Skip to main content

Molecular Genetic Models Related to Schizophrenia and Psychotic Illness: Heuristics and Challenges

  • Chapter
  • First Online:
Book cover Molecular and Functional Models in Neuropsychiatry

Abstract

Schizophrenia is a heritable disorder that may involve several common genes of small effect and/or rare copy number variation, with phenotypic heterogeneity across patients. Furthermore, any boundaries vis-à-vis other psychotic disorders are far from clear. Consequently, identification of informative animal models for this disorder, which typically relate to pharmacological and putative pathophysiological processes of uncertain validity, faces considerable challenges. In juxtaposition, the majority of mutant models for schizophrenia relate to the functional roles of a diverse set of genes associated with risk for the disorder or with such putative pathophysiological processes. This chapter seeks to outline the evidence from phenotypic studies in mutant models related to schizophrenia. These have commonly assessed the degree to which mutation of a schizophrenia-related gene is associated with the expression of several aspects of the schizophrenia phenotype or more circumscribed, schizophrenia-related endophenotypes; typically, they place specific emphasis on positive and negative symptoms and cognitive deficits, and extend to structural and other pathological features. We first consider the primary technological approaches to the generation of such mutants, to include their relative merits and demerits, and then highlight the diverse phenotypic approaches that have been developed for their assessment. The chapter then considers the application of mutant phenotypes to study pathobiological and pharmacological mechanisms thought to be relevant for schizophrenia, particularly in terms of dopaminergic and glutamatergic dysfunction, and to an increasing range of candidate susceptibility genes and copy number variants. Finally, we discuss several pertinent issues and challenges within the field which relate to both phenotypic evaluation and a growing appreciation of the functional genomics of schizophrenia and the involvement of gene × environment interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Arozena A, Wells S, Potter P et al (2008) ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9:49–69

    PubMed  CAS  Google Scholar 

  • Adler CM, Malhotra AK, Elman I et al (1999) Comparison of ketamine-induced thought disorder in healthy volunteers and thought disorder in schizophrenia. Am J Psychiatry 156:1646–1649

    PubMed  CAS  Google Scholar 

  • Allen NC, Bagade S, McQueen MB et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40:827–834

    PubMed  CAS  Google Scholar 

  • Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52:179–196

    PubMed  CAS  Google Scholar 

  • Arguello PA, Gogos JA (2010) Cognition in mouse models of schizophrenia susceptibility genes. Schizophr Bull 36:289–300

    PubMed  Google Scholar 

  • Asp L, Beraki S, Kristensson K et al (2009) Neonatal infection with neurotropic influenza A virus affects working memory and expression of type III Nrg1 in adult mice. Brain Behav Immun 23:733–741

    PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Sullivan GJ et al (2007) Exploratory and habituation phenotype of heterozygous and homozygous COMT knockout mice. Behav Brain Res 183:236–239

    PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Connor AM et al (2008) Phenotypic characterization of cognition and social behavior in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155:1021–1029

    PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Kolira M et al (2005) In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255

    PubMed  CAS  Google Scholar 

  • Ballard TM, Pauly-Evers M, Higgins GA et al (2002) Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 22:6713–6723

    PubMed  CAS  Google Scholar 

  • Barnett JH, Scoriels L, Munafò MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 64:137–144

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Bauer D, Gupta D, Harotunian V et al (2008) Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res 104:108–120

    PubMed  Google Scholar 

  • Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two-hit hypothesis”. J Psychiatr Res 33:543–548

    PubMed  CAS  Google Scholar 

  • Bay-Richter C, O’Tuathaigh CM, O’Sullivan G et al (2009) Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action. Int J Neuropsychopharmacol 17:1–12

    Google Scholar 

  • Bertram L (2008) Genetic research in schizophrenia: new tools and future perspectives. Schizophr Bull 34:806–812

    PubMed  Google Scholar 

  • Bhardwaj SK, Baharnoori M, Sharif-Askari B et al (2009) Behavioral characterization of dysbindin-deficient sandy mice. Behav Brain Res 197:435–441

    PubMed  CAS  Google Scholar 

  • Blackwood DH, Fordyce A, Walker MT et al (2000) Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69:428–433

    Google Scholar 

  • Blanchard JJ, Cohen AS (2006) The structure of negative symptoms within schizophrenia: implications for assessment. Schizophr Bull 32:238–245

    PubMed  Google Scholar 

  • Boucher AA, Arnold JC, Duffy L et al (2007a) Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology 192:325–336

    PubMed  CAS  Google Scholar 

  • Boucher AA, Hunt GE, Karl T et al (2007b) Heterozygous neuregulin 1 mice display greater baseline and Delta(9)-tetrahydrocannabinol-induced c-Fos expression. Neuroscience 149:861–870

