Skip to main content

Stress and the Neuroendocrinology of Anxiety Disorders

  • Chapter
  • First Online:
Behavioral Neurobiology of Anxiety and Its Treatment

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 2))

Abstract

Stress is a risk factor for depressive and anxiety disorders. Changes in lifestyle patterns that are associated with increased stress therefore place a greater burden on mental health. Stress challenges the organism’s homeostatic mechanisms, triggering a cascade of events that should, normally, maintain or allow a return to equilibrium. Stressful events are perceived by sensory systems in the brain, facilitating evaluation and comparison of the existing and previous stimuli as well as the activation of hormones responsible for energy mobilization. The limbic system coordinates the release of corticosteroids, the primary stress hormones, by modulating activation of the hypothalamic paraventricular nucleus (PVN). The amygdala, a limbic structure related to emotional behavior, has a putative role in the evaluation of emotional events and formation of fearful memories; it is also a target of the neurochemical and hormonal mediators of stress. Clinical and experimental data have correlated changes in the structure/function of the amygdala with emotional disorders such as anxiety. In this chapter we review the neuroendocrinology of the stress response, focusing on the role of the limbic system in its establishment and supplementing that information with new experimental data that demonstrates the relationship between stress and anxiety disorders; we also discuss the structural changes that occur in the amygdala after stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie ED, Jacobs BL (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7(9):2837–2843

    CAS  PubMed  Google Scholar 

  • Akirav I, Maroun M (2007) The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast 30873

    Google Scholar 

  • Alheid GF (2003) Extended amygdala and basal forebrain. Ann N Y Acad Sci 985:185–205

    Article  CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27(1):1–39

    Article  CAS  PubMed  Google Scholar 

  • Alonso J, Lepine JP (2007) Overview of key data from the European Study of the Epidemiology of Mental Disorders (ESEMeD). J Clin Psychiatry 68(Suppl 2):3–9

    PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders (DSM-IV), 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 29(4–5):525–546

    Article  PubMed  Google Scholar 

  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am.J.Psychiatry 156:585–588

    CAS  PubMed  Google Scholar 

  • Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE et al (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24(4):410–414

    Article  CAS  PubMed  Google Scholar 

  • Bekker MH, van Mens-Verhulst J (2007) Anxiety disorders: sex differences in prevalence, degree, and background, but gender-neutral treatment. Gend Med 4(Suppl B):S178–S193

    Article  PubMed  Google Scholar 

  • Bessa JM, Oliveira M, Cerqueira JJ, Almeida OF, Sousa N (2005) Age-related qualitative shift in emotional behaviour: paradoxical findings after re-exposure of rats in the elevated-plus maze. Behav Brain Res 162(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11(7):307–316

    Article  PubMed  Google Scholar 

  • Bourin M, Petit-Demouliere B, Dhonnchadha BN, Hascoet M (2007) Animal models of anxiety in mice. Fundam Clin Pharmacol 21(6):567–574

    Article  CAS  PubMed  Google Scholar 

  • Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ (2006) Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci 26(7):1971–1978

    Article  CAS  PubMed  Google Scholar 

  • Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM, Nemeroff CB, Charney DS (1997) Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 154:624–629

    CAS  PubMed  Google Scholar 

  • Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41(5):317–328

    Article  CAS  PubMed  Google Scholar 

  • Bucy PC, Kluver H (1955) An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J Comp Neurol 103(2):151–251

    Article  CAS  PubMed  Google Scholar 

  • Burdach K (1819–1822) Vom baue und leben des gehirns und röckenmarks, Dyk, Leipzig

    Google Scholar 

  • Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324(2):180–194

    Article  CAS  PubMed  Google Scholar 

  • Carpenter LL, Carvalho JP, Tyrka AR, Wier LM, Mello AF, Mello MF, Anderson GM, Wilkinson CW, Price LH (2007) Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biol Psychiatry 62(10):1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OF et al (2005a) Corticosteroid status influences the volume of the rat cingulate cortex - a magnetic resonance imaging study. J Psychiatr Res 39(5):451–460

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N (2005b) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007a) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27(11):2781–2787

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira JJ, Taipa R, Uylings HB, Almeida OF, Sousa N (2007b) Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 17(9):1998–2006

    Article  PubMed  Google Scholar 

  • Cerqueira JJ, Almeida OF, Sousa N (2008) The stressed prefrontal cortex. Left? Right!. Brain Behav Immun 22(5):630–638

    Article  CAS  PubMed  Google Scholar 

  • Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15(10):6340–6350

    CAS  PubMed  Google Scholar 

  • Chan RK, Brown ER, Ericsson A, Kovacs KJ, Sawchenko PE (1993) A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuitry. J Neurosci 13(12):5126–5138

