Skip to main content

Amygdala Mechanisms of Pavlovian Psychostimulant Conditioning and Relapse

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 3))

Abstract

Psychostimulant addiction often consists of periods of sustained drug abstinence disrupted by periods of relapse and renewed heavy drug use. Prevention of relapse remains the greatest challenge to the successful treatment of drug addiction. Drug-associated cues are a primary trigger for relapse, as they can elicit intense craving for the drug. These cues become associated with the drug reward through Pavlovian learning processes that develop over multiple drug–cue pairings. The amygdala (AMY) is critical for such drug-related learning. Intrinsic and extrinsic circuitry position the AMY to integrate cue and drug-related information and influence drug-seeking and drug-taking behaviors. Animal models of conditioned drug reward, drug use, and relapse have confirmed the necessary role of the AMY for drug conditioned cues to control motivated behavior. Neurons within the AMY are responsive to the primary effects of psychostimulants, and more critically, they also respond to the presentation of drug-associated cues. The mechanisms by which conditioned cues come to influence drug-seeking behavior likely involve long-term plasticity and neuroadaptations within the AMY. A greater understanding of the associative learning mechanisms that depend upon the AMY and related limbic and cortical structures, and the process by which drug cues come to gain control over behavior that maintains the addictive state, will facilitate the development of more effective addiction treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMY:

Amygdala

CPP:

Conditioned place preference

DA:

Dopamine

NAcc:

Nucleus accumbens

SA:

Self administration

VTA:

Ventral tegmental area

References

  • Ambroggi F, Ishikawa A, Fields HL, Nicola SM (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59:648–661

    CAS  PubMed  Google Scholar 

  • Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–118

    CAS  PubMed  Google Scholar 

  • Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 153:31–43

    CAS  Google Scholar 

  • Bashore TR, Rebec GV, Groves PM (1978) Alterations of spontaneous neuronal activity in the caudate-putamen, nucleus accumbens and amygdaloid complex of rats produced by D-amphetamine. Pharmacol Biochem Behav 8:467–474

    CAS  PubMed  Google Scholar 

  • Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Kelly JS (1976) Dopamine evoked inhibition of single cells of the feline putamine and basolateral amygdala. J Physiol (Lond) 256:1

    CAS  Google Scholar 

  • Berglind WJ, Case JM, Parker MP, Fuchs RA, See RE (2006) Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 137:699–706

    CAS  PubMed  Google Scholar 

  • Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24:7482–7490

    CAS  PubMed  Google Scholar 

  • Botreau F, Paolone G, Stewart J (2006) d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 172:173–178

    CAS  PubMed  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    CAS  PubMed  Google Scholar 

  • Brinley-Reed M, McDonald AJ (1999) Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Res 850:127–135

    CAS  PubMed  Google Scholar 

  • Brown EE, Fibiger HC (1993) Differential effects of excitotoxic lesions of the amygdala on cocaine-induced conditioned locomotion and conditioned place preference. Psychopharmacology (Berl) 113:123–130

    CAS  Google Scholar 

  • Brown EE, Robertson GS, Fibiger HC (1992) Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. J Neurosci 12:4112–4121

    CAS  PubMed  Google Scholar 

  • Buffalari DM, Grace AA (2007) Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation. J Neurosci 27:12358–12366

    CAS  PubMed  Google Scholar 

  • Callahan PM, Cunningham KA (1991) Electrophysiological effects of cocaine in amygdala nuclei: relationship to dopamine and serotonin actions. Soc Neurosci Abstr 21:679

    Google Scholar 

  • Carelli RM (2002) Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. ‘natural’ reinforcement. Physiol Behav 76:379–387

    CAS  PubMed  Google Scholar 

  • Carelli RM, Williams JG, Hollander JA (2003) Basolateral amygdala neurons encode cocaine self-administration and cocaine-associated cues. J Neurosci 23:8204–8211

    CAS  PubMed  Google Scholar 

  • Childress AR, Hole AV, Ehrman RN, Robbins SJ, McLellan AT, O’Brien CP (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monogr 137:73–95

    CAS  PubMed  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    CAS  PubMed  Google Scholar 

  • Cunningham KA, Callahan PM, Lekan HL (1989) Cocaine: electrophysiological characterization of effects in amygdala nuclei. Soc Neurosci Abstr 15:1098

    Google Scholar 

  • Day HE, Badiani A, Uslaner JM, Oates MM, Vittoz NM, Robinson TE, Watson SJ Jr, Akil H (2001) Environmental novelty differentially affects c-fos mRNA expression induced by amphetamine or cocaine in subregions of the bed nucleus of the stria terminalis and amygdala. J Neurosci 21:732–740

