Skip to main content

The Pig as a Model Animal for Studying Cognition and Neurobehavioral Disorders

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 7))

Abstract

In experimental animal research, a short phylogenetic distance, i.e., high resemblance between the model species and the species to be modeled is expected to increase the relevance and generalizability of results obtained in the model species. The (mini)pig shows multiple advantageous characteristics that have led to an increase in the use of this species in studies modeling human medical issues, including neurobehavioral (dys)functions. For example, the cerebral cortex of pigs, unlike that of mice or rats, has cerebral convolutions (gyri and sulci) similar to the human neocortex. We expect that appropriately chosen pig models will yield results of high translational value. However, this claim still needs to be substantiated by research, and the area of pig research is still in its infancy. This chapter provides an overview of the pig as a model species for studying cognitive dysfunctions and neurobehavioral disorders and their treatment, along with a discussion of the pros and cons of various tests, as an aid to researchers considering the use of pigs as model animal species in biomedical research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADME:

Absorption, distribution, metabolism, and excretion

APPsw:

Amyloid precursor protein, Swedish mutation

CNS:

Central nervous system

CS:

Conditioned stimulus

HCA:

Hypothermic circulatory arrest

HPA:

Hypothalamic–pituitary–adrenal

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

ORT:

Object recognition test

PET:

Positron emission tomography

RNA:

Ribonucleic acid

US:

Unconditioned stimulus

References

  • Aigner B, Renner S, Kessler B et al (2010) Transgenic pigs as models for translational biomedical research. J Mol Med 88:653–664

    Article  PubMed  Google Scholar 

  • Alisky JM (2006) Neurotransmitter depletion may be a cause of dementia pathology rather than an effect. Med Hypotheses 67:556–560

    Article  PubMed  CAS  Google Scholar 

  • Alvarez FJ, Lafuente H, Rey-Santano MC et al (2008) Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr Res 64:653–658

    Article  PubMed  CAS  Google Scholar 

  • Amaral AJ, Megens H-J, Kerstens HDH et al (2009) Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 10:374

    Article  PubMed  CAS  Google Scholar 

  • Arnfred SM, Lind NM, Hansen AK et al (2004) Pre-pulse inhibition of the acoustic startle eye-blink in the Göttingen minipig. Behav Brain Res 151:295–301

    Article  PubMed  Google Scholar 

  • Arts J, van der Staay FJ, Ekkel ED (2009) Working and reference memory of pigs in the spatial holeboard discrimination task. Behav Brain Res 205:303–306

    Article  PubMed  Google Scholar 

  • Bailey J (2005) Non-human primates in medical research and drug development: a critical review. Biogenic Amines 9:235–255

    Article  Google Scholar 

  • Baldwin BA, Stephens DB (1971) The effects of conditioned behaviour and environmental factors on plasma corticosteroid levels in pigs. Physiol Behav 10:267–274

    Article  Google Scholar 

  • Bardin L, Auclair A, Kleven MS et al (2007) Pharmacological profiles in rats of novel antipsychotics with combined dopamine D2/serotonin 5-HT1A activity: comparison with typical and atypical conventional antipsychotics. Behav Pharmacol 18:103–118

    Article  PubMed  CAS  Google Scholar 

  • Barnes RH, Moore U, Pond WG (1969) Behavioural abnormalities in young adult pigs caused by malnutrition in early life. J Nutr 100:149–155

    Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    Article  PubMed  CAS  Google Scholar 

  • Benatar M (2007) Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26:1–13

    Article  PubMed  CAS  Google Scholar 

  • Branchi I, Bichler Z, Berger-Sweeney J et al (2003) Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev 27:141–153

    Article  PubMed  CAS  Google Scholar 

  • Broom DM, Sena H, Moynihan KL (2009) Pigs learn what a mirror image represents and use it to obtain information. Anim Behav 78:1037–1041

    Article  Google Scholar 

  • Brust P, Zessin J, Kuwabara H et al (2003) Positron emission tomography imaging of the serotonin transporter in the pig brain using [C11](+)-McN5652 and S-([F18]fluoromethyl)-(+)-McN5652. Synapse 47:143–151

    Article  PubMed  CAS  Google Scholar 

  • Brust P, Patt JT, Deuther-Conrad W et al (2008) In vivo measurement of nicotinic acetylcholine receptors with [F-18]norchloro-fluoro-homoepibatidine. Synapse 62:205–218

