Advertisement

Functional Magnetic Resonance Imaging in Aging and Dementia: Detection of Age-Related Cognitive Changes and Prediction of Cognitive Decline

  • John L. WoodardEmail author
  • Michael A. Sugarman
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 10)

Abstract

Functional magnetic resonance imaging (fMRI) allows for dynamic observation of the neural substrates of cognitive processing, which makes it a valuable tool for studying brain changes that may occur with both normal and pathological aging. fMRI studies have revealed that older adults frequently exhibit a greater magnitude and extent activation of the blood-oxygen-level-dependent signal compared to younger adults. This additional activation may reflect compensatory recruitment associated with functional and structural deterioration of neural resources. Increased activation has also been associated with several risk factors for Alzheimer’s disease (AD), including the apolipoprotein ε4 allele. Longitudinal studies have also demonstrated that fMRI may have predictive utility in determining which individuals are at the greatest risk of developing cognitive decline. This chapter will review the results of a number of task-activated fMRI studies of older adults, focusing on both healthy aging and neuropathology associated with AD. We also discuss models that account for cognitive aging processes, including the hemispheric asymmetry reduction in older adults (HAROLD) and scaffolding theory of aging and cognition (STAC) models. Finally, we discuss methodological issues commonly associated with fMRI research in older adults.

Keywords

fMRI Aging Cognitive decline Alzheimer’s disease 

Notes

Acknowledgments

This work was supported in part by NIH grant R01 AG022304. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Aging or the National Institutes of Health.