    CAS  PubMed  Google Scholar 

  • Debiec J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129:267–272

    CAS  PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 24:7167–7173

    PubMed  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38:192–246

    CAS  PubMed  Google Scholar 

  • Doron NN, Ledoux JE (2000) Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol 425:257–274

    CAS  PubMed  Google Scholar 

  • Engber TM, Koury EJ, Dennis SA, Miller MS, Contreras PC, Bhat RV (1998) Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil. Neurosci Lett 241:95–98

    CAS  PubMed  Google Scholar 

  • Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 189:1–16

    CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2000) Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology (Berl) 153:17–30

    CAS  Google Scholar 

  • Faleiro LJ, Jones S, Kauer JA (2004) Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 29:2115–2125

    CAS  PubMed  Google Scholar 

  • Fallon JH, Koziell DA, Moore RY (1978) Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180:509–532

    CAS  PubMed  Google Scholar 

  • Feltenstein MW, See RE (2007) NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol Learn Mem 88:435–444

    CAS  PubMed  Google Scholar 

  • Foltin RW, Haney M (2000) Conditioned effects of environmental stimuli paired with smoked cocaine in humans. Psychopharmacology (Berl) 149:24–33

    CAS  Google Scholar 

  • Fu Y, Pollandt S, Liu J, Krishnan B, Genzer K, Orozco-Cabal L, Gallagher JP, Shinnick-Gallagher P (2007) Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. J Neurophysiol 97:937–941

    CAS  PubMed  Google Scholar 

  • Fuchs RA, Weber SM, Rice HJ, Neisewander JL (2002) Effects of excitotoxic lesions of the basolateral amygdala on cocaine-seeking behavior and cocaine conditioned place preference in rats. Brain Res 929:15–25

    CAS  PubMed  Google Scholar 

  • Fuchs RA, Evans KA, Parker MC, See RE (2004) Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 176:459–465

    CAS  Google Scholar 

  • Fuchs RA, Feltenstein MW, See RE (2006) The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cued reinstatement of cocaine seeking. Eur J Neurosci 23:2809–2813

    PubMed  Google Scholar 

  • Gabbott PL, Warner TA, Busby SJ (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139:1039–1048

    CAS  PubMed  Google Scholar 

  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798

    CAS  PubMed  Google Scholar 

  • Goussakov I, Chartoff EH, Tsvetkov E, Gerety LP, Meloni EG, Carlezon WA Jr, Bolshakov VY (2006) LTP in the lateral amygdala during cocaine withdrawal. Eur J Neurosci 23:239–250

    PubMed  Google Scholar 

  • Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10:1029–1037

    CAS  PubMed  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci U S A 93:12040–12045

    CAS  PubMed  Google Scholar 

  • Gray TS, Carney ME, Magnuson DJ (1989) Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50:433–446

    CAS  PubMed  Google Scholar 

  • Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479

    CAS  PubMed  Google Scholar 

  • Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 23:742–747

    CAS  PubMed  Google Scholar 

  • Groshek F, Kerfoot E, McKenna V, Polackwich AS, Gallagher M, Holland PC (2005) Amygdala central nucleus function is necessary for learning, but not expression, of conditioned auditory orienting. Behav Neurosci 119:202–212

    PubMed  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    CAS  PubMed  Google Scholar 

  • Hearing MC, Miller SW, See RE, McGinty JF (2008) Relapse to cocaine seeking increases activity-regulated gene expression differentially in the prefrontal cortex of abstinent rats. Psychopharmacology (Berl) 198:77–91

    CAS  Google Scholar 

  • Hiroi N, White NM (1991) The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. J Neurosci 11:2107–2116

    CAS  PubMed  Google Scholar 

  • Hitchcott PK, Harmer CJ, Phillips GD (1997) Enhanced acquisition of discriminative approach following intra-amygdala d-amphetamine. Psychopharmacology (Berl) 132:237–246

    CAS  Google Scholar 

  • Hotsenpiller G, Wolf ME (2002) Extracellular glutamate levels in prefrontal cortex during the expression of associative responses to cocaine related stimuli. Neuropharmacology 43:1218–1229

    CAS  PubMed  Google Scholar 

  • Hotsenpiller G, Giorgetti M, Wolf ME (2001) Alterations in behaviour and glutamate transmission following presentation of stimuli previously associated with cocaine exposure. Eur J Neurosci 14:1843–1855