    PubMed  CAS  Google Scholar 

  • Bountra C, Oppermann U, Heightman TD (2011) Animal models of epigenetic regulation in neuropsychiatric disorders. Curr Top Behav Neurosci. doi:10.1007/7854_2010_104

    Google Scholar 

  • Bray NJ, Preece A, Williams NM et al (2005) Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum Mol Genet 14:1947–1954

    PubMed  CAS  Google Scholar 

  • Brodkin ES, Hagemann A, Nemetski SM et al (2004) Social approach-avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Res 1002:151–157

    PubMed  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    PubMed  CAS  Google Scholar 

  • Burdick KE, Goldberg TE, Funke B et al (2007) DTNBP1 genotype influences cognitive decline in schizophrenia. Schizophr Res 89:169–172

    PubMed  Google Scholar 

  • Cagniard B, Balsam PD, Brunner D et al (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31:1362–1370

    PubMed  CAS  Google Scholar 

  • Callicott JH, Straub RE, Pezawas L et al (2005) Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 102:8627–8632

    PubMed  CAS  Google Scholar 

  • Camargo LM, Collura V, Rain JC et al (2007) Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 12:74–86

    PubMed  CAS  Google Scholar 

  • Cannon TD, Hennah W, van Erp TG et al (2005) Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 62:1205–1213

    PubMed  CAS  Google Scholar 

  • Caspi A, Moffitt TE, Cannon M et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene × environment interaction. Biol Psychiatry 57:1117–1127

    PubMed  CAS  Google Scholar 

  • Chan WS et al (2011) Transgenic animal models of Huntington’s Disease. Curr Top Behav Neurosci. doi:10.1007/7854_2010_105

    Google Scholar 

  • Chen J, Lipska BK, Weinberger DR (2006) Genetic mouse models of schizophrenia: from hypothesis-based to susceptibility gene-based models. Biol Psychiatry 59:1180–1188

    PubMed  CAS  Google Scholar 

  • Chen YJ, Johnson MA, Lieberman MD et al (2007) Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. J Neurosci 28:6872–6883

    Google Scholar 

  • Chen XW, Feng YQ, Hao CJ et al (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181:791–805

    PubMed  CAS  Google Scholar 

  • Chubb JE, Bradshaw NJ, Soares DC (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36–64

    PubMed  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    PubMed  CAS  Google Scholar 

  • Clifford JJ, Kinsella A, Tighe O et al (2001) Comparative, topographically-based evaluation of behavioural phenotype and specification of D(1)-like:D(2) interactions in a line of incipient congenic mice with D(2) dopamine receptor ‘knockout’. Neuropsychopharmacology 25:527–536

    PubMed  CAS  Google Scholar 

  • Cordes SP (2005) N-ethyl-N-nitrosourea mutagenesis: boarding the mouse mutant express. Microbiol Mol Biol Rev 69:426–439

    PubMed  CAS  Google Scholar 

  • Corvin A, Donohoe G, Nangle JM et al (2008) A dysbindin risk haplotype associated with less severe manic-type symptoms in psychosis. Neurosci Lett 431:146–149

    PubMed  CAS  Google Scholar 

  • Costa RM, Gutierrez R, de Araujo IE et al (2007) Dopamine levels modulate the updating of tastant values. Genes Brain Behav 6:314–320

    PubMed  CAS  Google Scholar 

  • Cox MM, Tucker AM, Tang J et al (2009) Neurobehavioral abnormalities in the dysbindin-1 mutant, sandy, on a C57BL/6J genetic background. Genes Brain Behav 8:390–397

    PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384

    PubMed  CAS  Google Scholar 

  • Crusio WE (2004) Flanking gene and genetic background problems in genetically manipulated mice. Biol Psychiatry 56:381–385

    PubMed  CAS  Google Scholar 

  • Crusio WE, Goldowitz D, Holmes A et al (2009) Standards for the publication of mouse mutant studies. Genes Brain Behav 8:1–4

    PubMed  CAS  Google Scholar 

  • Dean B, Karl T, Pavey G et al (2008) Increased levels of serotonin 2S receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophr Res 99:341–349

    PubMed  Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009a) Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Behav Brain Res 204:258–273

    PubMed  CAS  Google Scholar 

  • Desbonnet L, Waddington JL, O’Tuathaigh CM (2009b) Mutant models for genes associated with schizophrenia. Biochem Soc Trans 37:308–312

    PubMed  CAS  Google Scholar 

  • DeSteno DA, Schmauss C (2009) A role for dopamine D2 receptors in reversal learning. Neuroscience 162:118–127

