle Scholar
  202. Relkovic D, Doe CM, Humby T, Johnstone KA, Resnick JL, Holland AJ, Hagan JJ, Wilkinson LS, Isles AR (2010) Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome. Eur J Neurosci 31:156–164PubMedGoogle Scholar
  203. Rose PK, Scott SH (2003) Sensory-motor control: a long-awaited behavioral correlate of presynaptic inhibition. Nat Neurosci 6:1243–1245PubMedGoogle Scholar
  204. Roussos P, Giakoumaki SG, Adamaki E, Bitsios P (2011) The influence of schizophrenia-related neuregulin-1 polymorphisms on sensorimotor gating in healthy males. Biol Psychiatry 69:479–486PubMedGoogle Scholar
  205. Roussos P, Giakoumaki SG, Rogdaki M, Pavlakis S, Frangou S, Bitsios P (2008) Prepulse inhibition of the startle reflex depends on the catechol O-methyltransferase Val158Met gene polymorphism. Psychol Med :1–8Google Scholar
  206. Sagata NA, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y (2010) Comprehensive behavioral study of GluR4 knockout mice, implication in cognitive function. Genes Brain BehavGoogle Scholar
  207. Sakatani S, Yamada K, Homma C, Munesue S, Yamamoto Y, Yamamoto H, Hirase H (2009) Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One 4:e8309PubMedGoogle Scholar
  208. Samocha KE, Lim JE, Cheng R, Sokoloff G, Palmer AA (2010) Fine mapping of QTL for prepulse inhibition in LG/J and SM/J mice using F2 and advanced intercross lines. Genes Brain Behav 9:759–767PubMedGoogle Scholar
  209. Savonenko A, Munoz P, Melnikova T, Wang Q, Liang X, Breyer RM, Montine TJ, Kirkwood A, Andreasson K (2009) Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp Neurol 217:63–73PubMedGoogle Scholar
  210. Savonenko AV, Melnikova T, Laird FM, Stewart KA, Price DL, Wong PC (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci U S A 105:5585–5590PubMedGoogle Scholar
  211. Scearce-Levie K, Roberson ED, Gerstein H, Cholfin JA, Mandiyan VS, Shah NM, Rubenstein JL, Mucke L (2008) Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behav 7:344–354PubMedGoogle Scholar
  212. Schaefer TL, Vorhees CV, Williams MT (2009) Mouse plasmacytoma-expressed transcript 1 knock out induced 5-HT disruption results in a lack of cognitive deficits and an anxiety phenotype complicated by hypoactivity and defensiveness. Neuroscience 164:1431–1443PubMedGoogle Scholar
  213. Schmid S, Azzopardi E, De Jaeger X, Prado MA, Prado VF (2011) VAChT knock-down mice show normal prepulse inhibition but disrupted long-term habituation. Genes Brain BehavGoogle Scholar
  214. Schmidt S, Richter M, Montag D, Sartorius T, Gawlik V, Hennige AM, Scherneck S, Himmelbauer H, Lutz SZ, Augustin R, Kluge R, Ruth P, Joost HG, Schürmann A (2008) Neuronal functions, feeding behavior, and energy balance in Slc2a3+/- mice. Am J Physiol Endocrinol Metab 295(5):E1084–E1094PubMedGoogle Scholar
  215. Schneider M, Spanagel R, Zhang SJ, Bading H, Klugmann M (2007) Adeno-associated virus (AAV)-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice. BMC Neurosci 8:105PubMedGoogle Scholar
  216. Schwabe K, Freudenberg F, Koch M (2007) Selective breeding of reduced sensorimotor gating in wistar rats. Behav Genet 37:706–712PubMedGoogle Scholar
  217. Semenova S, Geyer MA, Sutcliffe JG, Markou A, Hedlund PB (2008) Inactivation of the 5-HT(7) receptor partially blocks phencyclidine-induced disruption of prepulse inhibition. Biol Psychiatry 63:98–105PubMedGoogle Scholar
  218. Shanahan NA, Holick Pierz KA, Masten VL, Waeber C, Ansorge M, Gingrich JA, Geyer MA, Hen R, Dulawa SC (2009) Chronic reductions in serotonin transporter function prevent 5-HT1B-induced behavioral effects in mice. Biol Psychiatry 65:401–408PubMedGoogle Scholar
  219. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302PubMedGoogle Scholar
  220. Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448PubMedGoogle Scholar
