Genetic Factors Modulating the Response to Stimulant Drugs in Humans

  • Amy B. Hart
  • Harriet de Wit
  • Abraham A. PalmerEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 12)


Individuals vary in their responses to stimulant drugs, and several lines of evidence suggest that the basis for this variation is at least partially genetic in origin. Association studies have examined the effects of polymorphisms in specific genes on acute and chronic responses to stimulant drugs. Several of these genetic polymorphisms are also associated with other psychiatric dimensions and disorders. This chapter examines the evidence for genetic associations between the genes that have been most carefully examined for their influence on the response to stimulant drugs.


Stimulants Inter-individual variation Drug response Candidate gene Genetic association Genetic polymorphism 



This work was supported by NIH grants DA02812, DA027545 and DA021336.


  1. Allen N, Bagade S, McQueen M, Ioannidis J, Kavvoura F, Khoury M, Tanzi R, Bertram L (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834PubMedCrossRefGoogle Scholar
  2. American Psychiatry Association (1987) Diagnostic and statistical manual of mental disorders, revised 3rd edn. American Psychiatric Association, Washington DCGoogle Scholar
  3. Andersen S, Skorpen F (2009) Variation in the COMT gene: implications for pain perception and pain treatment. Pharmacogenomics 10:669–684PubMedCrossRefGoogle Scholar
  4. Aoyama N, Takahashi N, Kitaichi K, Ishihara R, Saito S, Maeno N, Ji X, Takagi K, Sekine Y, Iyo M, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Iwata N, Inada T, Ozaki N (2006) Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin Exp Res 30:1644–1649PubMedCrossRefGoogle Scholar
  5. Asherson P, Brookes K, Franke B, Chen W, Gill M, Ebstein R, Buitelaar J, Banaschewski T, Sonuga-Barke E, Eisenberg J (2007) Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 164:674–677PubMedCrossRefGoogle Scholar
  6. Banaschewski T, Becker K, Scherag S, Franke B, Coghill D (2010) Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur child adolescent psychiatry 19:237–257CrossRefGoogle Scholar
  7. Bellgrove MA, Hawi Z, Kirley A, Fitzgerald M, Gill M, Robertson IH (2005) Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacology 30:2290–2297PubMedCrossRefGoogle Scholar
  8. Bergen A, Kokoszka J, Peterson R, Long J, Virkkunen M, Linnoila M, Goldman D (1997) Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatry 2:490–494PubMedCrossRefGoogle Scholar
  9. Bloch M, Landeros-Weisenberger A, Sen S, Dombrowski P, Kelmendi B, Coric V, Pittenger C, Leckman J (2008) Association of the serotonin transporter polymorphism and obsessive-compulsive disorder: systematic review. Am J Med Genet Part B Neuropsychiatr Genet 147:850–858Google Scholar
  10. Bond C, LaForge K, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong J, Leal S (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A 95:9608–9613PubMedCrossRefGoogle Scholar
  11. Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Aneey R, Franke B, Gill M, Ebstein R (2006) The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11:934–953PubMedCrossRefGoogle Scholar
  12. Brown G, Harris T (2008) Depression and the serotonin transporter 5-HTTLPR polymorphism: a review and a hypothesis concerning gene-environment interaction. J Affect Disord 111:1–12PubMedCrossRefGoogle Scholar
  13. Brown WA, Corriveau DP, Ebert MH (1978) Acute psychologic and neuroendocrine effects of dextroamphetamine and methylphenidate. Psychopharmacology (Berl) 58:189–195CrossRefGoogle Scholar
  14. Bryant CD, Graham ME, Distler MG, Munoz MB, Li D, Vezina P, Sokoloff G, Palmer AA (2009) A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology (Berl) 203:703–711CrossRefGoogle Scholar
  15. Cabeza R, Nyberg L (2000) Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 13:415–421PubMedCrossRefGoogle Scholar
  16. Chen C, Hu X, Lin S, Sham P, Loh E, Li T, Murray R, Ball D (2004a) Association analysis of dopamine D2-like receptor genes and methamphetamine abuse. Psychiatr Genet 14:223–226PubMedCrossRefGoogle Scholar
  17. Chen J, Lipska B, Halim N, Ma Q, Matsumoto M, Melhem S, Kolachana B, Hyde T, Herman M, Apud J (2004b) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Human Genet 75:807–821CrossRefGoogle Scholar
  18. Cheon K, Ryu Y, Kim J, Cho D (2005) The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 15:95–101PubMedCrossRefGoogle Scholar
  19. Cheon K, Kim B, Cho S (2006) Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology 32:1377–1383PubMedCrossRefGoogle Scholar
  20. Crabbe J, Jarvik L, Liston E, Jenden D (1983) Behavioral responses to amphetamines in identical twins. Acta Genet Med Gemellol (Roma) 32:139–149Google Scholar