    CAS  Google Scholar 

  • Di Giorgio A, Blasi G, Sambataro F et al (2008) Association of the SerCys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. Eur J Neurosci 28:2129–2136

    PubMed  Google Scholar 

  • Dinan TG (2009) MicroRNAs as a target for novel antipsychotics: a systematic review of an emerging field. Int J Neuropsychopharmacol 23:1–10

    Google Scholar 

  • Donohoe G, Morris DW, Clarke S et al (2007) Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 45:454–458

    PubMed  Google Scholar 

  • Donohoe G, Morris DW, De Sanctis P et al (2008) Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry 63:484–489

    PubMed  Google Scholar 

  • Drew MR, Simpson EH, Kellendonk C et al (2009) Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci 27:7731–7739

    Google Scholar 

  • Duffy L, Cappas E, Scimone A et al (2008) Behavioral profile of a heterozygous mutant mouse model for EGF-like domain neuregulin 1. Behav Neurosci 122:748–759

    PubMed  Google Scholar 

  • Duncan GE, Moy SS, Perez A et al (2004) Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 153:507–519

    PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Lieberman JA et al (2006) Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology 184:190–200

    PubMed  CAS  Google Scholar 

  • Eells B, Misler JA, Nikodem V (2006) Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull 70:186–195

    PubMed  CAS  Google Scholar 

  • Ehrlichman RS, Luminais SN, White SL et al (2009) Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Res 1294:116–127

    PubMed  CAS  Google Scholar 

  • El-Ghundi M, O’Dowd BF, George SR (2007) Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci 18:37–66

    PubMed  CAS  Google Scholar 

  • Etherton MR, Blaiss CA, Powell CM et al (2009) Mouse neurexin-1 alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci USA 106:17998–18003

    PubMed  CAS  Google Scholar 

  • Fallgatter AJ, Hermann MJ, Hohoff C et al (2006) DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology 31:2000–2010

    Google Scholar 

  • Fanous AH, Neale MC, Straub RE et al (2004) Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: a family based association study. Am J Med Genet B Neuropsychiatr Genet 125B:69–78

    PubMed  Google Scholar 

  • Feng YQ, Zhou ZY, He X et al (2008) Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 106:218–228

    PubMed  Google Scholar 

  • File SE (1980) The use of social interaction as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Methods 2:219–238

    PubMed  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    PubMed  CAS  Google Scholar 

  • Freedman R, Olincy A, Buchanan RW et al (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165:1040–1047

    PubMed  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    PubMed  CAS  Google Scholar 

  • Gainetdinov RR (2008) Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch Pharmacol 377:301–313

    PubMed  CAS  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov D et al (2009) Increased vulnerability to depressive-like behaviour of mice with decreased expression of VGLUT1. Biol Psychiatry 66:275–282

    PubMed  CAS  Google Scholar 

  • Gerlai R, Clayton NS (1999) Analysing hippocampal function in transgenic mice: an ethological perspective. Trends Neurosci 22:46–51

    Google Scholar 

  • Gerlai R, Pisacane P, Erickson S (2000) Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behav Brain Res 109:219–227

    PubMed  CAS  Google Scholar 

  • Gill M, Donohoe G, Corvin A (2009) What have the genomics ever done for the psychoses? Psychol Med 12:1–12

    Google Scholar 

  • Glickstein SB, Hof PR, Schmauss C (2002) Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 22:5619–5629

    PubMed  CAS  Google Scholar 

  • Gogos JA (2007) Schizophrenia susceptibility genes: in search of a molecular logic and novel drug targets for a devastating disorder. Int Rev Neurobiol 78:397–422

    PubMed  CAS  Google Scholar 

  • Gogos JA, Morgan M, Luine V et al (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95:9991–9996

    PubMed  CAS  Google Scholar 

  • Gogos JA, Santha M, Takacs Z (1999) The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 21:434–439

    PubMed  CAS  Google Scholar 

  • Gondo Y (2008) Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet 9:803–810

    PubMed  CAS  Google Scholar 

  • Gondo Y, Murata T, Makino S, Fukumura R, Ishitsuka Y (2011) Mouse mutagenesis and disease models for neuropsychiatric disorders. Curr Top Behav Neurosci. doi:10.1007/7854_2010_106

    Google Scholar 

  • Gong YG, Wu CN, Xing QH et al (2009) A two-method meta-analysis of neuregulin 1 (NRG1) association and heterogeneity in schizophrenia. Schizophr Res 111:109–114

    PubMed  CAS  Google Scholar 

  • Guillin O, Abi-Dargham A, Laruelle M (2007) Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 78:1–39

    PubMed  CAS  Google Scholar 

  • Guo X, Hamilton PJ, Reish NJ et al (2009) Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia. Neuropsychopharmacology 34:1658–1672

    Google Scholar 

  • Halberstadt AL, Geyer MA (2009) Habituation and sensitization of acoustic startle: opposite influences of dopamine D1 and D2 family receptors. Neurobiol Learn Mem 92:243–248

    PubMed  CAS  Google Scholar 

  • Halene TB, Amann LC, Ehrlichman RS et al (2009) Neurobehavioral abnormalities in dysbindin-1 mutant mice on a C57BL/6J background. (Presentation at 2009 Society for Neuroscience Annual Meeting, Chicago, IL).