    Article  PubMed  CAS  Google Scholar 

  • Burke C, Sinclair K, Cowin G et al (2006) Intrauterine growth restriction due to uteroplacental vascular insufficiency leads to increased hypoxia-induced cerebral apoptosis in newborn piglets. Brain Res 1098:19–25

    Article  PubMed  CAS  Google Scholar 

  • Cady EB, Iwata O, Bainbridge A et al (2008) Phosphorus magnetic resonance spectroscopy 2 h after perinatal cerebral hypoxia-ischemia prognosticates outcome in the newborn piglet. J Neurochem 107:1027–1035

    PubMed  CAS  Google Scholar 

  • Chaput RL, Barron EL, Marrenfeltz JK (1973) The miniature pig: a biomedical model for behavioural studies. Lab Anim Sci 23:711–715

    Google Scholar 

  • Chen K, Baxter T, Muir WM et al (2007) Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci 3:153–165

    Article  PubMed  Google Scholar 

  • Cheng Y, Liu GR, Guan JT et al (2005) Early diffusion weighted imaging and expression of heat shock protein 70 in newborn pigs with hypoxic ischaemic encephalopathy. Postgrad Med J 81:589–593

    Article  PubMed  CAS  Google Scholar 

  • Cocchi M, Sardi L, Tonello L et al (2008) Do mood disorders play a role in pig welfare? Ital J Anim Sci 8:691–704

    Google Scholar 

  • Croney CC, Adams KM, Washington CG et al (2003) A note on visual, olfactory and spatial cue use in foraging behaviour of pigs: indirectly assessing cognitive abilities. Appl Anim Behav Sci 83:303–308

    Article  Google Scholar 

  • Cryan JF, Holmes A (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  PubMed  CAS  Google Scholar 

  • Danielsen EH, Smith DF, Andersen F et al (2001) FDOPA metabolism in the adult porcine brain: influence of tracer circulation time and VOI selection on estimates of striatal DOPA decarboxylatio. J Neurosci Methods 111:157–168

    Article  PubMed  CAS  Google Scholar 

  • de Groot J, Boersma W, van der Staay FJ et al (2005) Development of domestic animal models for the study of the ontogeny of human disease. In: Hodgson D, Coe C (eds) Perinatal programming: early life determinants of adult health and disease. Taylor & Francis, London

    Google Scholar 

  • de Jong IC, Prelle IT, van de Burgwall JA et al (2000) Effects of environmental enrichment on behavioral responses to novelty, learning, and memory, and the circadian rhythm in cortisol in growing pigs. Physiol Behav 68:571–578

    Article  PubMed  Google Scholar 

  • de Souza AS, Jansen J, Tempelman RJ et al (2006) A novel method for testing social recognition in young pigs and the modulating effects of relocation. Appl Anim Behav Sci 99:77–87

    Article  Google Scholar 

  • Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26:1465–1478

    Article  PubMed  Google Scholar 

  • Duhaime AC, Margulies SS, Durham SR et al (2000) Maturation-dependent response of the piglet brain to scaled cortical impact. J Neurosurg 93:455–462

    Article  PubMed  CAS  Google Scholar 

  • Duhaime AC, Hunter JV, Grate LL et al (2003) Magnetic resonance imaging studies of age-dependent responses to scaled focal brain injury in the piglet. J Neurosurg 99:542–548

    Article  PubMed  Google Scholar 

  • Duhaime AC, Saykin AJ, McDonald BC et al (2006) Functional magnetic resonance imaging of the primary somatosensory cortex in piglets. J Neurosurg 104:259–264

    PubMed  Google Scholar 

  • Durham SR, Raghupathi R, Helfaer MA et al (2000) Age-related differences in acute physiologic response to focal traumatic brain injury in piglets. Pediatr Neurosurg 33:76–82

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Meliani K (1992) A new one-trial test for neurobiological studies of memory in rats III spatial vs non-spatial working memory. Behav Brain Res 51:83–92

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur AAC, Costa JC, Delacour J (1989) A new one-trial test for neurobiological studies of memory in rats II: effects of piracetam and pramiracetam. Behav Brain Res 33:197–207

    Article  PubMed  CAS  Google Scholar 

  • Ettrup A, Palner M, Gillings N et al (2009) [11C]-CIMBI5: a novel 5-HT2A agonist PET tracer. J Nucl Med 50:490