  21. Cropley V, Fujita M, Innis R, Nathan P (2006) Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry 59:898–907PubMedCrossRefGoogle Scholar
  22. Cubells J, Kranzler H, McCance-Katz E, Anderson G, Malison R, Price L, Gelernter J (2000) A haplotype at the DBH locus, associated with low plasma dopamine β-hydroxylase activity, also associates with cocaine-induced paranoia. Mol Psychiatry 5:56–63PubMedCrossRefGoogle Scholar
  23. da Silva M, Cordeiro Q, Louza M, Vallada H (2010) Lack of association between a 30UTR VNTR 776 polymorphism of dopamine transporter gene (SLC6A3) and ADHD in a Brazilian sample of 777 adult patients. J Atten Disord 15:305–309CrossRefGoogle Scholar
  24. Daly J, Fredholm B (1998) Caffeine—an atypical drug of dependence. Drug Alcohol Depend 51:199–206PubMedCrossRefGoogle Scholar
  25. David S, Munafò M (2008) Genetic variation in the dopamine pathway and smoking cessation. Pharmacogenomics 9:1307–1321PubMedCrossRefGoogle Scholar
  26. David S, Strong D, Munafo M, Brown R, Lloyd-Richardson E, Wileyto P, Evins E, Shields P, Lerman C, Niaura R (2007) Bupropion efficacy for smoking cessation is influenced by the DRD2 Taq1A polymorphism: analysis of pooled data from two clinical trials. Nicotine Tob Res 9:1251–1257PubMedCrossRefGoogle Scholar
  27. de Wit H (2009) Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Bio 14:22–31CrossRefGoogle Scholar
  28. de Wit H, Uhlenhuth E, Johanson C (1986) Individual differences in the reinforcing and subjective effects of amphetamine and diazepam. Drug Alcohol Depend 16:341–360PubMedCrossRefGoogle Scholar
  29. de Wit H, Crean J, Richards JB (2000) Effects of d-amphetamine and ethanol on a measure of behavioral inhibition in humans. Behav Neurosci 114:830–837PubMedCrossRefGoogle Scholar
  30. den Hoed M, Ekelund U, Brage S, Grontved A, Zhao JH, Sharp SJ, Ong KK, Wareham NJ, Loos RJ (2010) Genetic susceptibility to obesity and related traits in childhood and adolescence; influence of loci identified by genome-wide association studies. Diabetes 59:2980–2988CrossRefGoogle Scholar
  31. Dlugos A, Freitag C, Hohoff C, McDonald J, Cook E, Deckert J, de Wit H (2007) Norepinephrine transporter gene variation modulates acute response to D-amphetamine. Biol Psychiatry 61:1296–1305PubMedCrossRefGoogle Scholar
  32. Dlugos AM, Hamidovic A, Palmer AA, Wit H (2009a) Further evidence of association between amphetamine response and SLC6A2 gene variants. Psychopharmacology (Berl) 206:501–511CrossRefGoogle Scholar
  33. Dlugos AM, Hamidovic A, Hodgkinson CA, Goldman D, Palmer AA, Hd Wit (2009b) More aroused, less fatigued: fatty acid amide hydrolase gene polymorphisms influence acute response to amphetamine. Neuropsychopharmacology 35:613–622PubMedCrossRefGoogle Scholar
  34. Dlugos A, Hamidovic A, Hodgkinson CA, Pei-Hong S, Goldman D, Palmer A, de Wit H (2010) OPRM1 gene variants modulate amphetamine-induced euphoria in humans. Genes Brain Behav 10:199–209PubMedGoogle Scholar
  35. Drakenberg K, Nikoshkov A, Horváth M, Fagergren P, Gharibyan A, Saarelainen K, Rahman S, Nylander I, Bakalkin G, Rajs J (2006) μ Opioid receptor A118G polymorphism in association with striatal opioid neuropeptide gene expression in heroin abusers. Proc Nat Acad Sci 103:7883–7888PubMedCrossRefGoogle Scholar
  36. DuPaul G, Power T, Anastopoulos A, Reid R (1998) ADHD rating scales-IV: checklists. Norms and Clinical Interpretation, GuilfordGoogle Scholar
  37. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRefGoogle Scholar
  38. Eisenberg DTA, Mackillop J, Modi M, Beauchemin J, Dang D, Lisman SA, Lum JK, Wilson DS (2007) Examining impulsivity as an endophenotype using a behavioral approach: a DRD2 TaqI A and DRD4 48-bp VNTR association study. BBF 3:2PubMedGoogle Scholar
  39. Engeli S (2008) Dysregulation of the endocannabinoid system in obesity. J Neuroendocrinol 20:110–115PubMedCrossRefGoogle Scholar
  40. Ezaki N, Nakamura K, Sekine Y, Thanseem I, Anitha A, Iwata Y, Kawai M, Takebayashi K, Suzuki K, Takei N (2008) Short allele of 5-HTTLPR as a risk factor for the development of psychosis in Japanese methamphetamine abusers. Ann N Y Acad Sci 1139:49–56PubMedCrossRefGoogle Scholar
  41. Faraone S, Doyle A, Mick E, Biederman J (2001) Meta-analysis of the association between the 7-repeat allele of the dopamine D4 receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 158:1052–1057PubMedCrossRefGoogle Scholar
  42. Farrer L, Kranzler H, Yu Y, Weiss R, Brady K, Anton R, Cubells J, Gelernter J (2009) Association of variants in MANEA with cocaine-related behaviors. Arch Gen Psychiatry 66:267PubMedCrossRefGoogle Scholar
  43. Fergusson D, Horwood L, Lynskey M, Madden P (2003) Early reactions to cannabis predict later dependence. Arch Gen Psychiatry 60:1033–1039PubMedCrossRefGoogle Scholar