    Google Scholar 

  • Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60:132–140

    PubMed  CAS  Google Scholar 

  • Hattori S, Murotani T, Matsuzaki S et al (2008) Behavioral abnormalities and dopamine reductions in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Biochem Biophys Res Commun 373:298–302

    PubMed  CAS  Google Scholar 

  • Hennah W, Thomson P, McQuillin A et al (2009) DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 14:865–873

    PubMed  CAS  Google Scholar 

  • Henquet C, Rosa A, Krabbendam L et al (2006) An experimental study of catechol-O-methyltransferase Val158Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 31:2748–2757

    PubMed  CAS  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S et al (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501–14506

    PubMed  CAS  Google Scholar 

  • Hoffmann I, Bueter W, Zscheppang K et al (2010) Neuregulin-1, the fetal endothelium, and brain damage in preterm newborns. Behav Brain Immun 24:784–791

    Google Scholar 

  • Holmes A, Lachowicz JE, Sibley DR (2004) Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 47:1117–1134

    PubMed  CAS  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophr Bull 35:549–562

    PubMed  Google Scholar 

  • Ibi D, Nagai T, Koike H et al (2010) Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behav Brain Res 206:32–37

    PubMed  CAS  Google Scholar 

  • Ichtchenko K, Hata Y, Nguyen T et al (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81:435–443

    PubMed  CAS  Google Scholar 

  • Ikeda M, Aleksic B, Kirov G et al (2010) Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 67:283–286

    PubMed  Google Scholar 

  • International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241

    Google Scholar 

  • International Schizophrenia Consortium, Purcell SM, Wray NR et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    PubMed  CAS  Google Scholar 

  • Jaaro-Peled H, Ayhan Y, Pletnikov MV et al (2010) Review of pathological hallmarks of schizophrenia: comparison of genetic models with patients and nongenetic models. Schizophr Bull 36:480–489

    Google Scholar 

  • Jentsch JD, Trantham-Davidson H, Jairl C et al (2009) Dysbindin modulates prefrontal cortical glutamatergic circuits and working memory function in mice. Neuropsychopharmacology 34:2601–2608

    PubMed  CAS  Google Scholar 

  • Karasinska JM, George SR, Cheng R et al (2005) Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward, and CREB phosphorylation. Eur J Neurosci 22:1741–1750

    PubMed  Google Scholar 

  • Karayiorgou M, Gogos JA (2006) Schizophrenia genetics: uncovering positional candidate genes. Eur J Hum Genet 14:512–519

    PubMed  CAS  Google Scholar 

  • Karl T, Duffy L, Scimone A et al (2007) Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia. Genes Brain Behav 6:677–687

    PubMed  CAS  Google Scholar 

  • Karlsson RM, Tanaka K, Heilig M et al (2008) Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol Psychiatry 64:810–814

    PubMed  CAS  Google Scholar 

  • Karlsson RM, Tanaka K, Saksida LM et al (2009) Assessment of glutamate transporter GLAST (EAAT1)-deficient mice for phenotypes relevant to the negative and executive/cognitive symptoms of schizophrenia. Neuropsychopharmacology 34:1578–1589

    PubMed  CAS  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y et al (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    PubMed  CAS  Google Scholar 

  • Kellendonk C, Simpson EH, Kandel ER (2009) Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci 32:347–358

    PubMed  CAS  Google Scholar 

  • Kelly BD, O’Callaghan E, Waddington JL et al (2010) Schizophrenia and the city: a review of literature and prospective study of psychosis and urbanicity in Ireland. Schizophr Res 116:75–89

    PubMed  Google Scholar 

  • Kirby B, Waddington JL, O’Tuathaigh CMP (2010) Advancing a functional genomics for schizophrenia: psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Res Bull 83:162–176

    PubMed  CAS  Google Scholar 

  • Kirkbride J, Boydell J, Ploubidis GB et al (2008) Testing the association between the incidence of schizophrenia and social capital in an urban area. Psychol Med 38:1083–1094

    PubMed  CAS  Google Scholar 

  • Kirov G, Gumus D, Chen W et al (2008) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 17:458–465