    Article  Google Scholar 

  • Fang MR, Lorke DE, Li JC et al (2005) Postnatal changes in functional activities of the pig’s brain: a combined functional magnetic resonance imaging and immunohistochemical study. Neurosignals 14:222–233

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SA, Gopee NV, Paule MG et al (2009) Female mini-pig performance of temporal response differentation, incremental repeated acquisition, progressive ratio operant tasks. Behav Process 80:28–34

    Article  Google Scholar 

  • Festing MFA (2006) Design and statistical methods in studies using animal models of development. ILAR J 47:5–14

    Article  PubMed  CAS  Google Scholar 

  • Friess SH, Ichord RN, Owens K et al (2007) Neurobehavioural functional deficits following closed head injury in the neonatal pig. Exp Neurol 204:234–243

    Article  PubMed  Google Scholar 

  • Gad SC (2007) Animal models in toxicology, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Gifford AK (2005) Assessing object recognition memory in the domestic pig. MSc thesis, Washington State University, Washington DC, USA

    Google Scholar 

  • Gifford AK, Cloutier S, Newberry RC (2007) Effect of object exposure time and delay interval on object recognition memory of the domestic pig. Appl Anim Behav Sci 107:206–217

    Article  Google Scholar 

  • Gizewski ER, Schanze T, Bolle I et al (2007) Visualization of the visual cortex in minipigs using fMRI. Res Vet Sci 82:281–286

    Article  PubMed  Google Scholar 

  • Grate LL, Golden JA, Hoopes PJ et al (2003) Traumatic brain injury in piglets of different ages: techniques for lesion analysis using histology and magnetic resonance imaging. J Neurosci Methods 123:201–206

    Article  PubMed  Google Scholar 

  • Hagl C, Weisz DJ, Khaladj N et al (2005) Use of a maze to detect cognitive dysfunction in a porcine model of hypothermic circulatory arrest. Ann Thorac Surg 79:1307–1315

    Article  PubMed  Google Scholar 

  • Hammell DL, Kratzer DD, Bramble WJ (1975) Avoidance and maze learning in pigs. J Anim Sci 40:573–579

    PubMed  CAS  Google Scholar 

  • Held S, Mendl M, Devereux C et al (2000) Social tactics of pigs in a competitive foraging task: the ‘informed forager’ paradigm. Anim Behav 59:569–576

    Article  PubMed  Google Scholar 

  • Held S, Mendl M, Devereux C et al (2001) Behaviour of domestic pigs in a visual perspective task. Behaviour 138:1337–1354

    Article  Google Scholar 

  • Held S, Baumgartner J, Kilbride A et al (2005) Foraging behaviour in domestic pigs (Sus scrofa): remembering and prioritizing food sites of different value. Anim Cogn 8:114–121

    Article  PubMed  CAS  Google Scholar 

  • Holmes PV (2003) Rodent models of depression: reexamining validity without anthropomorphic interference. Crit Rev Neurobiol 15:142–174

    Article  Google Scholar 

  • Holtz W (2010) Pigs and minipigs. In: The UFAW handbook on the care and management of laboratory and other research animals, 8th edn. Wiley Blackwell, New York

    Google Scholar 

  • Hoyer D (2007) RNA interference for studying the molecular basis of neuropsychiatric disorders. Curr Opin Drug Discov Dev 10:122–129

    CAS  Google Scholar 

  • International Organization for Standardization (2002) ISO 10993-4, Biological evaluation of medical devices – Part 4: Selection of tests for interactions with blood. ISO, Geneva

    Google Scholar 

  • Iwata O, Iwata S, Bainbridge A et al (2008) Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome. Brain 131:2220–2226

    Article  PubMed  Google Scholar 

  • Kaandorp JJ, Benders MJNL, Rademaker CMA et al (2010) Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial); a randomized double blind placebo controlled multicenter study. BMC Pregnancy Childbirth 10:8

    Article  PubMed  CAS  Google Scholar 

  • Kendler KS, Hettema JM, Butera F et al (2003) Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Arch Gen Psychiatry 60:789–796

    Article  PubMed  Google Scholar 

  • Kennedy JM, Baldwin BA (1972) Taste preference in pigs for nutritive and non-nutritive sweet solutions. Anim Behav 20:706–718

    Article  PubMed  CAS  Google Scholar 

  • Klymiuk N, Aigner B, Brehm G et al (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77:221