  44. Filbey F, Schacht J, Myers U, Chavez R, Hutchison K (2009) Individual and additive effects of the CNR1 and FAAH Genes on brain response to marijuana cues. Neuropsychopharmacology 35:967–975PubMedCrossRefGoogle Scholar
  45. Flanagin B, Cook E Jr, de Wit H (2006) An association study of the brain-derived neurotrophic factor Val66Met polymorphism and amphetamine response. Am J Med Genet Part B Neuropsychiatr Genet 141:576–583Google Scholar
  46. Friedel S, Saar K, Sauer S, Dempfle A, Walitza S, Renner T, Romanos M, Freitag C, Seitz C, Palmason H (2007) Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry 12:923–933PubMedCrossRefGoogle Scholar
  47. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 1:152–156PubMedCrossRefGoogle Scholar
  48. Furberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, Ardissino D, Bernardinelli L, Mannucci P, Mauri F, Merlini P (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447CrossRefGoogle Scholar
  49. Fuxe K, Ferre S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg S, Staines W, Jacobsen K, Lluis C (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26(2):209–220PubMedCrossRefGoogle Scholar
  50. Gelernter J, Kranzler HR, Satel SL, Rao PA (1994) Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 11:195–200PubMedCrossRefGoogle Scholar
  51. Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030PubMedCrossRefGoogle Scholar
  52. Grigorenko E, DeYoung C, Eastman M, Getchell M, Haeffel G, af Klinteberg B, Koposov R, Oreland L, Pakstis A, Ponomarev O (2010) Aggressive behavior, related conduct problems, and variation in genes affecting dopamine turnover. Aggress Behav 36:158–176PubMedGoogle Scholar
  53. Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, Craig I, O’Gara C, Bubb VJ, Greenwood T, Kelsoe J, Asherson P, Murray RM, Castelo A, Quinn JP, Vallada H, Breen G (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A 103:4552–4557PubMedCrossRefGoogle Scholar
  54. Guy W (1976) Clinical global impressions. In: ECDEU assessment manual for psychopharmacology, revised. National Institute of Mental Health, RockvilleGoogle Scholar
  55. Haenisch B, Linsel K, Brüss M, Gilsbach R, Propping P, Nöthen M, Rietschel M, Fimmers R, Maier W, Zobel A (2009) Association of major depression with rare functional variants in norepinephrine transporter and serotonin1A receptor genes. Am J Med Genet Part B Neuropsychiatr Genet 150:1013–1016Google Scholar
  56. Haertzen C, Kocher T, Miyasato K (1983) Reinforcements from the first drug experience can predict later drug habits and/or addiction: results with coffee, cigarettes, alcohol, barbiturates, minor and major tranquilizers, stimulants, marijuana, hallucinogens, heroin, opiates and cocaine. Drug Alcohol Depend 11:147–165PubMedCrossRefGoogle Scholar
  57. Hamarman S, Fossella J, Ulger C, Brimacombe M, Dermody J (2004) Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorder: a pharmacogenetic study. J Child Adolescent Psychopharmacology 14:564–574CrossRefGoogle Scholar
  58. Hamidovic A, Dlugos A, Skol A, Palmer AA, de Wit H (2009) Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: an exploratory study with d-amphetamine in healthy participants. Exp Clin Psychopharmacol 17:374–383PubMedCrossRefGoogle Scholar
  59. Hamidovic A, Dlugos A, Palmer AA, Wit H (2010a) Polymorphisms in dopamine transporter (SLC6A3) are associated with stimulant effects of d-amphetamine: an exploratory pharmacogenetic study using healthy volunteers. Behav Genet 40:255–261PubMedCrossRefGoogle Scholar
  60. Hamidovic A, Dlugos A, Palmer A, De Wit H (2010b) Catechol-O-methyltransferase val158met genotype modulates sustained attention in both the drug-free state and in response to amphetamine. Psychiatr Genet 20:85–92PubMedGoogle Scholar
  61. Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Rev 45:104–114PubMedCrossRefGoogle Scholar
  62. Heaton RK, Chelune GJ, Talley JL, Kay GG, Curtiss G (1993) Wisconsin card sorting test manual (Rev. edn.). Psychological Assessment Resources, OdessaGoogle Scholar
  63. Hohoff C, McDonald J, Baune B, Cook E, Deckert J, De Wit H (2005) Interindividual variation in anxiety response to amphetamine: possible role for adenosine A2A receptor gene variants. Am J Med Genet Part B Neuropsychiatr Genet 139:42–44Google Scholar
  64. Holdstock L, de Wit H (2001) Individual differences in responses to ethanol and d-amphetamine: a within-subject study. Alcohol Clin Exp Res 25:540–548PubMedCrossRefGoogle Scholar
  65. Hranilovic D, Stefulj J, Schwab S, Borrmann-Hassenbach M, Albus M, Jernej B, Wildenauer D (2004) Serotonin transporter promoter and intron 2 polymorphisms: relationship between allelic variants and gene expression. Biol Psychiatry 55:1090–1094PubMedCrossRefGoogle Scholar