References

  1. Agosta F, Vossel KA, Miller BL, Migliaccio R, Bonasera SJ, Filippi M et al (2009) Apolipoprotein E epsilon4 is associated with disease-specific effects on brain atrophy in Alzheimer’s disease and frontotemporal dementia. Proc Natl Acad Sci USA 106(6):2018–2022PubMedGoogle Scholar
  2. Albert MS, Moss MB, Tanzi R, Jones K (2001) Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 7(5):631–639PubMedGoogle Scholar
  3. Babcock RL, Laguna KD, Roesch SC (1997) A comparison of the factor structure of processing speed for younger and older adults: testing the assumption of measurement equivalence across age groups. Psychol Aging 12(2):268–276PubMedGoogle Scholar
  4. Baltes PB, Lindenberger U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging 12(1):12–21PubMedGoogle Scholar
  5. Barrick TR, Charlton RA, Clark CA, Markus HS (2010) White matter structural decline in normal ageing: a prospective longitudinal study using tract-based spatial statistics. NeuroImage 51(2):565–577PubMedGoogle Scholar
  6. Benton AL, Hamsher Kd (1976) Multilingual Aphasia examination. University of Iowa, Iowa CityGoogle Scholar
  7. Bergerbest D, Gabrieli JD, Whitfield-Gabrieli S, Kim H, Stebbins GT, Bennett DA et al (2009) Age-associated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. NeuroImage 45(1):237–246PubMedGoogle Scholar
  8. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778PubMedGoogle Scholar
  9. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796PubMedGoogle Scholar
  10. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10):605–613PubMedGoogle Scholar
  11. Bondi MW, Kaszniak AW (1991) Implicit and explicit memory in Alzheimer’s disease and Parkinson’s disease. J Clin Exp Neuropsychol 13:339–358PubMedGoogle Scholar
  12. Bondi MW, Houston WS, Eyler LT, Brown GG (2005) fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurol 64:501–508Google Scholar
  13. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC et al (2000) Patterns of brain activation in people at risk for Alzheimer’s Disease. N Engl J Med 343(7):450–456PubMedGoogle Scholar
  14. Brown GG, Eyler LT (2006) Methodological and conceptual issues in functional magnetic resonance imaging: applications to schizophrenia research. Annu Rev Clin Psychol 2:51–81PubMedGoogle Scholar
  15. Brys M, Pirraglia E, Rich K, Rolstad S, Mosconi L, Switalski R et al (2009) Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging 30(5):682–690PubMedGoogle Scholar
  16. Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37(4):1091–1096, discussion 1097–1099PubMedGoogle Scholar
  17. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedGoogle Scholar
  18. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34):7709–7717PubMedGoogle Scholar
  19. Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, Engel R et al (2002a) CSF tau protein phosphorylated at threonine 231 correlates with cognitive decline in MCI subjects. Neurol 59(4):627–629Google Scholar
  20. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K et al (2002b) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59(8):1267–1272PubMedGoogle Scholar
  21. Buschke H, Fuld PA (1974) Evaluating storage, retention, and retrieval in disordered memory and learning. Neurol 24:1019–1025Google Scholar
  22. Butters N, Grandholm E, Salmon DP, Grant I, Wolfe J (1987) Episodic and semantic memory: a comparison of amnesic and demented patients. J Clin Exp Neuropsychol 9:479–497PubMedGoogle Scholar
  23. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17(1):85–100PubMedGoogle Scholar
  24. Cardenas VA, Du AT, Hardin D, Ezekiel F, Weber P, Jagust WJ et al (2003) Comparison of methods for measuring longitudinal brain change in cognitive impairment and dementia. Neurobiol Aging 24(4):537–544PubMedGoogle Scholar
  25. Caselli RJ, Reiman E, Osborne D, Hentz JG, Baxter LC, Hernandez JL et al (2004) Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE ε4 allele. Neurol 62:1990–1995Google Scholar
  26. Caselli RJ, Reiman EM, Locke DE, Hutton ML, Hentz JG, Hoffman-Snyder C et al (2007) Cognitive domain decline in healthy apolipoprotein E epsilon4 homozygotes before the diagnosis of mild cognitive impairment. Arch Neurol 64(9):1306–1311PubMedGoogle Scholar
  27. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC (2003) Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurol 60:1374–1377Google Scholar