    Google Scholar 

  • Koopmans SJ, Dekker R, van der Meulen J et al (2009) Aspects of the metabolic syndrome in domestic pigs fed a high saturated-fat, fructose, and cholesterol diet. J Diabetes 1:A236

    Article  CAS  Google Scholar 

  • Kornum BR, Thygesen KS, Nielsen TR et al (2007a) The effect of the inter-phase delay interval in the spontaneous object recognition test for pigs. Behav Brain Res 181:210–217

    Article  PubMed  Google Scholar 

  • Kornum BR, Lind NM, Gillings N et al (2007b) Evaluation of the novel 5-HT4 receptor PET ligand [C11]SB207145 in the Göttingen minipig. J Cereb Blood Flow Metab 29:186–196

    Article  CAS  Google Scholar 

  • Kragh PM, Nielsen AL, Li J et al (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18:545–558

    Article  PubMed  CAS  Google Scholar 

  • Kratzer DD (1969) Effects of age on avoidance learning in pigs. J Anim Sci 28:175–179

    PubMed  CAS  Google Scholar 

  • Kratzer DD (1971) Learning in farm animals. J Anim Sci 32:1268–1273

    PubMed  CAS  Google Scholar 

  • Kristensen HH, Jones RB, Schofield CP (2001) The use of olfactory and other cues for social recognition by juvenile pigs. Appl Anim Behav Sci 72:321–333

    Article  PubMed  Google Scholar 

  • Kurth CD, Levy WJ, McCann J (2002) Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab 22:335–341

    Article  PubMed  CAS  Google Scholar 

  • Laughlin K, Mendl M (2000) Pigs shift too: foraging strategies and spatial memory in the domestic pig. Anim Behav 60:403–410

    Article  PubMed  Google Scholar 

  • Laughlin K, Huck M, Mendl M (1999) Disturbance effects of environmental stimuli on pig spatial memory. Appl Anim Behav Sci 64:169–180

    Article  Google Scholar 

  • Leffler CW, Busija DW, Mirro R (1989) Effects of ischemia on brain blood flow and oxygen consumption of newborn pigs. Am J Physiol 257:H1917–H1926

    PubMed  CAS  Google Scholar 

  • Lind NM, Arnfred SM, Hemmingsen RP (2004) Prepulse inhibition of the acoustic startle reflex in pigs and its disruption by D-amphetamine. Behav Brian Res 155:217–222

    Article  CAS  Google Scholar 

  • Lind NM, Arnfred SM, Hemmingsen RP et al (2005a) Open field behaviour and reaction to novelty in Göttingen minipigs: effects of amphetamine and haloperidol. Scand J Lab Anim Sci 32:103–112

    CAS  Google Scholar 

  • Lind NM, Olsen AK, Moustgaard A et al (2005b) Mapping the amphetamine-evoked dopamine release in the brain of the Göttingen minipig. Brain Res Bull 65:1–9

    Article  PubMed  CAS  Google Scholar 

  • Lind NM, Moustgaard A, Jelsing J et al (2007) The use of pigs in neuroscience: modelling brain disorders. Neurosci Biobehav Rev 31:728–751

    Article  PubMed  CAS  Google Scholar 

  • Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3:179–184

    Article  PubMed  CAS  Google Scholar 

  • Lyng K, Munkeby BH, Scheie D et al (2006) Fetal brain injury in experimental intrauterine asphyxia and inflammation in Gottingen minipigs. J Perinat Med 34:226–234

    Article  PubMed  Google Scholar 

  • McGoron AJ, Capille M, Georgiou MF et al (2008) Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping. BMC Med Imaging 8:4

    Article  PubMed  Google Scholar 

  • McLeman MA, Mendl M, Jones RB et al (2005) Discrimination of conspecifics by juvenile domestic pigs, sus scrofa. Anim Behav 70:451–461

    Article  Google Scholar 

  • Mendl M, Laughlin K, Hitchcock D (1997) Pigs in space: spatial memory and its susceptibility to interference. Anim Behav 54:1491–1508

    Article  PubMed  Google Scholar 

  • Miller I, Wait R, Sipos W et al (2009) A proteomic reference map for pig serum proteins as a prerequisite for diagnostic applications. Res Vet Sci 86:362–367

    Article  PubMed  CAS  Google Scholar 

  • Mortensen JT, Brinck P, Lichtenberg J (1998) The minipig in dermal toxicology. A literature review. Scand J Lab Anim Sci 25:77–83