  66. Hu X, Lipsky R, Zhu G, Akhtar L, Taubman J, Greenberg B, Xu K, Arnold P, Richter M, Kennedy J (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Human Genet 78:815–826CrossRefGoogle Scholar
  67. Huang C, Santangelo S (2008) Autism and serotonin transporter gene polymorphisms: a systematic review and meta-analysis. Am J Med Genet Part B: Neuropsychiatr Genet 147:903–913Google Scholar
  68. Hyman C, Hofer M, Barde Y, Juhasz M, Yancopoulos G, Squinto S, Lindsay R (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–232PubMedCrossRefGoogle Scholar
  69. Ide S, Kobayashi H, Tanaka K, Ujike H, Sekine Y, Ozaki N, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Ikeda K, Sora I (2004) Gene polymorphisms of the mu opioid receptor in methamphetamine abusers. Ann N Y Acad Sci 1025:316–324PubMedCrossRefGoogle Scholar
  70. Ide S, Kobayashi H, Ujike H, Ozaki N, Sekine Y, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Iwata N, Tanaka K, Shen H, Iwahashi K, Itokawa M, Minami M, Satoh M, Ikeda K, Sora I (2006) Linkage disequilibrium and association with methamphetamine dependence/psychosis of mu-opioid receptor gene polymorphisms. Pharmacogenomics J 6:179–188PubMedCrossRefGoogle Scholar
  71. Johanson C, Uhlenhuth E (1980) Drug preference and mood in humans: diazepam. Psychopharmacology (Berl) 71:269–273CrossRefGoogle Scholar
  72. Johansson I, Ingelman-Sundberg M (2008) CNVs of human genes and their implication in pharmacogenetics. Cytogenet Genome Res 123:195–204PubMedCrossRefGoogle Scholar
  73. Johansson S, Halleland H, Halmøy A, Jacobsen K, Landaas E, Dramsdahl M, Fasmer O, Bergsholm P, Lundervold A, Gillberg C (2008) Genetic analyses of dopamine related genes in adult ADHD patients suggest an association with the DRD5-microsatellite repeat, but not with DRD4 or SLC6A3 VNTRs. Am J Med Genet Part B Neuropsychiatr Genet 147:1470–1475Google Scholar
  74. Joober R, Grizenko N, Sengupta S, Amor LB, Schmitz N, Schwartz G, Karama S, Lageix P, Fathalli F, Torkaman-Zehi A, Ter Stepanian M (2007) Dopamine transporter 3′-UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology 32:1370–1376PubMedCrossRefGoogle Scholar
  75. Kalayasiri R, Sughondhabirom A, Gueorguieva R, Coric V, Lynch WJ, Lappalainen J, Gelernter J, Cubells JF, Malison RT (2007) Dopamine beta-hydroxylase gene (DbetaH) -1021C-->T influences self-reported paranoia during cocaine self-administration. Biol Psychiatry 61:1310–1313PubMedCrossRefGoogle Scholar
  76. Kato M, Serretti A (2008) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15:473–500PubMedCrossRefGoogle Scholar
  77. Kaufman S, Friedman S (1965) Dopamine-β-hydroxylase. Pharmacol Rev 17:71–100PubMedGoogle Scholar
  78. Kaufman J, Birmaher B, Brent D, Rao UMA, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988PubMedCrossRefGoogle Scholar
  79. Kendler K, Karkowski L, Prescott C (1999) Hallucinogen, opiate, sedative and stimulant use and abuse in a population-based sample of female twins. Acta Psychiatr Scand 99:368–376PubMedCrossRefGoogle Scholar
  80. Kendler KS, Karkowski LM, Neale MC, Prescott CA (2000) Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch Gen Psychiatry 57:261–269PubMedCrossRefGoogle Scholar
  81. Kendler KS, Jacobson KC, Prescott CA, Neale MC (2003) Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am J Psychiatry 160:687–695PubMedCrossRefGoogle Scholar
  82. Kendler K, Gardner C, Jacobson K, Neale M, Prescott C (2005) Genetic and environmental influences on illicit drug use and tobacco use across birth cohorts. Psychol Med 35:1349–1356PubMedCrossRefGoogle Scholar
  83. Kirchner WK (1958) Age differences in short-term retention of rapidly changing information. J Exp Psychology 55:352–358CrossRefGoogle Scholar
  84. Kishi T, Kitajima T, Tsunoka T, Okumura T, Okochi T, Kawashima K, Inada T, Ujike H, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Iwata N (2010) PROKR2 is associated with methamphetamine dependence in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 34:1033–1036PubMedCrossRefGoogle Scholar
  85. Kishimoto M, Ujike H, Motohashi Y, Tanaka Y, Okahisa Y, Kotaka T, Harano M, Inada T, Yamada M, Komiyama T, Hori T, Sekine Y, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2008a) The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biol Psychiatry 63:191–196PubMedCrossRefGoogle Scholar
  86. Kishimoto M, Ujike H, Okahisa Y, Kotaka T, Takaki M, Kodama M, Inada T, Yamada M, Uchimura N, Iwata N (2008b) The frizzled 3 gene is associated with methamphetamine psychosis in the Japanese population. Behav Brain Funct 4:37PubMedCrossRefGoogle Scholar
  87. Kobayashi H, Ide S, Hasegawa J, Ujike H, Sekine Y, Ozaki N, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Shen H-W, Ikeda K, Sora I (2004) Study of association between alpha-synuclein gene polymorphism and methamphetamine psychosis/dependence. Ann N Y Acad Sci 1025:325–334PubMedCrossRefGoogle Scholar