  221. Siuciak JA, McCarthy SA, Chapin DS, Martin AN (2008) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 197:115–126Google Scholar
  222. Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, Shiota C, Kennedy JP, Lindsley CW, Daws LC, Polley DB, Veenstra-Vanderweele J, Stanwood GD, Magnuson MA, Niswender KD, Galli A (2010) Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol 8:e1000393PubMedGoogle Scholar
  223. Smith CM, Lawrence AJ, Sutton SW, Gundlach AL (2009) Behavioral phenotyping of mixed background (129S5:B6) relaxin-3 knockout mice. Ann N Y Acad Sci 1160:236–241PubMedGoogle Scholar
  224. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27:10695–10702PubMedGoogle Scholar
  225. Soleimani L, Roder JC, Dennis JW, Lipina T (2008) Beta N-acetylglucosaminyltransferase V (Mgat5) deficiency reduces the depression-like phenotype in mice. Genes Brain Behav 7:334–343PubMedGoogle Scholar
  226. Stark KL, Burt RA, Gogos JA, Karayiorgou M (2009) Analysis of prepulse inhibition in mouse lines overexpressing 22q11.2 orthologues. Int J Neuropsychopharmacol: 1–7Google Scholar
  227. Sun M, Gewirtz JC, Bofenkamp L, Wickham RJ, Ge H, O’Connor MB (2010) Canonical TGF-beta signaling is required for the balance of excitatory/inhibitory transmission within the hippocampus and prepulse inhibition of acoustic startle. J Neurosci 30:6025–6035PubMedGoogle Scholar
  228. Suzuki G, Harper KM, Hiramoto T, Sawamura T, Lee M, Kang G, Tanigaki K, Buell M, Geyer MA, Trimble WS, Agatsuma S, Hiroi N (2009a) Sept5 deficiency exerts pleiotropic influence on affective behaviors and cognitive functions in mice. Hum Mol Genet 18:1652–1660PubMedGoogle Scholar
  229. Suzuki G, Harper KM, Hiramoto T, Funke B, Lee M, Kang G, Buell M, Geyer MA, Kucherlapati R, Morrow B, Mannisto PT, Agatsuma S, Hiroi N (2009b) Over-expression of a human chromosome 22q11.2 segment including TXNRD2, COMT and ARVCF developmentally affects incentive learning and working memory in mice. Hum Mol Genet 18:3914–3925PubMedGoogle Scholar
  230. Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL (1993) A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry 33:298–301PubMedGoogle Scholar
  231. Swerdlow NR, Geyer MA, Braff DL (2001a) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl) 156:194–215Google Scholar
  232. Swerdlow NR, Karban B, Ploum Y, Sharp R, Geyer MA, Eastvold A (2001b) Tactile prepuff inhibition of startle in children with Tourette’s syndrome: in search of an “fMRI-friendly” startle paradigm. Biol Psychiatry 50:578–585PubMedGoogle Scholar
  233. Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL (2006) Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatry 63:1325–1335PubMedGoogle Scholar
  234. Swerdlow NR, Paulsen J, Braff DL, Butters N, Geyer MA, Swenson MR (1995) Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 58:192–200PubMedGoogle Scholar
  235. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL (2008) Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 199:331–388Google Scholar
  236. Takao K, Tanda K, Nakamura K, Kasahara J, Nakao K, Katsuki M, Nakanishi K, Yamasaki N, Toyama K, Adachi M, Umeda M, Araki T, Fukunaga K, Kondo H, Sakagami H, Miyakawa T (2010) Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice. PLoS One 5:e9460PubMedGoogle Scholar
  237. Takata A, Kakiuchi C, Ishiwata M, Kanba S, Kato T (2010) Behavioral and gene expression analyses in heterozygous XBP1 knockout mice: possible contribution of chromosome 11qA1 locus to prepulse inhibition. Neurosci ResGoogle Scholar
  238. Takeuchi H, Iba M, Inoue H, Higuchi M, Takao K, Tsukita K, Karatsu Y, Iwamoto Y, Miyakawa T, Suhara T, Trojanowski JQ, Lee VM, Takahashi R (2011) P301S mutant human tau transgenic mice manifest early symptoms of human tauopathies with dementia and altered sensorimotor gating. PLoS One 6:e21050PubMedGoogle Scholar