    Google Scholar 

  • Moustgaard A, Lind NM, Hemmingsen R et al (2002) Spontaneous object recognition in the Göttingen minipig. Neural Plast 9:255–259

    Article  PubMed  Google Scholar 

  • Moustgaard A, Arnfred SM, Lind NM et al (2004) Discriminations, reversals, and extra-dimensional shifts in the Göttingen minipig. Behav Process 67:27–37

    Article  Google Scholar 

  • Moustgaard A, Arnfred SM, Lind NM et al (2005) Acquisition of visually guided conditional associative tasks in Göttingen minipigs. Behav Processes 68:97–102

    Article  PubMed  Google Scholar 

  • Moxon-Lester L, Sinclair K, Burke C et al (2007) Increased cerebral lactate during hypoxia may be neuroprotective in newborn piglets with intrauterine growth restriction. Brain Res 1179:79–88

    Article  PubMed  CAS  Google Scholar 

  • Munkeby BH, De Lange C, Emblem KE et al (2008) A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol 49:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Nielsen TR, Kornum BR, Moustgaard A et al (2008) A novel spatial delayed non-match to sample (DNMS) task in the Göttingen minipig. Behav Brain Res 196:93–98

    Article  PubMed  Google Scholar 

  • Niemann H, Kues WA (2007) Transgenic farm animals: an update. Reprod Fertil Dev 19:762–770

    Article  PubMed  Google Scholar 

  • Noble M, Adams CK (1963) Conditioning in pigs as a function of the interval between CS and US. J Comp Physiol Psychol 56:215–219

    Article  Google Scholar 

  • Nordquist RE, Savignac H, Pauly-Evers M et al (2008) Characterization of behavioral response to amphetamine, tyrosine hydroxylase levels and dopamine receptor levels in neurokinin 3 receptor knockout mice. Behav Pharmacol 19:518–529

    Article  PubMed  CAS  Google Scholar 

  • Nunoya T, Shibuya K, Saitoh T et al (2007) Use of miniature pig for biomedical research, with reference to toxicologic studies. J Toxicol Pathol 20:125–132

    Article  CAS  Google Scholar 

  • O’Brien FE, Iwata O, Thornton JS et al (2006) Delayed whole-body cooling to 33 or 35 degrees C and the development of impaired energy generation consequential to transient cerebral hypoxia-ischemia in the newborn piglet. Pediatrics 117:1549–1559

    Article  PubMed  Google Scholar 

  • Odden JP, Stiris T, Hansen TW et al (1989) Cerebral blood flow during experimental hypoxaemia and ischaemia in the newborn piglet. Acta Paediatr Scand Suppl 360:13–19

    Article  PubMed  CAS  Google Scholar 

  • Passchier J, Gentile G, Porter R et al (2010) Identification and evaluation of [11C]GSK931145 as a novel ligand for imaging the type 1 glycine transporter with positron emission tomography. Synapse 64:542–549

    Article  PubMed  CAS  Google Scholar 

  • Patt JT, Spang JE, Westera G et al (1999) Synthesis and in vivo studies of [C-11]N-methylepibatidine: comparison of the stereoisomers. Nucl Med Biol 26:165–173

    Article  PubMed  CAS  Google Scholar 

  • Patt JT, Deuther-Conrad W, Brust P et al (2005) Norchloro-[F-18]fluorohomoepibatidin: PET evaluation of tracer properties in pigs. J Label Comp Radiopharm 48

    Google Scholar 

  • Patt JT, Spang JE, Buck A et al (2010) Synthesis and in vivo studies of the stereoisomers of N-[C-11]methyl-homoepibatidine. Nucl Med Biol 28:645–655

    Article  Google Scholar 

  • Peacock L, Gerlach J (1999) New and old antipsychotics verus clozapine in a monkey model: adverse effects and antiamphetamine effects. Psychopharmacology (Berl) 144:189–197

    Article  CAS  Google Scholar 

  • Peacock L, Hansen L, Mørkeberg F et al (1999) Chronic dopamine D1, dopamine D2 and combined dopamine D1 and D2 antagonist treatment in cebus apella monkeys: antiamphetamine effects and extrapyramidal side effects. Neuropsychopharmacology 20:35–43