  88. Kooij J, Boonstra A, Vermeulen S, Heister A, Burger H, Buitelaar J, Franke B (2008) Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet Part B: Neuropsychiatr Genet 147:201–208Google Scholar
  89. Kotaka T, Ujike H, Okahisa Y, Takaki M, Nakata K, Kodama M, Inada T, Yamada M, Uchimura N, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2009) G72 gene is associated with susceptibility to methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33:1046–1049PubMedCrossRefGoogle Scholar
  90. Kreek M, Nielsen D, Butelman E, LaForge K (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 8:1450–1457PubMedCrossRefGoogle Scholar
  91. Lachman H, Papolos D, Saito T, Yu Y, Szumlanski C, Weinshilboum R (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenet Genomics 6:243–250Google Scholar
  92. Lamb RJ, Henningfield JE (1994) Human d-amphetamine drug discrimination: methamphetamine and hydromorphone. J Exp Anal Behav 61:169–180PubMedCrossRefGoogle Scholar
  93. Laucht M, Becker K, Frank J, Schmidt MH, Esser G, Treutlein J, Skowronek MH, Schumann G (2008) Genetic variation in dopamine pathways differentially associated with smoking progression in adolescence. J Am Acad Child Adolesc Psychiatry 47:673–681PubMedCrossRefGoogle Scholar
  94. Lee Y, Hohoff C, Domschke K, Sand P, Kuhlenbäumer G, Schirmacher A, Freitag C, Meyer J, Stöber G, Franke P (2005) Norepinephrine transporter (NET) promoter and 5′-UTR polymorphisms: association analysis in panic disorder. Neurosci Lett 377:40–43PubMedCrossRefGoogle Scholar
  95. Lee A, Kim SJ, Lott DC, Cook EH, de Wit H, McGough JJ (2006) DRD4-7R mediated response to amphetamine in normal subjects. In: Scientific proceedings of the 53rd annual meeting of the American Academy of child and adolescent Psychiatry, San DiegoGoogle Scholar
  96. Levran O, Londono D, O’Hara K, Nielsen D, Peles E, Rotrosen J, Casadonte P, Linzy S, Randesi M, Ott J (2008) Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 7:720–729PubMedCrossRefGoogle Scholar
  97. Li T, Chen C, Hu X, Ball D, Lin S, Chen W, Sham P, Loh E, Murray R, Collier D (2004) Association analysis of the DRD4 and COMT genes in methamphetamine abuse. Am J Med Genet Part B Neuropsychiatr Genet 129:120–124CrossRefGoogle Scholar
  98. Li D, Sham P, Owen M, He L (2006) Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15:2276–2284PubMedCrossRefGoogle Scholar
  99. Lichter J, Barr C, Kennedy J, Van Tol H, Kidd K, Livak K (1993) A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 2:767–773PubMedCrossRefGoogle Scholar
  100. Lin L, Di Stefano E, Schmitz D, Hsu L, Ellis S, Lennard M, Tucker G, Cho A (1997) Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos 25:1059–1064PubMedGoogle Scholar
  101. Logan G, Cowan W, Davis K (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychology 10:276–291Google Scholar
  102. Lohoff F, Weller A, Bloch P, Nall A, Ferraro T, Kampman K, Pettinati H, Oslin D, Dackis C, O’Brien C (2008) Association between the catechol-O-methyltransferase Val158Met polymorphism and cocaine dependence. Neuropsychopharmacology 33:3078–3084PubMedCrossRefGoogle Scholar
  103. Lott D, Kim S, Cook E, de Wit H (2005) Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology 30:602–609PubMedCrossRefGoogle Scholar
  104. Lott D, Kim S, Cook E Jr, de Wit H (2006) Serotonin transporter genotype and acute subjective response to amphetamine. Am J Addict 15:327–335PubMedCrossRefGoogle Scholar
  105. Madsen MV, Peacock L, Werge T, Andersen MB (2006) Effects of the cannabinoid CB1 receptor agonist CP55, 940 and antagonist SR141716A on d-amphetamine-induced behaviours in Cebus monkeys. J Psychopharmacol (Oxford) 20:622–628CrossRefGoogle Scholar
  106. Manor I, Laiba E, Eisenberg J, Meidad S, Lerer E, Israel S, Gritsenko I, Tyano S, Faraone S, Ebstein R (2008) Association between trypotphan hydroxylase 2, performance on a continuance performance test and response to methylphenidate in ADHD participants. Am J Med Genet Part B Neuropsychiatr Genet 147:1501–1508Google Scholar
  107. Martin WRSJW, Sapira JD, Jainski DR (1971) Physiologic, subjective and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine and methylphenidate in man. Clin Pharmacol Therap 12:245–258Google Scholar
  108. Matsuzawa D, Hashimoto K, Miyatake R, Shirayama Y, Shimizu E, Maeda K, Suzuki Y, Mashimo Y, Sekine Y, Inada T, Ozaki N, Iwata N, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Hata A, Sawa A, Iyo M (2007) Identification of functional polymorphisms in the promoter region of the human PICK1 gene and their association with methamphetamine psychosis. Am J Psychiatry 164:1105–1114PubMedCrossRefGoogle Scholar