    CAS  PubMed  Google Scholar 

  • Hsu EH, Schroeder JP, Packard MG (2002) The amygdala mediates memory consolidation for an amphetamine conditioned place preference. Behav Brain Res 129:93–100

    CAS  PubMed  Google Scholar 

  • Jolkkonen E, Pitkanen A (1998) Intrinsic connections of the rat amygdaloid complex: projections originating in the central nucleus. J Comp Neurol 395:53–72

    CAS  PubMed  Google Scholar 

  • Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 168:44–56

    CAS  Google Scholar 

  • Kantak KM, Black Y, Valencia E, Green-Jordan K, Eichenbaum HB (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    CAS  PubMed  Google Scholar 

  • Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    CAS  PubMed  Google Scholar 

  • Kilts CD (2001) Imaging the roles of the amygdala in drug addiction. Psychopharmacol Bull 35:84–94

    CAS  PubMed  Google Scholar 

  • Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341

    CAS  PubMed  Google Scholar 

  • Kirby KC, Lamb RJ, Iguchi MY, Husband SD, Platt JJ (1995) Situations occasioning cocaine use and cocaine abstinence strategies. Addiction 90:1241–1252

    CAS  PubMed  Google Scholar 

  • Kishi T, Tsumori T, Yokota S, Yasui Y (2006) Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol 496:349–368

    PubMed  Google Scholar 

  • Koob GF (2003) Neuroadaptive mechanisms of addiction: studies on the extended amygdala. Eur Neuropsychopharmacol 13:442–452

    CAS  PubMed  Google Scholar 

  • Koob GF (2008) A role for brain stress systems in addiction. Neuron 59:11–34

    CAS  PubMed  Google Scholar 

  • Kreek MJ, Koob GF (1998) Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 51:23–47

    CAS  PubMed  Google Scholar 

  • Kruzich PJ, See RE (2001) Differential contributions of the basolateral and central amygdala in the acquisition and expression of conditioned relapse to cocaine-seeking behavior. J Neurosci 21:RC155

    CAS  PubMed  Google Scholar 

  • Kruzich PJ, Congleton KM, See RE (2001) Conditioned reinstatement of drug-seeking behavior with a discrete compound stimulus classically conditioned with intravenous cocaine. Behav Neurosci 115:1086–1092

    CAS  PubMed  Google Scholar 

  • Laviolette SR, Lipski WJ, Grace AA (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. J Neurosci 25:6066–6075

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1985) Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann N Y Acad Sci 444:463–464

    CAS  PubMed  Google Scholar 

  • Lee JL, Dickinson A, Everitt BJ (2005) Conditioned suppression and freezing as measures of aversive Pavlovian conditioning: effects of discrete amygdala lesions and overtraining. Behav Brain Res 159:221–233

    PubMed  Google Scholar 

  • Lee JL, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26:5881–5887

    CAS  PubMed  Google Scholar 

  • Linke R, Braune G, Schwegler H (2000) Differential projection of the posterior paralaminar thalamic nuclei to the amygdaloid complex in the rat. Exp Brain Res 134:520–532

    CAS  PubMed  Google Scholar 

  • Lu L, Hope BT, Dempsey J, Liu SY, Bossert JM, Shaham Y (2005) Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8:212–219

    CAS  PubMed  Google Scholar 

  • Malkova L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J Neurosci 17:6011–6020

    CAS  PubMed  Google Scholar 

  • Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47:783–786

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    CAS  PubMed  Google Scholar 

  • McDonald AJ, Mascagni F (1997) Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 77:445–459

    CAS  PubMed  Google Scholar 

  • McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75

    CAS  PubMed  Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    CAS  PubMed  Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560

    CAS  PubMed  Google Scholar 

  • McGinty VB, Grace AA (2008) Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. Cereb Cortex 18:1961–1972

    PubMed  Google Scholar 

  • McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology (Berl) 168:57–65

    CAS  Google Scholar 

  • Mead AN, Vasilaki A, Spyraki C, Duka T, Stephens DN (1999) AMPA-receptor involvement in c-fos expression in the medial prefrontal cortex and amygdala dissociates neural substrates of conditioned activity and conditioned reward. Eur J Neurosci 11:4089–4098

    CAS  PubMed  Google Scholar 

  • Meil WM, See RE (1997) Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav Brain Res 87:139–148

    CAS  PubMed  Google Scholar 

  • Meredith GE, Callen S, Scheuer DA (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdala, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res 949:218–227