    Article  PubMed  CAS  Google Scholar 

  • Peeters-Scholte C, van den Tweel E, Ioroi T et al (2002a) Pharmacological interventions in the newborn piglet in the first 24 h after hypoxia-ischemia: a hemodynamic and electrophysiological perspective. Exp Brain Res 147:200–208

    Article  PubMed  CAS  Google Scholar 

  • Peeters-Scholte C, Koster J, van den Tweel E et al (2002b) Effects of selective nitric oxide synthase inhibition on IGF-1, caspases and cytokines in a newborn piglet model of perinatal hypoxia-ischaemia. Dev Neurosci 24:396–404

    Article  PubMed  CAS  Google Scholar 

  • Peeters-Scholte C, Koster J, Veldhuis W et al (2002c) Neuroprotection by selective nitric oxide synthase inhibition at 24 hours after perinatal hypoxia-ischemia. Stroke 33:2304–2310

    Article  PubMed  CAS  Google Scholar 

  • Peeters-Scholte C, Braun K, Koster J et al (2003) Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res 54:516–522

    Article  PubMed  CAS  Google Scholar 

  • Petersen B, Carnwath JW, Niemann H (2009) The perspectives for porcine-to-human xenograft. Comp Immunol Microbiol Infect Dis 32:91–105

    Article  PubMed  Google Scholar 

  • Plisson C, Gunn RN, Cunningham VJ et al (2009) 11C-GSK189254: a selective radioligand for in vivo central nervous system imaging of histamine H3 receptors by PET. Nucl Med Biol 50:2064–2072

    Article  CAS  Google Scholar 

  • Prather RS, Shen M, Dai Y (2008) Genetically modified pigs for medicine and agriculture. Biotechnol Gene Eng Rev 25:245–266

    CAS  Google Scholar 

  • Ramos AM, Crooijmans RPMA, Affara NA et al (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4(8):e6524

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LP (2009) Perspectives: the decline of domestic animal research in agriculture and biomedicin. J Anim Sci 87:4181–4182

    Article  PubMed  CAS  Google Scholar 

  • Roberts RM, Smith GW, Bazer FW et al (2003) Farm animal research in crisis. Science 324:468–469

    Article  Google Scholar 

  • Robertson NJ, Iwata O (2007) Bench to bedside strategies for optimizing neuroprotection following perinatal hypoxia-ischaemia in high and low resource settings. Early Hum Dev 83:801–811

    Article  PubMed  Google Scholar 

  • Rollin BE (2006) The regulation of animal research and the emergence of animal ethics: a conceptual history. Theor Med and Bioeth 27:265–285

    Article  Google Scholar 

  • Sachs DH, Galli C (2009) Genetic manipulation in pigs. Curr Opin Organ Transplant 14:148–158

    Article  PubMed  Google Scholar 

  • Salahpour A, Medvedev IO, Beaulieu J-M, Gainetdinov RR, Caron MG et al (2007) Local knockout of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61:66–69

    Article  CAS  Google Scholar 

  • Sauleau P (2009) The pig model in brain imaging and neurosurgery. Animal 3:1138–1151

    Article  PubMed  CAS  Google Scholar 

  • Schook L, Beattie C, Beever J et al (2005) Swine in biomedical research: creating the building blocks of animal models. Anim Biotechnol 16:183–190

    Article  PubMed  Google Scholar 

  • Siegford JM, Rucker G, Zanella AJ (2008) Effects of pre-weaning exposure to a maze on stress responses in pigs at weaning and on subsequent performance in spatial and fear-related tests. Appl Anim Behav Sci 110:189–202

    Article  Google Scholar 

  • Sik A, van Nieuwehuyzen P, Prickaerts J et al (2003) Performance of different mouse strains in an object recognition task. Behav Brain Res 14:49–54

    Article  Google Scholar 

  • Skold BH, Getty R, Ramsey FK (1966) Spontaneous atherosclerosis in the arterial system of aging swine. Am J Vet Res 27:257–273

    PubMed  CAS  Google Scholar 

  • Sneddon IA, Beattie VE, Dunne L et al (2000) The effect of environmental enrichment on learning in pigs. Anim Welf 9:373–383

    Google Scholar 

  • Spinka M, Duncan IJH, Widowski TM (1998) Do domestic pigs prefer short-term to medium-term confinement? Appl Anim Behav Sci 58:221–232

    Article  Google Scholar 

  • Swindle M, Smith A (1998) Comparative anatomy and physiology of the pig. Scand J Lab Anim Sci 25:11–21