    CAS  PubMed  Google Scholar 

  • Charney DS, Deutch AY, Krystal JH, Southwick SW, Davis M (1993) Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 50(4):295–305

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci USA 90(19):8967–8971

    Article  CAS  PubMed  Google Scholar 

  • Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27(8):2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Chrousos GP, Kino T (2007) Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress 10(2):213–219

    Article  CAS  PubMed  Google Scholar 

  • Cole RL, Sawchenko PE (2002) Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 22(3):959–969

    CAS  PubMed  Google Scholar 

  • Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH et al (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24(4):403–409

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Watson SJ (1993) Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2):477–505

    Article  CAS  PubMed  Google Scholar 

  • Dagnino-Subiabre A, Terreros G, Carmona-Fontaine C, Zepeda R, Orellana JA, Diaz-Veliz G et al (2005) Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence. Neuroscience 135(4):1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23(2):71–77

    Article  CAS  PubMed  Google Scholar 

  • Davies DC, Martinez-Garcia F, Lanuza E, Novejarque A (2002) Striato-amygdaloid transition area lesions reduce the duration of tonic immobility in the lizard Podarcis hispanica. Brain Res Bull 57(3–4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100(6):814–824

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44(12):1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61(8):741–756

    Article  PubMed  Google Scholar 

  • Davis M, Walker DL, Lee Y (1997) Amygdala and bed nucleus of the stria terminalis: differential roles in fear and anxiety measured with the acoustic startle reflex. Philos Trans R Soc Lond B Biol Sci 352(1362):1675–1687

    Article  CAS  PubMed  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475

    Article  PubMed  CAS  Google Scholar 

  • De Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical and chemoarchitectonical survey. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Dong HW, Swanson LW (2004) Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J Comp Neurol 468(2):277–298

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006a) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494(1):142–178

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006b) Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 494(1):75–107

    Article  PubMed  Google Scholar 

  • Dong HW, Swanson LW (2006c) Projections from bed nuclei of the stria terminalis, magnocellular nucleus: implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. J Comp Neurol 494(1):108–141

    Article  PubMed  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38(1–2):192–246

    Article  CAS  PubMed  Google Scholar 

  • Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59(12):1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Dunn JD (1987) Plasma corticosterone responses to electrical stimulation of the bed nucleus of the stria terminalis. Brain Res 407(2):327–331

    Article  CAS  PubMed  Google Scholar 

  • Dunn AJ, File SE (1987) Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Horm Behav 21(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Duvarci S, Pare D (2007) Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27(16):4482–4491

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg M, Dudai Y (2004) Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don’t die. Eur J Neurosci 20(12):3397–3403

    Article  PubMed  Google Scholar 

  • Espejo EP, Hammen CL, Connolly NP, Brennan PA, Najman JM, Bor W (2007) Stress sensitization and adolescent depressive severity as a function of childhood adversity: a link to anxiety disorders. J Abnorm Child Psychol 35(2):287–299

    Article  PubMed  Google Scholar 

  • Feldman S, Conforti N, Melamed E (1987) Paraventricular nucleus serotonin mediates neurally stimulated adrenocortical secretion. Brain Res Bull 18(2):165–168

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP (2003) Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144(12):5249–5258

    Article  CAS  PubMed  Google Scholar 

  • File SE (1996) Recent developments in anxiety, stress, and depression. Pharmacol Biochem Behav 54(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • File SE, Johnston AL, Baldwin HA (1988) Anxiolytic and anxiogenic drugs: changes in behaviour and endocrine responses. Stress Med 4(4):221–230

    Article  Google Scholar 

  • Fuchs E, Fliugge G (2006) Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci 8(3):323–333

    PubMed  Google Scholar 

  • Gann DS, Ward DG, Baertschi AJ, Carlson DE, Maran JW (1977) Neural control of ACTH release in response to hemorrhage. Ann N Y Acad Sci 297:477–497

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz JC, McNish KA, Davis M (1998) Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Prog Neuropsychopharmacol Biol Psychiatry 22(4):625–648

    Article  CAS  PubMed  Google Scholar 

  • Gliner JA (1972) Predictable vs. unpredictable shock: preference behavior and stomach ulceration. Physiol Behav 9(5):693–698

    Article  CAS  PubMed  Google Scholar 

  • Goddard GV (1964) Functions of the amygdala. Psychol Bull 62:89–109

    Article  CAS  PubMed  Google Scholar 

  • Greaves-Lord K, Ferdinand RF, Oldehinkel AJ, Sondeijker FE, Ormel J, Verhulst FC (2007) Higher cortisol awakening response in young adolescents with persistent anxiety problems. Acta Psychiatr Scand 116(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Gum AM, Cheavens JS (2008) Psychiatric comorbidity and depression in older adults. Curr Psychiatry Rep 10(1):23–29