    CAS  PubMed  Google Scholar 

  • Miller CA, Marshall JF (2004) Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci 24:6889–6897

    CAS  PubMed  Google Scholar 

  • Miller CA, Marshall JF (2005) Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur J Neurosci 21:1385–1393

    PubMed  Google Scholar 

  • Missale C, Nash ER, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    CAS  PubMed  Google Scholar 

  • O’Dell LE, Sussman AN, Meyer KL, Neisewander JL (1999) Behavioral effects of psychomotor stimulant infusions into amygdaloid nuclei. Neuropsychopharmacology 20:591–602

    PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J Neurosci 15:3622–3639

    PubMed  Google Scholar 

  • Pare D, Smith Y (1993a) Distribution of GABA immunoreactivity in the amygdaloid complex of the cat. Neuroscience 57:1061–1076

    CAS  PubMed  Google Scholar 

  • Pare D, Smith Y (1993b) The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 57:1077–1090

    CAS  PubMed  Google Scholar 

  • Parkinson JA, Robbins TW, Everitt BJ (2000) Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur J Neurosci 12:405–413

    CAS  PubMed  Google Scholar 

  • Perrine SA, Miller JS, Unterwald EM (2008) Cocaine regulates protein kinase B and glycogen synthase kinase-3 activity in selective regions of rat brain. J Neurochem 107:570–577

    CAS  PubMed  Google Scholar 

  • Pikkarainen M, Ronkko S, Savander V, Insausti R, Pitkanen A (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229–260

    CAS  PubMed  Google Scholar 

  • Pinto A, Sesack SR (2008) Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct 213:159–175

    CAS  PubMed  Google Scholar 

  • Pitkanen A, Stefanacci L, Farb CR, Go GG, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356:288–310

    CAS  PubMed  Google Scholar 

  • Pitkanen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523

    CAS  PubMed  Google Scholar 

  • Pitkanen A, Savander M, Nurminen N, Ylinen A (2003) Intrinsic synaptic circuitry of the amygdala. Ann N Y Acad Sci 985:34–49

    PubMed  Google Scholar 

  • Rademacher DJ, Kovacs B, Shen F, Napier TC, Meredith GE (2006) The neural substrates of amphetamine conditioned place preference: implications for the formation of conditioned stimulus-reward associations. Eur J Neurosci 24:2089–2097

    PubMed  Google Scholar 

  • Radwanska K, Caboche J, Kaczmarek L (2005) Extracellular signal-regulated kinases (ERKs) modulate cocaine-induced gene expression in the mouse amygdala. Eur J Neurosci 22:939–948

    PubMed  Google Scholar 

  • Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82:69–85

    CAS  PubMed  Google Scholar 

  • Rodrigues SM, Schafe GE, LeDoux JE (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44:75–91

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (1999) Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 19:11027–11039

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Buffalari DM, Grace AA (2006) Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala. Biol Psychiatry 59:801–811

    PubMed  Google Scholar 

  • Royer S, Martina M, Pare D (1999) An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 19:10575–10583

    CAS  PubMed  Google Scholar 

  • Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    CAS  PubMed  Google Scholar 

  • Sah P, Westbrook RF, Luthi A (2008) Fear conditioning and long-term potentiation in the amygdala: what really is the connection? Ann N Y Acad Sci 1129:88–95

    CAS  PubMed  Google Scholar 

  • Samson RD, Pare D (2006) A spatially structured network of inhibitory and excitatory connections directs impulse traffic within the lateral amygdala. Neuroscience 141:1599–1609

    CAS  PubMed  Google Scholar 

  • Savander V, Go CG, LeDoux JE, Pitkanen A (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the basal nucleus. J Comp Neurol 361:345–368

    CAS  PubMed  Google Scholar 

  • Savander V, Go CG, Ledoux JE, Pitkanen A (1996) Intrinsic connections of the rat amygdaloid complex: projections originating in the accessory basal nucleus. J Comp Neurol 374:291–313

    CAS  PubMed  Google Scholar 

  • Savander V, Ledoux JE, Pitkanen A (1997) Interamygdaloid projections of the basal and accessory basal nuclei of the rat amygdaloid complex. Neuroscience 76:725–735

    CAS  PubMed  Google Scholar 

  • Schafe GE, Nader K, Blair HT, LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci 24:540–546

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867

    CAS  PubMed  Google Scholar 

  • Schroeder JP, Packard MG (2003) Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. Eur J Neurosci 17:1482–1488