  28. Chetelat G, Eustache F, Viader F, De la Sayette V, Pelerin A, Mezenge F et al (2005) FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11:14–25PubMedGoogle Scholar
  29. Clark CM, Davatzikos C, Borthakur A, Newberg A, Leight S, Lee VM et al (2008) Biomarkers for early detection of Alzheimer pathology. Neurosignals 16(1):11–18PubMedGoogle Scholar
  30. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Sci 261:921–923Google Scholar
  31. Daviglus ML, Bell CC, Berrettini W, Bowen PE, Connolly ES, Cox NJ et al (2010) National Institutes of Health State-of-the-Science Conference Statement: Preventing Alzheimer’s disease and cognitive decline. NIH Consens State Sci Statements 27(4):1–30Google Scholar
  32. De Jager CA, Hogervorst E, Combrinck M, Budge MM (2003) Sensitivity and specificity of neuropsychological tests for mild cognitive impairment, vascular cognitive impairment and Alzheimer’s disease. Psychol Med 33(6):1039–1050PubMedGoogle Scholar
  33. de Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC (1989) Early marker for Alzheimer’s disease: the atrophic hippocampus. Lancet 2(8664):672–673PubMedGoogle Scholar
  34. de Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S et al (2006) Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 27(3):394–401PubMedGoogle Scholar
  35. de Leon MJ, Mosconi L, Li J, De Santi S, Yao Y, Tsui WH et al (2007) Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. J Neurol 254(12):1666–1675PubMedGoogle Scholar
  36. De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, De Deyn PP et al (2010) Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neurol 67(8):949–956PubMedGoogle Scholar
  37. DeCarli C, Mungas D, Harvey D, Reed B, Weiner M, Chui H et al (2004) Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurol 63(2):220–227Google Scholar
  38. Desgranges B, Baron JC, de la Sayette V, Petit-Taboue MC, Benali K, Landeau B et al (1998a) The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization [In Process Citation]. Brain 121(Pt 4):611–631PubMedGoogle Scholar
  39. Desgranges B, Baron JC, Eustache F (1998b) The functional neuroanatomy of episodic memory: the role of the frontal lobes, the hippocampal formation, and other areas. [Review] [120 refs]. Neuroimage 8(2):198–213PubMedGoogle Scholar
  40. Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S et al (2007) Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurol 68(11):828–836Google Scholar
  41. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM et al (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurol 65(3):404–411Google Scholar
  42. DiGirolamo GJ, Kramer AF, Barad V, Cepeda NJ, Weissman DH, Milham MP et al (2001) General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport 12(9):2065–2071PubMedGoogle Scholar
  43. Douville K, Woodard JL, Seidenberg M, Miller SK, Leveroni CL, Nielson KA et al (2005) Medial temporal lobe activity for recognition of recent and remote famous names: an event-related fMRI study. Neuropsychologia 43(5):693–703PubMedGoogle Scholar
  44. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 108(7):3017–3022Google Scholar
  45. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64(3):343–349PubMedGoogle Scholar
  46. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci USA 106(17):7209–7214PubMedGoogle Scholar
  47. Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21(3):187–221PubMedGoogle Scholar
  48. Fletcher PC, Frith CD, Rugg MD (1997) The functional neuroanatomy of episodic memory. Trends Neurosci 20(5):213–218PubMedGoogle Scholar
  49. Fratiglioni L, Ahlbom A, Viitanen M, Winblad B (1993) Risk factors for late-onset Alzheimer’s disease: a population-based, case-control study. Ann Neurol 33(3):258–266PubMedGoogle Scholar
  50. Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RS, Dolan RJ (1996) The trouble with cognitive subtraction. Neuroimage 4(2):97–104PubMedGoogle Scholar
  51. Furst AJ, Mormino EC (2010) A BOLD move: clinical application of fMRI in aging. Neurol 74(24):1940–1941Google Scholar
  52. Grady CL, McIntosh AR, Horwitz B, Maisog JM, Ungerleider LG, Mentis MJ et al (1995) Age-related reductions in human recognition memory due to impaired encoding. Sci 269:218–221Google Scholar
  53. Grady CL, McIntosh AR, Craik FI (2005) Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia 43(10):1466–1481PubMedGoogle Scholar
  54. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642PubMedGoogle Scholar