  239. Tammimäki A, Kaenmaki M, Kambur O, Kulesskaya N, Keisala T, Karvonen E, Garcia-Horsman JA, Rauvala H, Mannisto PT (2010) Effect of S-COMT deficiency on behavior and extracellular brain dopamine concentrations in mice. Psychopharmacology (Berl) 211:389–401Google Scholar
  240. Tanaka H, Ma J, Tanaka KF, Takao K, Komada M, Tanda K, Suzuki A, Ishibashi T, Baba H, Isa T, Shigemoto R, Ono K, Miyakawa T, Ikenaka K (2009) Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities. J Neurosci 29:8363–8371PubMedGoogle Scholar
  241. Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T (2009) Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Mol Brain 2:19PubMedGoogle Scholar
  242. Tarantino M, Eisener-Dorman AF (2011) Forward genetic approaches to understanding complex behaviors (in this volume)Google Scholar
  243. Tarantino LM, Bucan M (2000) Dissection of behavior and psychiatric disorders using the mouse as a model. Hum Mol Genet 9:953–965PubMedGoogle Scholar
  244. Tecott LH, Wehner JM (2001) Mouse molecular genetic technologies: promise for psychiatric research. Arch Gen Psychiatry 58:995–1004PubMedGoogle Scholar
  245. Thaker GK (2007) Schizophrenia endophenotypes as treatment targets. Expert Opin Ther Targets 11:1189–1206PubMedGoogle Scholar
  246. Thomas AM, Bui N, Graham D, Perkins JR, Yuva-Paylor LA, Paylor R (2011a) Genetic reduction of group 1 metabotropic glutamate receptors alters select behaviors in a mouse model for fragile X syndrome. Behav Brain Res 223:310–321PubMedGoogle Scholar
  247. Thomas AM, Bui N, Perkins JR, Yuva-Paylor LA, Paylor R (2011b) Group I metabotropic glutamate receptor antagonists alter select behaviors in a mouse model for fragile X syndrome. Psychopharmacology (Berl)Google Scholar
  248. Thomsen M, Wess J, Fulton BS, Fink-Jensen A, Caine SB (2010) Modulation of prepulse inhibition through both M(1) and M (4) muscarinic receptors in mice. Psychopharmacology (Berl) 208:401–416Google Scholar
  249. Torkamanzehi A, Boksa P, Joober R (2008) Prepulse inhibition (PPI) of tactile startle response in recombinant congenic strains of mice: QTL mapping and comparison with acoustic PPI. J Genet Genomics 35:139–151PubMedGoogle Scholar
  250. Tsujimura A, Matsuki M, Takao K, Yamanishi K, Miyakawa T, Hashimoto-Gotoh T (2008) Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior. Front Behav Neurosci 2:4PubMedGoogle Scholar
  251. Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33:69–94PubMedGoogle Scholar
  252. Turner J, Hughes LF, Toth LA (2010) Sleep, activity, temperature and arousal responses of mice deficient for muscarinic receptor M2 or M4. Life Sci 86:158–169PubMedGoogle Scholar
  253. van Berckel BN, Oranje B, van Ree JM, Verbaten MN, Kahn RS (1998) The effects of low dose ketamine on sensory gating, neuroendocrine secretion and behavior in healthy human subjects. Psychopharmacology (Berl) 137:271–281Google Scholar
  254. van den Buuse M, Becker T, Kwek P, Martin S, Ruimschotel E, Risbrough V (2011a) Disruption of prepulse inhibition by 3,4-methylenedioxymethamphetamine (MDMA): comparison between male and female wild-type and 5-HT1A receptor knockout mice. Int J Neuropsychopharmacol: 1–6Google Scholar
  255. van den Buuse M, Ruimschotel E, Martin S, Risbrough VB, Halberstadt AL (2011b) Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia. NeuropharmacologyGoogle Scholar
  256. van der Neut R (1997) Targeted gene disruption: applications in neurobiology. J Neurosci Methods 71:19–27PubMedGoogle Scholar
  257. Veeraragavan S, Bui N, Perkins JR, Yuva-Paylor LA, Carpenter RL, Paylor R (2011) Modulation of behavioral phenotypes by a muscarinic M1 antagonist in a mouse model of fragile X syndrome. Psychopharmacology (Berl)Google Scholar