    Google Scholar 

  • Tuggle CK, Wang Y, Couture O (2007) Advances in swine transcriptomics. Int J Biol Sci 3:132–152

    Article  PubMed  CAS  Google Scholar 

  • van der Beek EM, Wiegant VM, Schouten WPG et al (2004) Neuronal number, volume, and apoptosis of the left dentate gyrus of chronically stressed pigs correlate negatively with basal saliva cortisol levels. Hippocampus 14:688–700

    Article  PubMed  CAS  Google Scholar 

  • van der Meulen J, Dekker R, Kuunders D et al (2009) The obese Göttingen minipig as a model of the metabolic syndrome: blood pressure and the electrocardiogram. J Diabetes 1:A247

    Google Scholar 

  • van der Staay FJ (2006) Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev 52:131–159

    Article  PubMed  Google Scholar 

  • van der Staay FJ, de Groot J, van Reenen CG et al (2007) Effects of Butafosfan on salivary cortisol and behavioral response to social stress in piglets. J Vet Pharmacol Ther 30:410–416

    Article  CAS  Google Scholar 

  • van der Staay FJ, de Groot J, Schuurman T et al (2008) Repeated social defeat in female pigs does not induce neuroendocrine symptoms of depression but behavioral adaptation. Physiol Behav 93:453–460

    Article  PubMed  CAS  Google Scholar 

  • van der Staay FJ, Arndt SS, Nordquist RE (2009a) Evaluation of animal models of neurobehavioral disorders. Behav Brain Funct 5:11

    Article  PubMed  Google Scholar 

  • van der Staay FJ, Pouzet B, Mahieu M et al (2009b) The d-amphetamine treated Göttingen miniature pig: an animal model for assessing behavioral effects of antipsychotics. Psychopharmacology 206:715–729

    Article  PubMed  CAS  Google Scholar 

  • van der Staay FJ, Schuurman T, Hulst M et al (2010) Effects of recurrent chronic stress: a comparison between tethered and loose sows. Physiol Behav 100:154–164

    Article  PubMed  CAS  Google Scholar 

  • van Dijk AJ, van Loon JP, Taverne MA et al (2008) Umbilical cord clamping in term piglets: a useful model to study perinatal asphyxia? Theriogenology 70:662–674

    Article  PubMed  Google Scholar 

  • Vial F, Serriere S, Barantin L et al (2004) A newborn piglet study of moderate hypoxic-ischemic brain injury by 1H-MRS and MRI. Magn Reson Imaging 22:457–465

    Article  PubMed  CAS  Google Scholar 

  • Vodička P, Smetana K, Dvořánková B et al (2005) The miniature pig as an animal model in biomedical research. Ann NY Acad Sci 1049:161–171

    Article  PubMed  Google Scholar 

  • Wainwright PE, Colombo J (2006) Nutrition and the development of cognitive functions: interpretation of behavioural studies in animals and human infants. Am J Clin Nutr 84:961–970

    PubMed  CAS  Google Scholar 

  • Wang B, Yu B, Karim M et al (2007) Dietary sialic acid supplementation improves learning and memory in piglets. Am J Clin Nutr 85:561–569

    PubMed  CAS  Google Scholar 

  • Webster J, Bollen P, Grimm H et al (2010) Ethical implications of using the minipig in regulatory toxicology studies. J Pharmacol Toxicol Methods 62(3):160–6

    Article  PubMed  CAS  Google Scholar 

  • Wheeler MB, Walters EM (2001) Transgenic technology and applications in swine. Theriogenology 56:1345–1369

    Article  PubMed  CAS  Google Scholar 

  • Winter JD, Tichauer KM, Gelman N et al (2009) Changes in cerebral oxygen consumption and high-energy phosphates during early recovery in hypoxic-ischemic piglets: a combined near-infrared and magnetic resonance spectroscopy study. Pediatr Res 65:181–187

    Article  PubMed  CAS  Google Scholar 

  • Witkamp R, Monshouwer M (1998) Pharmacokinetics in vivo and in vitro in swine. Scand J Lab Anim Sci 25:45–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teun Schuurman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gieling, E.T., Schuurman, T., Nordquist, R.E., van der Staay, F.J. (2011). The Pig as a Model Animal for Studying Cognition and Neurobehavioral Disorders. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_112

Download citation

Publish with us

Policies and ethics