  109. Mattay V, Goldberg T, Fera F, Hariri A, Tessitore A, Egan M, Kolachana B, Callicott J, Weinberger D (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100:6186–6191PubMedCrossRefGoogle Scholar
  110. McGough J, McCracken J, Swanson J, Riddle M, Kollins S, Greenhill L, Abikoff H, Davies M, Chuang S, Wigal T, Wigal S, Posner K, Skrobala A, Kastelic E, Ghuman J, Cunningham C, Shigawa S, Moyzis R, Vitiello B (2006) Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 45:1314–1322PubMedCrossRefGoogle Scholar
  111. McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432PubMedCrossRefGoogle Scholar
  112. McNair D, Lorr M, Droppleman L (1971) POMS manual for profile of mood states. EDITS, San DiegoGoogle Scholar
  113. Mick E, Neale B, Middleton F, McGough J, Faraone S (2008) Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet Part B Neuropsychiatr Genet 147:1412–1418Google Scholar
  114. Mick E, Todorov A, Smalley S, Hu X, Loo S, Todd R, Biederman J, Byrne D, Dechairo B, Guiney A (2010) Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 9:898–905CrossRefGoogle Scholar
  115. Min W, Li T, Ma X, Li Z, Yu T, Gao D, Zhang B, Yun Y, Sun X (2009) Monoamine transporter gene polymorphisms affect susceptibility to depression and predict antidepressant response. Psychopharmacology (Berl) 205:409–417CrossRefGoogle Scholar
  116. Morita Y, Ujike H, Tanaka Y, Kishimoto M, Okahisa Y, Kotaka T, Harano M, Inada T, Komiyama T, Hori T, Yamada M, Sekine Y, Iwata N, Iyo M, Sora I, Ozaki N, Kuroda S (2008) The glycine transporter 1 gene (GLYT1) is associated with methamphetamine-use disorder. Am J Med Genet B Neuropsychiatr Genet 147B:54–58PubMedCrossRefGoogle Scholar
  117. Munafò M, Yalcin B, Willis-Owen S, Flint J (2008) Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 63:197–206PubMedCrossRefGoogle Scholar
  118. Nakamura M, Ueno S, Sano A, Tanabe H (2000) The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry 5:32–38PubMedCrossRefGoogle Scholar
  119. Nakamura K, Chen C-K, Sekine Y, Iwata Y, Anitha A, Loh E-W, Takei N, Suzuki A, Kawai M, Takebayashi K, Suzuki K, Minabe Y, Tsuchiya K, Yamada K, Iyo M, Ozaki N, Inada T, Iwata N, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Ball DM, Yoshikawa T, Lin S-K, Mori N (2006) Association analysis of SOD2 variants with methamphetamine psychosis in Japanese and Taiwanese populations. Hum Genet 120:243–252PubMedCrossRefGoogle Scholar
  120. Nakamura K, Sekine Y, Takei N, Iwata Y, Suzuki K, Anitha A, Inada T, Harano M, Komiyama T, Yamada M, Iwata N, Iyo M, Sora I, Ozaki N, Ujike H, Mori N (2009) An association study of monoamine oxidase A (MAOA) gene polymorphism in methamphetamine psychosis. Neurosci Lett 455:120–123PubMedCrossRefGoogle Scholar
  121. Nakatome M, Miyaji A, Mochizuki K, Kishi Y, Isobe I, Matoba R (2009) Association between the GST genetic polymorphisms and methamphetamine abusers in the Japanese population. Leg Med (Tokyo) 11(1):S468–S470CrossRefGoogle Scholar
  122. Nemoda Z, Angyal N, Tarnok Z, Gadoros J, Sasvari-Szekely M (2009) Carboxylesterase 1 gene polymorphism and methylphenidate response in ADHD. Neuropharmacology 57:731–733PubMedCrossRefGoogle Scholar
  123. Neville M, Johnstone E, Walton R (2004) Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23. 1. Hum Mutat 23:540–545PubMedCrossRefGoogle Scholar
  124. Nishiyama T, Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Sekine Y, Iyo M, Harano M, Komiyama T, Yamada M, Sora I, Ujike H, Inada T, Furukawa T, Ozaki N (2005) Haplotype association between GABAA receptor gamma2 subunit gene (GABRG2) and methamphetamine use disorder. Pharmacogenomics J 5:89–95PubMedCrossRefGoogle Scholar
  125. Nomura A, Ujike H, Tanaka Y, Otani K, Morita Y, Kishimoto M, Morio A, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2006) Genetic variant of prodynorphin gene is risk factor for methamphetamine dependence. Neurosci Lett 400:158–162PubMedCrossRefGoogle Scholar
  126. Nurnberger J, Gershon E, Simmons S, Ebert M, Kessler L, Dibble E, Jimerson S, Brown G, Gold P, Jimerson D (1982) Behavioral, biochemical and neuroendocrine responses to amphetamine in normal twins and 'well-state' bipolar patients. Psychoneuroendocrinology 7:163–176PubMedCrossRefGoogle Scholar
  127. Ohgake S, Hashimoto K, Shimizu E, Koizumi H, Okamura N, Koike K, Matsuzawa D, Sekine Y, Inada T, Ozaki N (2005) Functional polymorphism of the NQO2 gene is associated with methamphetamine psychosis. Addict Bio 10:145–148CrossRefGoogle Scholar
  128. Oroszi G, Anton R, O’Malley S, Swift R, Pettinati H, Couper D, Yuan Q, Goldman D (2009) OPRM1 Asn40Asp predicts response to naltrexone treatment: a haplotype-based approach. Alcohol Clin Exp Res 33:383–393PubMedCrossRefGoogle Scholar