  258. Verma V, Tan CH, Ong WY, Grigoryan GA, Jones CA, Stolzberg D, Salvi R, Gross KW, Ratty AK, Dawe GS (2008) The chakragati mouse shows deficits in prepulse inhibition of acoustic startle and latent inhibition. Neurosci Res 60:281–288PubMedGoogle Scholar
  259. Wallén-Mackenzie A, Nordenankar K, Fejgin K, Lagerstrom MC, Emilsson L, Fredriksson R, Wass C, Andersson D, Egecioglu E, Andersson M, Strandberg J, Lindhe O, Schioth HB, Chergui K, Hanse E, Langstrom B, Fredriksson A, Svensson L, Roman E, Kullander K (2009) Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function. J Neurosci 29:2238–2251PubMedGoogle Scholar
  260. Wang H, Westin L, Nong Y, Birnbaum S, Bendor J, Brismar H, Nestler E, Aperia A, Flajolet M, Greengard P (2009) Norbin is an endogenous regulator of metabotropic glutamate receptor 5 signaling. Science 326:1554–1557PubMedGoogle Scholar
  261. Wang X (2009) Cre transgenic mouse lines. Methods Mol Biol 561:265–273PubMedGoogle Scholar
  262. Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M, Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T (2007) Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 5:e297PubMedGoogle Scholar
  263. Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149:890–897PubMedGoogle Scholar
  264. Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, Yin DM, Lai C, Terry AV Jr, Vazdarjanova A, Xiong WC, Mei L (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 107:1211–1216PubMedGoogle Scholar
  265. Willi R, Weinmann O, Winter C, Klein J, Sohr R, Schnell L, Yee BK, Feldon J, Schwab ME (2010) Constitutive genetic deletion of the growth regulator Nogo-A induces schizophrenia-related endophenotypes. J Neurosci 30:556–567PubMedGoogle Scholar
  266. Willott JF, Carlson S, Chen H (1994) Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behav Neurosci 108:6Google Scholar
  267. Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Mannisto PT (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27:10196–10209PubMedGoogle Scholar
  268. Young JW, Meves JM, Tarantino IS, Caldwell S, Geyer MA (2011a) Delayed procedural learning in alpha7-nicotinic acetylcholine receptor knockout mice. Genes Brain BehavGoogle Scholar
  269. Young JW, Powell SB, Scott CN, Zhou X, Geyer MA (2011b) The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: Separating response inhibition from premature responding. Behav Brain Res 222:183–192PubMedGoogle Scholar
  270. Young JW, Wallace CK, Geyer MA, Risbrough VB (2010) Age-associated improvements in cross-modal prepulse inhibition in mice. Behav Neurosci 124:133–140PubMedGoogle Scholar
  271. Zhou X, Geyer MA, Kelsoe JR (2008) Does disrupted-in-schizophrenia (DISC1) generate fusion transcripts? Mol Psychiatry 13:361–363PubMedGoogle Scholar
  272. Zhou X, Long JM, Geyer MA, Masliah E, Kelsoe JR, Wynshaw-Boris A, Chien KR (2004) Reduced expression of the Sp4 gene in mice causes deficits in sensorimotor gating and memory associated with hippocampal vacuolization. Mol Psychiatry 10:393–406Google Scholar
  273. Zhou X, Tang W, Greenwood TA, Guo S, He3 L, Geyer MA, Kelsoe JR (2009) Transcription factor SP4 is a susceptibility gene for bipolar disorder. PlosOne In PressGoogle Scholar
  274. Zhu H, Mingler MK, McBride ML, Murphy AJ, Valenzuela DM, Yancopoulos GD, Williams MT, Vorhees CV, Rothenberg ME (2010) Abnormal response to stress and impaired NPS-induced hyperlocomotion, anxiolytic effect and corticosterone increase in mice lacking NPSR1. Psychoneuroendocrinology 35:1119–1132PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Susan B. Powell
    • 1
    • 2
    Email author
  • Martin Weber
    • 3
  • Mark A. Geyer
    • 1
    • 2
  1. 1.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  2. 2.Research ServiceVA San Diego Healthcare SystemSan DiegoUSA
  3. 3.Department of NeuroscienceGenentech IncSouth San FranciscoUSA

Personalised recommendations