    PubMed  Google Scholar 

  • Schroeder JP, Packard MG (2004) Facilitation of memory for extinction of drug-induced conditioned reward: role of amygdala and acetylcholine. Learn Mem 11:641–647

    PubMed  Google Scholar 

  • See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology (Berl) 154:301–310

    CAS  Google Scholar 

  • See RE, McLaughlin J, Fuchs RA (2003) Muscarinic receptor antagonism in the basolateral amygdala blocks acquisition of cocaine-stimulus association in a model of relapse to cocaine-seeking behavior in rats. Neuroscience 117:477–483

    CAS  PubMed  Google Scholar 

  • Setlow B, Holland PC, Gallagher M (2002) Disconnection of the basolateral amygdala complex and nucleus accumbens impairs appetitive Pavlovian second-order conditioned responses. Behav Neurosci 116:267–275

    PubMed  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    CAS  Google Scholar 

  • Shinonaga Y, Takada M, Mizuno N (1994) Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat. Neuroscience 58:389–397

    CAS  PubMed  Google Scholar 

  • Sigurdsson T, Doyere V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52:215–227

    CAS  PubMed  Google Scholar 

  • Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G (2008) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72

    Google Scholar 

  • Stefanacci L, Farb CR, Pitkanen A, Go G, LeDoux JE, Amaral DG (1992) Projections from the lateral nucleus to the basal nucleus of the amygdala: a light and electron microscopic PHA-L study in the rat. J Comp Neurol 323:586–601

    CAS  PubMed  Google Scholar 

  • Sun N, Roberts L, Cassell MD (1991) Rat central amygdaloid nucleus projections to the bed nucleus of the stria terminalis. Brain Res Bull 27:651–662

    CAS  PubMed  Google Scholar 

  • Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598

    CAS  PubMed  Google Scholar 

  • Thomas MJ, Malenka RC (2003) Synaptic plasticity in the mesolimbic dopamine system. Philos Trans R Soc Lond B Biol Sci 358:815–819

    CAS  PubMed  Google Scholar 

  • Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154:327–342

    CAS  PubMed  Google Scholar 

  • Turner BH, Herkenham M (1991) Thalamoamygdaloid projections in the rat: a test of the amygdala’s role in sensory processing. J Comp Neurol 313:295–325

    CAS  PubMed  Google Scholar 

  • Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12:227–462

    CAS  PubMed  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587

    CAS  PubMed  Google Scholar 

  • Valjent E, Corvol JC, Pages C, Besson MJ, Maldonado R, Caboche J (2000) Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 20:8701–8709

    CAS  PubMed  Google Scholar 

  • Valjent E, Caboche J, Vanhoutte P (2001) Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol Neurobiol 23:83–99

    CAS  PubMed  Google Scholar 

  • Valjent E, Pages C, Herve D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836

    PubMed  Google Scholar 

  • Van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav 73:273–283

    PubMed  Google Scholar 

  • van Vulpen EH, Verwer RW (1989) Organization of projections from the mediodorsal nucleus of the thalamus to the basolateral complex of the amygdala in the rat. Brain Res 500:389–394

    PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2008) Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. Neuroimage 39:1266–1273

    PubMed  Google Scholar 

  • Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49:381–391

    CAS  PubMed  Google Scholar 

  • Wepsic JG, Austin GM (1972) The neurophysiological effects of amphetamine upon the cat amygdala. In: Eleftheriou BE (ed) The neurobiology of the amygdala complex. Plenum, New York, pp 623–640

    Google Scholar 

  • Whitelaw RB, Markou A, Robbins TW, Everitt BJ (1996) Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology (Berl) 127:213–224

    CAS  Google Scholar 

  • Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26:12387–12396

    CAS  PubMed  Google Scholar 

  • Wise RA (1980) Action of drugs of abuse on brain reward systems. Pharmacol Biochem Behav 13(Suppl 1):213–223

    PubMed  Google Scholar 

  • Zavala AR, Biswas S, Harlan RE, Neisewander JL (2007) Fos and glutamate AMPA receptor subunit coexpression associated with cue-elicited cocaine-seeking behavior in abstinent rats. Neuroscience 145:438–452

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deanne M. Buffalari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buffalari, D.M., See, R.E. (2010). Amygdala Mechanisms of Pavlovian Psychostimulant Conditioning and Relapse. In: Self, D., Staley Gottschalk, J. (eds) Behavioral Neuroscience of Drug Addiction. Current Topics in Behavioral Neurosciences, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2009_18

Download citation

Publish with us

Policies and ethics