  129. Otani K, Ujike H, Sakai A, Okahisa Y, Kotaka T, Inada T, Harano M, Komiyama T, Hori T, Yamada M (2008) Reduced CYP2D6 activity is a negative risk factor for methamphetamine dependence. Neurosci Lett 434:88–92PubMedCrossRefGoogle Scholar
  130. Palmer AA, Verbitsky M, Suresh R, Kamens HM, Reed CL, Li N, Burkhart-Kasch S, McKinnon CS, Belknap JK, Gilliam TC, Phillips TJ (2005) Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mamm Genome 16:291–305PubMedCrossRefGoogle Scholar
  131. Phillips T, Kamens H, Wheeler J (2008) Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 32:707–759PubMedCrossRefGoogle Scholar
  132. Purper-Ouakil D, Wohl M, Orejarena S, Cortese S, Boni C, Asch M, Mouren M, Gorwood P (2008) Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet Part B Neuropsychiatr Genet 147:1425–1430Google Scholar
  133. Rausch J (2005) Initial conditions of psychotropic drug response: studies of serotonin transporter long promoter region (5-HTTLPR), serotonin transporter efficiency, cytokine and kinase gene expression relevant to depression and antidepressant outcome. Prog Neuropsychopharmacol Biol Psychiatry 29:1046–1061PubMedCrossRefGoogle Scholar
  134. Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8:271–276Google Scholar
  135. Risch N, Herrell R, Lehner T, Liang K, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas K (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301:2462–2471PubMedCrossRefGoogle Scholar
  136. Rodriguez-Jimenez R, Ãvila C, Ponce G, Ibanez M, Rubio G, Jimenez-Arriero M, Ampuero I, Ramos J, Hoenicka J, Palomo T (2006) The TaqIA polymorphism linked to the DRD2 gene is related to lower attention and less inhibitory control in alcoholic patients. Eur Psychiatry 21:66–69PubMedCrossRefGoogle Scholar
  137. Rohde L, Roman T, Szobot C, Cunha R, Hutz M, Biederman J (2003) Dopamine transporter gene, response to methylphenidate and cerebral blood flow in attention-deficit/hyperactivity disorder: a pilot study. Synapse 48:87–89PubMedCrossRefGoogle Scholar
  138. Roman T, Schmitz M, Polanczyk G, Eizirik M, Rohde L, Hutz M (2001) Attention-deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am J Med Genet Part B: Neuropsychiatr Genet 105:471–478CrossRefGoogle Scholar
  139. Rosvold HE, Mirsky AF, Sarason I, Bransome ED Jr, Beck LH (1956) A continuous performance test of brain damage. J Consult Psychology 20:343–350CrossRefGoogle Scholar
  140. Sabol SZ, Hu S, Hamer D (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 103:273–279PubMedCrossRefGoogle Scholar
  141. Seiden L, Sabol K, Ricaurte G (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–676PubMedCrossRefGoogle Scholar
  142. Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100PubMedCrossRefGoogle Scholar
  143. Šerý O, Vojtová V, Zvolský P (2001) The association study of DRD2, ACE and AGT gene polymorphisms and metamphetamine dependence. Physiol Res 50:43–50PubMedGoogle Scholar
  144. Šerý O, Přikryl R, Častulík L, Šťastný F (2010) A118G polymorphism of OPRM1 gene is associated with schizophrenia. J Mol Neurosci 41:219–222PubMedCrossRefGoogle Scholar
  145. Sevak RJ, Stoops WW, Hays LR, Rush CR (2009) Discriminative stimulus and subject-rated effects of methamphetamine, d-amphetamine, methylphenidate, and triazolam in methamphetamine-trained humans. J Pharmacol Exp Ther 328:1007–1018PubMedCrossRefGoogle Scholar
  146. Shi J, Gershon E, Liu C (2008) Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 104:96–107PubMedCrossRefGoogle Scholar
  147. Shugart Y, Chen L, Day I, Lewis S, Timpson N, Yuan W, Abdollahi M, Ring S, Ebrahim S, Golding J (2009) Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur J Hum Genet 17:1050–1055PubMedCrossRefGoogle Scholar
  148. Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci 15:2045–2050Google Scholar
  149. Stein M, Waldman I, Sarampote C, Seymour K, Robb A, Conlon C, Kim S, Cook E (2005) Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 30:1374–1382PubMedCrossRefGoogle Scholar
  150. Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychology 18:643–662CrossRefGoogle Scholar
  151. Sulzer D, Sonders M, Poulsen N, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433PubMedCrossRefGoogle Scholar
  152. Suzuki A, Nakamura K, Sekine Y, Minabe Y, Takei N, Suzuki K et al (2006) An association study between catechol-O-methyl transferase gene polymorphism and methamphetamine psychotic disorder. Psychiatr Genet 16:133–138PubMedCrossRefGoogle Scholar
  153. Thakur G, Grizenko N, Sengupta S (2010) The 5-HTTLPR polymorphism of the serotonin transporter gene and short term behavioral response to methylphenidate in children with ADHD. BMC Psychiatry 10:50PubMedCrossRefGoogle Scholar
  154. Tsuang MT, Lyons MJ, Eisen SA, Goldberg J, True W, Lin N, Meyer JM, Toomey R, Faraone SV, Eaves L (1996) Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs. Am J Med Genet 67:473–477PubMedCrossRefGoogle Scholar