  55. Gutchess AH, Welsh RC, Hedden T, Bangert A, Minear M, Liu LL et al (2005) Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci 17(1):84–96PubMedGoogle Scholar
  56. Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen N et al (2004a) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry 61(1):95–102PubMedGoogle Scholar
  57. Hampel H, Teipel SJ, Fuchsberger T, Andreasen N, Wiltfang J, Otto M et al (2004b) Value of CSF beta-amyloid1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol Psychiatry 9(7):705–710PubMedGoogle Scholar
  58. Han SD, Houston WS, Jak AJ, Eyler LT, Nagel BJ, Fleisher AS et al (2007) Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging 28(2):238–247PubMedGoogle Scholar
  59. Han SD, Bangen KJ, Bondi MW (2008) Functional magnetic resonance imaging of compensatory neural recruitment in aging and risk for Alzheimer’s disease: review and recommendations. Dement Geriatr Cogn Disord 27(1):1–10PubMedGoogle Scholar
  60. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3):228–234PubMedGoogle Scholar
  61. Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC et al (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurol 72(11):999–1007Google Scholar
  62. Hodges JR, Salmon DP, Butters N (1990) Differential impairment of semantic and episodic memory in Alzheimer’s and Huntington’s diseases: a controlled prospective study. J Neurol Neurosurg Psychiatry 53:1089–1095PubMedGoogle Scholar
  63. Hodges JR, Salmon DP, Butters N (1992) Semantic memory impairment in Alzheimer’s disease: failure of access or degraded knowledge? Neuropsychologia 30(4):301–314PubMedGoogle Scholar
  64. Irle E, Kaiser P, Naumann-Stoll G (1990) Differential patterns of memory loss in patients with Alzheimer’s disease and Korsakoff’s disease. Int J Neurosci 52(1–2):67–77PubMedGoogle Scholar
  65. Jack CR, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ et al (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurol 52:1397–1403Google Scholar
  66. Johnson SC, Saykin AJ, Baxter LC, Flashman LA, Santulli RB, McAllister TW et al (2000) The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage 11(3):179–187PubMedGoogle Scholar
  67. Johnson SC, Schmitz TW, Trivedi MA, Ries ML, Torgerson BM, Carlsson CM et al (2006) The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci 26(22):6069–6076PubMedGoogle Scholar
  68. Juottonen K, Lehtovirta M, Helisalmi S, Riekkinen PJ Sr, Soininen H (1998) Major decrease in the volume of the entorhinal cortex in patients with Alzheimer’s disease carrying the apolipoprotein E epsilon4 allele. J Neurol Neurosurg Psychiatry 65(3):322–327PubMedGoogle Scholar
  69. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K et al (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7(9):812–826PubMedGoogle Scholar
  70. Kircher TT, Weis S, Freymann K, Erb M, Jessen F, Grodd W et al (2007) Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry 78(8):812–818PubMedGoogle Scholar
  71. Knoke D, Taylor AE, Saint-Cyr JA (1998) The differential effects of cueing on recall in Parkinson’s disease and normal subjects. Brain Cogn 38(2):261–274PubMedGoogle Scholar
  72. Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M, Bokde AL et al (2010) Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiol AgingGoogle Scholar
  73. Kok E, Haikonen S, Luoto T, Huhtala H, Goebeler S, Haapasalo H et al (2009) Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 65(6):650–657PubMedGoogle Scholar
  74. Langenecker SA, Nielson KA (2003) Frontal recruitment during response inhibition in older adults replicated with fMRI. Neuroimage 20(2):1384–1392PubMedGoogle Scholar
  75. Li Z, Moore AB, Tyner C, Hu X (2009) Asymmetric connectivity reduction and its relationship to “HAROLD” in aging brain. Brain Res 1295:149–158PubMedGoogle Scholar
  76. Lind J, Persson J, Ingvar M, Larsson A, Cruts M, Van Broeckhoven C et al (2006) Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain 129(Pt 5):1240–1248PubMedGoogle Scholar
  77. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33(5):827–840PubMedGoogle Scholar
  78. Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME et al (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA 100(24):14504–14509PubMedGoogle Scholar
  79. Matsumae M, Kikinis R, Morocz IA, Lorenzo AV, Sandor T, Albert MS et al (1996) Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. J Neurosurg 84(6):982–991PubMedGoogle Scholar