    Article  PubMed  Google Scholar 

  • Heinrichs SC, Koob GF (2004) Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 311(2):427–440

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT (1997) Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 71(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Hammen C (2005) Stress and Depression. Annu Rev Clin Psychol 1:293–319

    Google Scholar 

  • Herman JP, Cullinan WE, Watson SJ (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6(4):433–442

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84

    Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC et al (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8):1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Hermann B, Landgraf R, Keck ME, Wigger A, Morrow AL, Strohle A (2000) Pharmacological characterisation of cortical gamma-aminobutyric acid type A (GABAA) receptors in two Wistar rat lines selectively bred for high and low anxiety-related behaviour. World J Biol Psychiatry 1(3):137–143

    Article  CAS  PubMed  Google Scholar 

  • Hettema JM, Neale MC, Kendler KS (2001) A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 158(10):1568–1578

    Article  CAS  PubMed  Google Scholar 

  • Hettema JM, Prescott CA, Myers JM, Neale MC, Kendler KS (2005) The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch Gen Psychiatry 62(2):182–189

    Article  PubMed  Google Scholar 

  • Imhof JT, Coelho ZM, Schmitt ML, Morato GS, Carobrez AP (1993) Influence of gender and age on performance of rats in the elevated plus maze apparatus. Behav Brain Res 56(2):177–180

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35(5):337–481

    Article  Google Scholar 

  • Ju G, Swanson LW (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. Cytoarchitecture. J Comp Neurol 280(4):587–602

    Article  CAS  PubMed  Google Scholar 

  • Ju G, Swanson LW, Simerly RB (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: II. Chemoarchitecture. J Comp Neurol 280(4):603–621

    Article  CAS  PubMed  Google Scholar 

  • Keck ME, Sartori SB, Welt T, Muller MB, Ohl F, Holsboer F et al (2005) Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. J Neurochem 92(5):1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Kessler MS, Murgatroyd C, Bunck M, Czibere L, Frank E, Jacob W et al (2007a) Diabetes insipidus and, partially, low anxiety-related behaviour are linked to a SNP-associated vasopressin deficit in LAB mice. Eur J Neurosci 26(10):2857–2864

    Article  PubMed  Google Scholar 

  • Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S, Ustun TB (2007b) Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry 20(4):359–364

    Article  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59(2):107–128

    Article  CAS  PubMed  Google Scholar 

  • Lancel M, Muller-Preuss P, Wigger A, Landgraf R, Holsboer F (2002) The CRH1 receptor antagonist R121919 attenuates stress-elicited sleep disturbances in rats, particularly in those with high innate anxiety. J Psychiatr Res 36(4):197–208

    Article  PubMed  Google Scholar 

  • Lau SH, Rivier J, Vale W, Kaiser ET, Kezdy FJ (1983) Surface properties of an amphiphilic peptide hormone and of its analog: corticotropin-releasing factor and sauvagine. Proc Natl Acad Sci USA 80(23):7070–7074

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • LeDoux J (2007) The amygdala. Curr Biol 17(20):R868–R874

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Davis M (1997a) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17(16):6434–6446

    CAS  PubMed  Google Scholar 

  • Lee Y, Davis M (1997b) Role of the septum in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17(16):6424–6433

    CAS  PubMed  Google Scholar 

  • Lee Y, Schulkin J, Davis M (1994) Effect of corticosterone on the enhancement of the acoustic startle reflex by corticotropin releasing factor (CRF). Brain Res 666(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Lenze EJ, Wetherell JL (2009) Bringing the bedside to the bench, and then to the community: a prospectus for intervention research in late-life anxiety disorders. Int J Geriatr Psychiatry 24(1):1–14

    Article  PubMed  Google Scholar 

  • Liberzon I, Lopez JF, Flagel SB, Vazquez DM, Young EA (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Liebsch G, Landgraf R, Gerstberger R, Probst JC, Wotjak CT, Engelmann M et al (1995) Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Regul Pept 59(2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Liebsch G, Linthorst AC, Neumann ID, Reul JM, Holsboer F, Landgraf R (1998a) Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology 19(5):381–396

    Article  CAS  PubMed  Google Scholar 

  • Liebsch G, Montkowski A, Holsboer F, Landgraf R (1998b) Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res 94(2):301–310