    PubMed  CAS  Google Scholar 

  • Kirov G, Grozeva D, Norton N et al (2009a) Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 18:1497–1503

    PubMed  CAS  Google Scholar 

  • Kirov G, Rujescu D, Ingason A et al (2009b) Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull 35:851–854

    PubMed  Google Scholar 

  • Kocerha J, Faghihi MA, Lopez-Toledano MA et al (2009) MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA 106:3507–3512

    PubMed  CAS  Google Scholar 

  • Koike H, Arguello PA, Kvajo M et al (2006) Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci USA 103:3693–3697

    PubMed  CAS  Google Scholar 

  • Kruzich PJ, Grandy DK (2004) Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci 5:12

    PubMed  Google Scholar 

  • Kvajo M, McKellar H, Arguello PA et al (2008) A mutation in mouse Disc 1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076–7081

    PubMed  CAS  Google Scholar 

  • Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology 200:217–230

    PubMed  CAS  Google Scholar 

  • Law AJ, Kleinman JE, Weinberger DR et al (2007) Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet 16:129–141

    PubMed  CAS  Google Scholar 

  • Le Strat Y, Ramoz N, Gorwood P (2009) The role of genes involved in neuroplasticity and neurogenesis in the observation of a gene–environment interaction (G×E) in schizophrenia. Curr Mol Med 9:506–518

    PubMed  Google Scholar 

  • Lencz T, Lambert C, De Rosse P et al (2007) Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA 104:19942–19947

    PubMed  CAS  Google Scholar 

  • Lesch KP (2011) When the serotonin transporter gene meets adversity: the contribution of animal models to understanding epigenetic mechanisms in affective disorders and resilience. Curr Top Behav Neurosci. doi:10.1007/7854_2010_109

    Google Scholar 

  • Li D, He L (2006) Association study of the G-protein signalling 4 (RGS4) and proline dehydrogenase (PRODH) genes with schizophrenia: a meta-analysis. Eur J Hum Genet 14:1130–1135

    PubMed  CAS  Google Scholar 

  • Li W, Zhang Q, Oiso N et al (2003) Hermansky–Pudlak syndrome type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 35:84–89

    PubMed  CAS  Google Scholar 

  • Li W, Zhou Y, Jentsch JD et al (2007) Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 104:18280–18285

    PubMed  CAS  Google Scholar 

  • Liu H, Heath SC, Sobin C et al (2002) Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99:3717–3722

    PubMed  CAS  Google Scholar 

  • Liu YL, Fann CS, Liu CM et al (2007) HTF9C gene of 22q11.21 region associates with schizophrenia having deficit-sustained attention. Psychiatr Genet 17:333–338

    PubMed  Google Scholar 

  • Low NC, Hardy J (2007) What is a schizophrenic mouse? Neuron 54:348–349

    PubMed  CAS  Google Scholar 

  • Mahairaki V, Xu L, Farah MH et al (2009) Targeted knock-down of neuronal nitric oxide synthase expression in basal forebrain with RNA interference. J Neurosci Methods 179:292–299

    PubMed  CAS  Google Scholar 

  • Malhotra AK, Adler CM, Kennison SD et al (1997) Clozapine blunts N-methyl-d-aspartate antagonist-induced psychosis: a study with ketamine. Biol Psychiatry 42:664–668

    PubMed  CAS  Google Scholar 

  • Markov V, Krug A, Krach S et al (2009) Genetic variation in schizophrenia-risk-gene dysbindin 1 modulates brain activation in anterior cingulate cortex and right temporal gyrus during language production in healthy individuals. Neuroimage 47:2016–2022

    PubMed  CAS  Google Scholar 

  • McGrath J, Saha S, Chant D et al (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76

    PubMed  Google Scholar 

  • McNamara FN, Clifford JJ, Tighe O et al (2002) Phenotypic, ethologically based resolution of spontaneous and D(2)-like vs D(1)-like agonist-induced behavioural topography in mice with congenic D(3) dopamine receptor “knockout”. Synapse 46:19–31

    PubMed  CAS  Google Scholar 

  • Meechan DW, Maynard TM, Gopalakrishna D et al (2007) When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. Gene Expr 13:299–310

    PubMed  CAS  Google Scholar 

  • Mei L, Xiong WC (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437–452

    PubMed  CAS  Google Scholar 

  • Meyer U, Nyffeler M, Yee BK et al (2008) Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22:469–486

    PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J, Fatemi SH (2009) In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev 33:1061–1079

    PubMed  CAS  Google Scholar 

  • Miyamoto Y, Yamada K, Noda Y et al (2001) Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 21:750–757