  80. Michielse S, Coupland N, Camicioli R, Carter R, Seres P, Sabino J et al (2010) Selective effects of aging on brain white matter microstructure: a diffusion tensor imaging tractography study. NeuroImage 52(4):1190–1201PubMedGoogle Scholar
  81. Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC (2008) Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 79(6):630–635PubMedGoogle Scholar
  82. Mondadori CR, Buchmann A, Mustovic H, Schmidt CF, Boesiger P, Nitsch RM et al (2006) Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain 129(Pt 11):2908–2922PubMedGoogle Scholar
  83. Mondadori CR, de Quervain DJ, Buchmann A, Mustovic H, Wollmer MA, Schmidt CF et al (2007) Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cereb Cortex 17(8):1934–1947PubMedGoogle Scholar
  84. Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR 2nd, Lewis DV et al (2009) A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45(3):855–866PubMedGoogle Scholar
  85. Morra JH, Tu Z, Apostolova LG, Green AE, Avedissian C, Madsen SK et al (2009) Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer’s disease, mild cognitive impairment, and elderly controls. Hum Brain Mapp 30(9):2766–2788PubMedGoogle Scholar
  86. Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C et al (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207(1):35–66PubMedGoogle Scholar
  87. Nebes RD (1989) Semantic memory in Alzheimer’s disease. Psychol Bull 106(3):377–394PubMedGoogle Scholar
  88. Nestor PJ, Scheltens P, Hodges JR (2004) Advances in the early detection of Alzheimer’s disease. Nat Med 10:S34–S41PubMedGoogle Scholar
  89. Nielson KA, Langenecker SA, Garavan H (2002) Differences in the functional neuroanatomy of inhibitory control across the adult lifespan. Psychol Aging 17(1):56–57PubMedGoogle Scholar
  90. Nielson KA, Langenecker SA, Ross TJ, Garavan H, Rao SM, Stein EA (2004) Comparability of functional MRI response in young and old during inhibition. Neuroreport 15(1):129–133PubMedGoogle Scholar
  91. Nielson KA, Douville KL, Seidenberg M, Woodard JL, Miller SK, Franczak M et al (2006) Age-related functional recruitment for famous name recognition: an event-related fMRI study. Neurobiol Aging 27(10):1494–1504PubMedGoogle Scholar
  92. Nilsson LG (2003) Memory function in normal aging. Acta Neurol Scand 179:7–13Google Scholar
  93. O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC et al (2010) Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurol 74(24):1969–1976Google Scholar
  94. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196PubMedGoogle Scholar
  95. Persson J, Nyberg L, Lind J, Larsson A, Nilsson LG, Ingvar M et al (2006) Structure-function correlates of cognitive decline in aging. Cereb Cortex 16(7):907–915PubMedGoogle Scholar
  96. Petersen R, Smith G, Kokmen E, Ivnik R, Tangalos E (1992) Memory function in normal aging. Neurol 42:396–401Google Scholar
  97. Petersen RC, Smith GE, Ivnik RJ, Kokmen E, Tangalos EG (1994) Memory function in very early Alzheimer’s disease. Neurology 44:867–872PubMedGoogle Scholar
  98. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome [In Process Citation]. Arch Neurol 56(3):303–308PubMedGoogle Scholar
  99. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurol 56(9):1133–1142Google Scholar
  100. Petrella JR, Prince SE, Wang L, Hellegers C, Doraiswamy PM (2007) Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One 2(10):e1104PubMedGoogle Scholar
  101. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689PubMedGoogle Scholar
  102. Reiman EM, Langbaum JB, Tariot PN (2010) Alzheimer’s prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible. Biomark Med 4(1):3–14PubMedGoogle Scholar
  103. Rolland Y, Abellan van Kan G, Vellas B (2008) Physical activity and Alzheimer’s disease: from prevention to therapeutic perspectives. J Am Med Dir Assoc 9(6):390–405PubMedGoogle Scholar
  104. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26(4):231–239PubMedGoogle Scholar
  105. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurol 68(20):1718–1725Google Scholar
  106. Saczynski JS, Pfeifer LA, Masaki K, Korf ES, Laurin D, White L et al (2006) The effect of social engagement on incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol 163(5):433–440PubMedGoogle Scholar