  155. Tsunoka T, Kishi T, Kitajima T, Okochi T, Okumura T, Yamanouchi Y, Kinoshita Y, Kawashima K, Naitoh H, Inada T, Ujike H, Yamada M, Uchimura N, Sora I, Iyo M, Ozaki N, Iwata N (2010) Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the Japanese population. Prog Neuropsychopharmacol Biol Psychiatry 34:639–644PubMedCrossRefGoogle Scholar
  156. Tunbridge E, Harrison P, Weinberger D (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151PubMedCrossRefGoogle Scholar
  157. Uhl G (2006) Molecular genetics of addiction vulnerability. NeuroRx 3:295–301PubMedCrossRefGoogle Scholar
  158. Uhl G, Li S, Takahashi N, Itokawa K, Lin Z, Hazama M, Sora I (2000) The VMAT2 gene in mice and humans: amphetamine responses, locomotion, cardiac arrhythmias, aging, and vulnerability to dopaminergic toxins. FASEB J 14:2459–2465PubMedCrossRefGoogle Scholar
  159. Uhl GR, Drgon T, Liu Q-R, Johnson C, Walther D, Komiyama T, Harano M, Sekine Y, Inada T, Ozaki N, Iyo M, Iwata N, Yamada M, Sora I, Chen C-K, Liu H-C, Ujike H, Lin S-K (2008) Genome-wide association for methamphetamine dependence: convergent results from 2 samples. Arch Gen Psychiatry 65:345–355PubMedCrossRefGoogle Scholar
  160. Ujike H, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, Sora I, Iyo M, Katsu T, Nomura A, Nakata K, Ozaki N (2003) Nine- or fewer repeat alleles in VNTR polymorphism of the dopamine transporter gene is a strong risk factor for prolonged methamphetamine psychosis. Pharmacogenomics J 3:242–247PubMedCrossRefGoogle Scholar
  161. Ujike H, Katsu T, Okahisa Y, Takaki M (2009) Genetic variants of D2 but not D3 or D4 dopamine receptor gene are associated with rapid onset and poor prognosis of methamphetamine psychosis. Prog Neuropsychopharmacol Biol Psychiatry 33:625–629PubMedCrossRefGoogle Scholar
  162. van de Giessen E, de Win M, Tanck M, van den Brink W, Baas F, Booij J (2009) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med 50:4552Google Scholar
  163. Van Dyck C, Malison R, Jacobsen L, Seibyl J, Staley J, Laruelle M, Baldwin R, Innis R, Gelernter J (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751PubMedGoogle Scholar
  164. Vandenbergh D, Persico A, Hawkins A, Griffin C, Li X, Jabs E, Uhl G (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15. 3 and displays a VNTR. Genomics 14:1104–1106PubMedCrossRefGoogle Scholar
  165. Vandenbergh DJ, Rodriguez LA, Miller IT, Uhl GR, Lachman HM (1997) High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. Am J Med Genet 74:439–442PubMedCrossRefGoogle Scholar
  166. Veenstra-VanderWeele J, Qaadir A, Palmer A, Cook E, De Wit H (2006) Association between the casein kinase 1 epsilon gene region and subjective response to D-amphetamine. Neuropsychopharmacology 31:1056–1063PubMedCrossRefGoogle Scholar
  167. Warwick JM (2004) Imaging of brain function using SPECT. Metab Brain Dis 19:113–123PubMedCrossRefGoogle Scholar
  168. Wechsler D (1958) The measurement and appraisal of adult intelligence. Acad Med 33:706Google Scholar
  169. Yang A, Palmer A, de Wit H (2010) Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 211:245–257Google Scholar
  170. Yu Y, Kranzler HR, Panhuysen C, Weiss RD, Poling J, Farrer LA, Gelernter J (2008) Substance dependence low-density whole genome association study in two distinct American populations. Hum Genet 123:495–506PubMedCrossRefGoogle Scholar
  171. Zabetian C, Anderson G, Buxbaum S, Elston R, Ichinose H, Nagatsu T, Kim K, Kim C, Malison R, Gelernter J (2001) A quantitative-trait analysis of human plasma-dopamine [beta]-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Human Genet 68:515–522CrossRefGoogle Scholar
  172. Zabetian C, Buxbaum S, Elston R, Köhnke M, Anderson G, Gelernter J, Cubells J (2003) The structure of linkage disequilibrium at the DBH locus strongly influences the magnitude of association between diallelic markers and plasma dopamine [beta]-hydroxylase activity. Am J Human Genet 72:1389–1400CrossRefGoogle Scholar
  173. Zhang X, Beaulieu J, Gainetdinov R, Caron M (2006) Functional polymorphisms of the brain serotonin synthesizing enzyme tryptophan hydroxylase-2. Cell Mol Life Sci 63:6–11PubMedCrossRefGoogle Scholar
  174. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, Lee M, Xiao T, Papp A, Wang D (2007) Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Nat Acad Sci 104:20552–20557PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Amy B. Hart
    • 1
  • Harriet de Wit
    • 2
  • Abraham A. Palmer
    • 1
    • 2
    Email author
  1. 1.Department of Human GeneticsUniversity of ChicagoChicagoUSA
  2. 2.Department of Psychiatry and Behavioral NeuroscienceUniversity of ChicagoChicagoUSA

Personalised recommendations