    PubMed  CAS  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG et al (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    PubMed  CAS  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S et al (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Rev 33:275–307

    PubMed  CAS  Google Scholar 

  • Moskvina V, Craddock N, Holmans P et al (2009) Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 14:252–260

    PubMed  CAS  Google Scholar 

  • Moy SS, Perez A, Koller BH et al (2006) Amphetamine-induced disruption of prepulse inhibition in mice with reduced NMDA receptor function. Brain Res 1089:186–194

    PubMed  CAS  Google Scholar 

  • Mukai J, Liu H, Burt RA et al (2004) Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36:725–731

    PubMed  CAS  Google Scholar 

  • Mukai J, Dhilla A, Drew LJ et al (2008) Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11:1302–1310

    PubMed  CAS  Google Scholar 

  • Murphy KC, Owen MJ (2001) Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. Br J Psychiatry 179:397–402

    PubMed  CAS  Google Scholar 

  • Murphy KC, Jones LA, Owen MJ (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56:940–945

    PubMed  CAS  Google Scholar 

  • Nielsen TT, Marion I, Hasholt L et al (2009) Neuron-specific RNA interference using lentiviral vectors. J Gene Med 11:559–569

    PubMed  CAS  Google Scholar 

  • Nolan PM, Peters J, Strivens M et al (2000) A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    PubMed  CAS  Google Scholar 

  • O’Sullivan GJ, O’Tuathaigh CM, Clifford JJ et al (2006) Potential and limitations of genetic manipulation in animals. Drug Discov Today: Technologies 3:173–180

    Google Scholar 

  • O’Tuathaigh CMP, Waddington JL (2010) Mutant mouse models: phenotypic relationships to domains of psychopathology and pathobiology in schizophrenia. Schizophr Bull 36:243–245

    PubMed  Google Scholar 

  • O’Tuathaigh CM, O’Sullivan GJ, Kinsella A et al (2006) Sexually dimorphic changes in the exploratory and habituation profiles of heterozygous neuregulin-1 knockout mice. Neuroreport 17:79–83

    PubMed  Google Scholar 

  • O’Tuathaigh CMP, Babovic D, O’Meara G et al (2007a) Susceptibility genes for schizophrenia: phenotypic characterisation of mutant models. Neurosci Biobehav Rev 31:60–78

    PubMed  Google Scholar 

  • O’Tuathaigh CM, Babovic D, O’Sullivan GJ et al (2007b) Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience 147:18–27

    PubMed  Google Scholar 

  • O’Tuathaigh CM, O’Connor AM, O’Sullivan GJ et al (2008) Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous ‘knockout’ of the schizophrenia risk gene neuregulin-1. Prog Neuropsychopharmacol Biol Psychiatry 32:462–466

    PubMed  Google Scholar 

  • O’Tuathaigh CM, Desbonnet L, Waddington JL (2009a) Neuregulin-1 signalling in schizophrenia: ‘Jack of all trades’ or master of some? Expert Rev Neurother 9:1–3

    PubMed  Google Scholar 

  • O’Tuathaigh CM, Hryniewiecka M, Behan A et al (2009b) Chronic adolescent exposure to delta-9-tetrahydrocannabinol in COMT knockout mice: Impact on phenotypes relevant to psychosis. Program No. 248.9. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Chicago, IL

    Google Scholar 

  • O’Tuathaigh CMP, Kirby BP, Moran PM et al (2010a) Mutant mouse models: genotype–phenotype relationships to negative symptoms in schizophrenia. Schizophr Bull 36:271–288

    PubMed  Google Scholar 

  • O’Tuathaigh CMP, Harte M, Tighe O et al (2010b) Schizophrenia-related endophenotypes in heterozygous neuregulin-1 ‘knockout’ mice: NMDA-receptor antagonist effects, neurochemistry and brain structure. Eur J Neurosci 31:349–358

    PubMed  Google Scholar 

  • Oliver PL, Davies KE (2009) Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Hum Mol Genet 18:4576–4589

    PubMed  CAS  Google Scholar 

  • Oni-Orisan A, Kristiansen LV, Haroutunian V et al (2008) Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia. Biol Psychiatry 63:766–775

    PubMed  CAS  Google Scholar 

  • Panksepp J (2006) Emotional endophenotypes in evolutionary psychiatry. Prog Neuropsychopharmacol Biol Psychiatry 30:774–784

    PubMed  Google Scholar 

  • Papaleo F, Crawley JN, Song J et al (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28:8709–8723

    PubMed  CAS  Google Scholar 

  • Paterlini M, Zakharenko SS, Lai WS et al (2005) Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci 8:1586–1594