    Article  CAS  PubMed  Google Scholar 

  • Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F (1999) Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 33(2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Lister RG (1990) Ethologically-based animal models of anxiety disorders. Pharmacol Ther 46(3):321–340

    Article  CAS  PubMed  Google Scholar 

  • Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB et al (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 92(3):836–840

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Amat J, Baratta MV, Paul E, Watkins LR (2006) Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci 8(4):397–406

    PubMed  Google Scholar 

  • Mathew SJ, Price RB, Charney DS (2008) Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet 148(2):89–98

    Google Scholar 

  • Mayer EA, Fanselow MS (2003) Dissecting the components of the central response to stress. Nat Neurosci 6(10):1011–1012

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2003) Mood disorders and allostatic load. Biol Psychiatry 54(3):200–207

    Article  PubMed  Google Scholar 

  • McEwen BS (2004) Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7

    Article  PubMed  Google Scholar 

  • McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl 1):20–23

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904

    Article  PubMed  Google Scholar 

  • McLaughlin KJ, Gomez JL, Baran SE, Conrad CD (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64

    Article  CAS  PubMed  Google Scholar 

  • Merikangas KR, Kalaydjian A (2007) Magnitude and impact of comorbidity of mental disorders from epidemiologic surveys. Curr Opin Psychiatry 20(4):353–358

    Article  PubMed  Google Scholar 

  • Mesquita AR, Pego JM, Summavielle T, Maciel P, Almeida OF, Sousa N (2007) Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 147(4):1022–1033

    Article  CAS  PubMed  Google Scholar 

  • Miracle AD, Brace MF, Huyck KD, Singler SA, Wellman CL (2006) Chronic stress impairs recall of extinction of conditioned fear. Neurobiol Learn Mem 85(3):213–218

    Article  PubMed  Google Scholar 

  • Mitev YA, Darwish M, Wolf SS, Holsboer F, Almeida OF, Patchev VK (2003) Gender differences in the regulation of 3 alpha-hydroxysteroid dehydrogenase in rat brain and sensitivity to neurosteroid-mediated stress protection. Neuroscience 120(2):541–549

    Article  CAS  PubMed  Google Scholar 

  • Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102(26):9371–9376

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi K, Ishige A, Aburada M, Tabira T (2003) Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119(3):887–897

    Article  CAS  PubMed  Google Scholar 

  • Moffitt TE, Caspi A, Harrington H, Milne BJ, Melchior M, Goldberg D, Poulton R (2007) Generalized anxiety disorder and depression: childhood risk factors in a birth cohort followed to age 32. Psychol Med 37(3):441–452

    Article  PubMed  Google Scholar 

  • Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B (2007) Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370(9590):851–858

    Article  PubMed  Google Scholar 

  • Musselman DL, Nemeroff CB (2000) Depression really does hurt your heart: stress, depression, and cardiovascular disease. Prog Brain Res 122:43–59

    Article  CAS  PubMed  Google Scholar 

  • Nakamori T, Morimoto A, Murakami N (1993) Effect of a central CRF antagonist on cardiovascular and thermoregulatory responses induced by stress or IL-1 beta. Am J Physiol 265(4 Pt 2):R834–R839

    CAS  PubMed  Google Scholar 

  • Neumann ID, Wigger A, Liebsch G, Holsboer F, Landgraf R (1998) Increased basal activity of the hypothalamo-pituitary-adrenal axis during pregnancy in rats bred for high anxiety-related behaviour. Psychoneuroendocrinology 23(5):449–463

    Article  CAS  PubMed  Google Scholar 

  • Pêgo JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OF, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Pêgo JM, Morgado P, Cerqueira JJ, Almeida OF, Sousa N (2006) Mismatch between anxiety status and morphometric parameters in the amygdala and bed nucleus of the stria terminalis. Behav Brain Res 173(2):320–325

    Article  PubMed  Google Scholar 

  • Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 38(1–2):247–289

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285

    Article  CAS  PubMed  Google Scholar 

  • Portavella M, Torres B, Salas C, Papini MR (2004) Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362(2):75–78

    Article  CAS  PubMed  Google Scholar 

  • Prewitt CM, Herman JP (1998) Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. J Chem Neuroanat 15(3):173–185

    Article  CAS  PubMed  Google Scholar 

  • Radulovic J, Ruhmann A, Liepold T, Spiess J (1999) Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 19(12):5016–5025

    CAS  PubMed  Google Scholar 

  • Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117(6):2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, de Kloet ER (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24(1):269–272

    Article  CAS  PubMed  Google Scholar 

  • Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Risbrough VB, Stein MB (2006) Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 50(4):550–561