  107. Saunders AM, Strittmatter WJ, Schmechel D, St. George-Hyslop PH, Pericak-Vance MA, Joo SH et al (1993) Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer’s disease. Neurol 43:1467–1472Google Scholar
  108. Seidenberg M, Guidotti L, Nielson KA, Woodard JL, Durgerian S, Antuono P et al (2009a) Semantic memory activation in individuals at risk for developing Alzheimer disease. Neurology 73(8):612–620PubMedGoogle Scholar
  109. Seidenberg M, Guidotti L, Nielson KA, Woodard JL, Durgerian S, Zhang Q et al (2009b) Semantic knowledge for famous names in mild cognitive impairment. J Int Neuropsychol Soc 15(1):9–18PubMedGoogle Scholar
  110. Smith CD, Kryscio RJ, Schmitt FA, Lovell MA, Blonder LX, Rayens WS et al (2005) Longitudinal functional alterations in asymptomatic women at risk for Alzheimer’s disease. J Neuroimaging 15(3):271–277PubMedGoogle Scholar
  111. Smith JC, Nielson KA, Woodard JL, Seidenberg M, Durgerian S, Antuono P et al (2011) Interactive effects of physical activity and APOE-epsilon4 on BOLD semantic memory activation in healthy elders. Neuroimage 54(1):635–644PubMedGoogle Scholar
  112. Stebbins GT, Carrillo MC, Dorfman J, Dirksen C, Desmond JE, Turner DA et al (2002) Aging effects on memory encoding in the frontal lobes. Psychol Aging 17(1):44–55PubMedGoogle Scholar
  113. Stoub TR, Rogalski EJ, Leurgans S, Bennett DA, de Tolego-Morrell L (2010) Rate of entorhinal and hippocampal atrophy in incipient and mild AD: relation to memory functioning. Neurobiol Aging 31(7):1089–1098PubMedGoogle Scholar
  114. Swan GE, Lessov-Schlaggar CN, Carmelli D, Schellenberg GD, La Rue A (2005) Apolipoprotein E epsilon4 and change in cognitive functioning in community-dwelling older adults. J Geriatr Psychiatry Neurol 18(4):196–201PubMedGoogle Scholar
  115. Tae WS, Kim SS, Lee KU, Nam EC, Kim KW (2008) Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiol 50(7):569–581Google Scholar
  116. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  117. Trachtenberg AJ, Filippini N, Mackay CE (2010) The effects of APOE-epsilon4 on the BOLD response. Neurobiol AgingGoogle Scholar
  118. Trivedi MA, Schmitz TW, Ries ML, Hess TM, Fitzgerald ME, Atwood CS et al (2008) fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer’s disease. Neuropsychologia 46(6):1667–1678PubMedGoogle Scholar
  119. Vannini P, Almkvist O, Dierks T, Lehmann C, Wahlund LO (2007) Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Res 156(1):43–57PubMedGoogle Scholar
  120. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31(2):496–504PubMedGoogle Scholar
  121. Wechsler D (1945) A standardized memory scale for clinical use. J Psychol 19:87–95Google Scholar
  122. Wilson RS, Bennett DA, Bienias JL, Mendes de Leon CF, Morris MC, Evans DA (2003) Cognitive activity and cognitive decline in a biracial community population. Neurol 61(6):812–816Google Scholar
  123. Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA (2007) Relation of cognitive activity to risk of developing Alzheimer disease. Neurol 69(20):1911–1920Google Scholar
  124. Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO (2003) A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand 179:52–76Google Scholar
  125. Wolk DA, Klunk W (2009) Update on amyloid imaging: from healthy aging to Alzheimer’s disease. Curr Neurol Neurosci Rep 9(5):345–352PubMedGoogle Scholar
  126. Wolk DA, Price JC, Saxton JA, Snitz BE, James JA, Lopez OL et al (2009) Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol 65(5):557–568PubMedGoogle Scholar
  127. Woodard JL, Seidenberg M, Nielson KA, Antuono P, Guidotti L, Durgerian S et al (2009) Semantic memory activation in amnestic mild cognitive impairment. Brain 132(Pt 8):2068–2078PubMedGoogle Scholar
  128. Woodard JL, Seidenberg M, Nielson KA, Smith JC, Antuono P, Durgerian S et al (2010) Prediction of cognitive decline in healthy older adults using fMRI. J Alzheimers Dis 21(3):871–885PubMedGoogle Scholar
  129. Woodard JL, Nielson KA, Sugarman MA, Smith JC, Seidenberg M, Durgerian S et al (Manuscript under review). Lifestyle and genetic contributions to cognitive decline and hippocampal integrity and healthy agingGoogle Scholar
  130. Xu G, McLaren DG, Ries ML, Fitzgerald ME, Bendlin BB, Rowley HA et al (2009) The influence of parental history of Alzheimer’s disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain 132(Pt 2):383–391PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PsychologyWayne State UniversityDetroitUSA

Personalised recommendations