    PubMed  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107

    PubMed  CAS  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8:R27

    PubMed  Google Scholar 

  • Pilowsky LS, Bressan RA, Stone JM et al (2007) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11:118–119

    Google Scholar 

  • Pletnikov MV, Ayhan Y, Nikolskaia O et al (2008) Inducible expression of mutant human DISC1 in mice is associated with brain and behavioural abnormalities reminiscent of schizophrenia. Mol Psychiatry 13:173–186

    PubMed  CAS  Google Scholar 

  • Powell SB, Geyer MA (2007) Overview of animal models of schizophrenia. Curr Protoc Neurosci 9:9.24

    Google Scholar 

  • Powell CM, Miyakawa T (2006) Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatry 59:1198–1207

    PubMed  CAS  Google Scholar 

  • Prasad SE, Howley S, Murphy KC (2008) Candidate genes and the behavioral phenotype in 22q11.2 deletion syndrome. Dev Disabil Res Rev 14:26–34

    PubMed  Google Scholar 

  • Ralph RJ, Varty GB, Kelly MA et al (1999) The dopamine D2, but not D3 or D4, receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice. J Neurosci 19:4627–4633

    PubMed  CAS  Google Scholar 

  • Ralph-Williams RJ, Lehmann-Masten V, Otero-Corchon V et al (2002) Differential effects of direct and indirect dopamine agonists on prepulse inhibition: a study in D1 and D2 receptor knockout mice. J Neurosci 22:9604–9611

    PubMed  CAS  Google Scholar 

  • Rimer M, Barrett DW, Maldonado MA, Vock VM et al (2005) Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport 16:271–275

    PubMed  CAS  Google Scholar 

  • Rodriguiz RM, Chu R, Caron MG et al (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148:185–198

    PubMed  CAS  Google Scholar 

  • Roy K, Murtie JC, El-Khodor BF et al (2007) Loss of erbB signaling in oligodendrocytes alters myelin and dopaminergic function, a potential mechanism for neuropsychiatric disorders. Proc Natl Acad Sci USA 104:8131–8136

    PubMed  CAS  Google Scholar 

  • Rujescu D, Ingason A, Cichon S et al (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet 18:988–996

    PubMed  CAS  Google Scholar 

  • Sammut S, Goodall G, Muscat R (2001) Acute interferon-alpha administration modulates sucrose consumption in the rat. Psychoneuroendocrinology 26:261–272

    PubMed  CAS  Google Scholar 

  • Sauer B (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 225:890–900

    PubMed  CAS  Google Scholar 

  • Savonenko AV, Melnikova T, Laird FM et al (2008) Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci USA 105:5585–5590

    PubMed  CAS  Google Scholar 

  • Schumacher J, Laje G, Abou Jamra R et al (2009) The DISC locus and schizophrenia: evidence from an association study in a central European sample and from a meta-analysis across different European populations. Hum Mol Genet 18:2719–2727

    PubMed  CAS  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    PubMed  CAS  Google Scholar 

  • Selten JP, Cantor-Graae E (2007) Hypothesis: social defeat is a risk factor for schizophrenia? Br J Psychiatry 51(Suppl):s9–s12

    Google Scholar 

  • Shen S, Lang B, Nakamoto C et al (2008) Schizophrenia-related neural and behavioural phenotypes in transgenic mice expressing truncated DISC1. J Neurosci 28:10893–10904

    PubMed  CAS  Google Scholar 

  • Shi J, Gershon ES, Liu C (2008) Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res 104:96–107

    PubMed  Google Scholar 

  • Shifman S, Johannesson M, Bronstein M et al (2008) Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 4:e28

    PubMed  Google Scholar 

  • Singer O, Verma IM (2008) Applications of lentiviral vectors for shRNA delivery and transgenesis. Curr Gene Ther 8:483–488

    PubMed  CAS  Google Scholar 

  • Smith RE, Haroutunian V, Davis KL et al (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399

    PubMed  CAS  Google Scholar 

  • Stark KL, Xu B, Bagchi A et al (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40:751–760

    PubMed  CAS  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892

    PubMed  Google Scholar 

  • Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia – a synthesis and selective review. J Psychopharmacol 21:440–452

    PubMed  CAS  Google Scholar 

  • Takao K, Toyama K, Nakanishi K et al (2008) Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 1:11

    Google Scholar 

  • Takao K, Yamasaki N, Miyakawa T (2007) Impact of brain-behavior phenotyping of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res 58:124–132

    PubMed  CAS  Google Scholar 

  • Talbot K, Cho DS, Ong WY et al (2006) Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Hum Mol Genet 15:3041–3054

    PubMed  CAS  Google Scholar 

  • Taliaz D, Stall N, Dar DE et al (2010) Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 15:80–92