    Article  CAS  PubMed  Google Scholar 

  • Robinson E (1963) Effect of Amygdalectomy on Fear-Motivated Behavior in Rats. J Comp Physiol Psychol 56:814–820

    Article  CAS  PubMed  Google Scholar 

  • Rosen JB, Fanselow MS, Young SL, Sitcoske M, Maren S (1998) Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res 796(1–2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Rubinow MJ, Drogos LL, Juraska JM (2007) Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala. Neurobiol Aging 30(1):137–146

    Article  PubMed  Google Scholar 

  • Sapolsky RM (1999) Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol 34(6):721–732

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7(3):284–301

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW, Steinbusch HW, Verhofstad AA (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277(2):355–360

    Article  CAS  PubMed  Google Scholar 

  • Shekhar A, McCann UD, Meaney MJ, Blanchard DC, Davis M, Frey KA et al (2001) Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl) 157(4):327–339

    Article  CAS  Google Scholar 

  • Shelton RC (2007) The molecular neurobiology of depression. Psychiatr Clin North Am 30(1):1–11

    Article  PubMed  Google Scholar 

  • Sibille E, Pavlides C, Benke D, Toth M (2000) Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 20(8):2758–2765

    CAS  PubMed  Google Scholar 

  • Skorzewska A, Bidzinski A, Lehner M, Turzynska D, Wislowska-Stanek A, Sobolewska A et al (2006) The effects of acute and chronic administration of corticosterone on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-Fos expression in the brain structures. Pharmacol Biochem Behav 85(3):522–534

    Article  CAS  PubMed  Google Scholar 

  • Skutella T, Probst JC, Renner U, Holsboer F, Behl C (1998) Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 85(3):795–805

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Brady LS, Glowa J, Gold PW, Herkenham M (1991) Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res 544(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Sorrells SF, Sapolsky RM (2007) An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun 21(3):259–272

    Article  CAS  PubMed  Google Scholar 

  • Sousa N, Almeida OF (2002) Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci 13(1):59–84

    CAS  PubMed  Google Scholar 

  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97(2):253–266

    Article  CAS  PubMed  Google Scholar 

  • Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(Suppl 2):5–24

    PubMed  Google Scholar 

  • Sousa N, Cerqueira JJ, Almeida OF (2008) Corticosteroid receptors and neuroplasticity. Brain Res Rev 57(2):561–570

    Article  CAS  PubMed  Google Scholar 

  • Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46(11):1480–1508

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1998) Brain Maps: Structure of the rat brain, 2nd edn. Elsevier, Amsterdam, p 267

    Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21(8):323–331

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA, Vale WW, Koob GF (1986) Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology (Berl) 88(2):147–152

    Article  CAS  Google Scholar 

  • Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF (2003) Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 980(2):206–212

    Article  CAS  PubMed  Google Scholar 

  • Vesga-López O, Schneier FR, Wang S, Heimberg RG, Liu SM, Hasin DS, Blanco C (2008) Gender differences in generalized anxiety disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). J Clin Psychiatry 69:1606–1616

    Google Scholar 

  • Vyas A, Chattarji S (2004) Modulation of different states of anxiety-like behavior by chronic stress. Behav Neurosci 118(6):1450–1454

    Article  PubMed  Google Scholar 

  • Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818

    CAS  PubMed  Google Scholar 

  • Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294

    Article  CAS  PubMed  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451

    Article  CAS  PubMed  Google Scholar 

  • Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49(4):381–391

    Article  CAS  PubMed  Google Scholar 

  • Whitnall MH (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40(5):573–629

    Article  CAS  PubMed  Google Scholar 

  • Wigger A, Loerscher P, Weissenbacher P, Holsboer F, Landgraf R (2001) Cross-fostering and cross-breeding of HAB and LAB rats: a genetic rat model of anxiety. Behav Genet 31(4):371–382

    Article  CAS  PubMed  Google Scholar 

  • Yang YL, Chao PK, Ro LS, Wo YY, Lu KT (2007) Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmacology 32(5):1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Valdez GR, Fekete EM, Rivier JE, Vale WW, Rice KC, Weiss F, Zorrilla EP (2007) Subtype-selective corticotropin-releasing factor receptor agonists exert contrasting, but not opposite, effects on anxiety-related behavior in rats. J Pharmacol Exp Ther 323:846–854

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M Pêgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pêgo, J.M., Sousa, J.C., Almeida, O., Sousa, N. (2009). Stress and the Neuroendocrinology of Anxiety Disorders. In: Stein, M., Steckler, T. (eds) Behavioral Neurobiology of Anxiety and Its Treatment. Current Topics in Behavioral Neurosciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2009_13

Download citation

Publish with us

Policies and ethics