    PubMed  CAS  Google Scholar 

  • Tandon R, Keshavan MS, Nasrallah HA (2008) Schizophrenia, “just the facts”: what we know in 2008 part 1: overview. Schizophr Res 100:4–19

    PubMed  Google Scholar 

  • Thimm M, Krug A, Markov V et al (2010) The impact of dystrobrevin-binding protein 1 (DTNBP1) on neural correlates of episodic memory encoding and retrieval. Hum Brain Mapp 31:203–209

    PubMed  Google Scholar 

  • Tillerson JL, Caudle WM, Parent JM et al (2006) Olfactory discrimination deficits in mice lacking the dopamine transporter or D2 dopamine receptor. Behav Brain Res 172:97–105

    PubMed  CAS  Google Scholar 

  • Tiscornia G, Singer O, Ikawa M et al (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100:1844–1848

    PubMed  CAS  Google Scholar 

  • Tunbridge EM, Harrison PJ, Weinberger DR (2006) Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 60:141–151

    PubMed  CAS  Google Scholar 

  • Van den Buuse M (2010) Modelling the positive symptoms of schizophrenia in genetically-modified mice: pharmacology and methodology aspects. Schizophr Bull 36:246–270

    PubMed  Google Scholar 

  • Van OS J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    PubMed  Google Scholar 

  • Waddington JL, O’Tuathaigh C, O’Sullivan G et al (2005) Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology–molecular biology interface. Psychopharmacology 181:611–638

    PubMed  CAS  Google Scholar 

  • Waddington JL, Corvin AP, Donohoe G, O’Tuathaigh CMP, Mitchell KJ, Gill M (2007) Functional genomics and schizophrenia: endophenotypes and mutant models. Psychiatr Clin N Am 30:365–399

    Google Scholar 

  • Wallén-Mackenzie A, Nordenankar K, Fejgin K et al (2009) Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function. J Neurosci 29:2238–2251

    PubMed  Google Scholar 

  • Walsh T, McClellan JM, McCarthy SE et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–543

    PubMed  CAS  Google Scholar 

  • Wang Y, Xu R, Sasaoka T et al (2000) Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 20:8305–8314

    PubMed  CAS  Google Scholar 

  • Weickert CS, Straub RE, McClintock BW et al (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61:544–555

    PubMed  CAS  Google Scholar 

  • Weiner I, Arad M (2009) Using the pharmacology of latent inhibition to model domains of pathology in schizophrenia and their treatment. Behav Brain Res 204:369–386

    PubMed  CAS  Google Scholar 

  • Welham J, Isohanni M, Jones P et al (2009) The antecedents of schizophrenia: a review of birth cohort studies. Schizophr Bull 35:603–623

    PubMed  Google Scholar 

  • Williams HJ, Owen MJ, O’Donovan MC (2009) Schizophrenia genetics: new insights from new approaches. Br Med Bull 91:61–74

    PubMed  Google Scholar 

  • Winograd-Gurvich C, Fitzgerald PB, Georgiou-Karistianis N et al (2006) Negative symptoms: a review of schizophrenia, melancholic depression and Parkinson’s disease. Brain Res Bull 70:312–321

    PubMed  CAS  Google Scholar 

  • Xu R, Hranilovic D, Fetsko LA et al (2002) Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol Psychiatry 7:1075–1082

    PubMed  CAS  Google Scholar 

  • Yamauchi Y, Qin LH, Nishihara M et al (2005) Vulnerability of synaptic plasticity in the complexin II knockout mouse to maternal deprivation stress. Brain Res 1056:59–67

    PubMed  CAS  Google Scholar 

  • Young JW, Crawford N, Kelly JS et al (2007) Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol 17:145–155

    PubMed  CAS  Google Scholar 

  • Zamore PD (2001) RNA interference: listening to the sound of silence. Nat Struct Biol 8:746–750

    PubMed  CAS  Google Scholar 

  • Zhang R, Su B (2008) MicroRNA regulation and the variability of human cortical gene expression. Nucleic Acids Res 36:4621–4628

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors’ studies are supported by a Science Foundation Ireland Principal Investigator grant (07/IN.1/B960), a Postdoctoral Fellowship from the Health Research Board (PD/2007/20), and a Wellcome Trust grant (WT 084592/Z/07/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm M. P. O’Tuathaigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Tuathaigh, C.M.P., Desbonnet, L., Moran, P.M., Kirby, B.P., Waddington, J.L. (2011). Molecular Genetic Models Related to Schizophrenia and Psychotic Illness: Heuristics and Challenges. In: Hagan, J. (eds) Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_111

Download citation

Publish with us

Policies and ethics