Skip to main content

Therapeutic Potential of Heat Shock Proteins in Human Inflammation/Autoimmune Skin Diseases: Future Directions

  • Chapter
  • First Online:
Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Atopic dermatitis

BP:

Bullous Pemphigoid

DCs:

dendritic cells

HSP:

heat shock proteins

IFN-γ:

interferon-γ

IgE:

immunoglobulin E

IL:

interleukins

LPS:

lipopolysaccharides

MMPs:

matrix metalloproteinases

PBMC:

peripheral blood mononuclear cell

ROS:

reactive oxygen species

SALT:

skin-associated lymphoid tissue

Th1:

T helper 1

TLRs:

toll-like receptors

TNF-α:

tumor necrosis factor-α

Treg:

regulatory T cells

References

  1. Oomens CW, van Vijven M, Peters GW (2017) Skin mechanics. In: Biomechanics of living organs. Academic, London, pp 347–357

    Chapter  Google Scholar 

  2. Hendriks FM, Brokken D, Oomens CWJ, Bader DL, Baaijens FPT (2006) The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys 28:259–266

    Article  CAS  PubMed  Google Scholar 

  3. Benítez JM, Montáns FJ (2017) The mechanical behavior of skin: structures and models for the finite element analysis. Comput Struct 190:75–107

    Article  Google Scholar 

  4. Matejuk A (2018) Skin immunity. Arch Immunol Ther Exp 66:45–54

    Article  CAS  Google Scholar 

  5. Quaresma JAS (2019) Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clin Microbiol Rev 32:00034–00018

    Article  Google Scholar 

  6. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867

    Article  CAS  PubMed  Google Scholar 

  7. Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C, O’Brien ER (2016) Extracellular release and signaling by heat shock protein 27: role in modifying vascular inflammation. Front Immunol 7:285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ikwegbue P (2019) Investigation of the interaction between heat shock protein 70.14 (Hsp 70.14) and RBBP6 RING finger domain. Master of Science Dissertation, University of Zululand, South Africa

    Google Scholar 

  9. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  10. Candido EPM (2001) Heat shock proteins A2-Brenner, Sydney. In: Miller JH (ed) Encyclopedia of genetic. Academic, New York, pp 914–915

    Chapter  Google Scholar 

  11. Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP (2018) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11:1–12

    Article  CAS  Google Scholar 

  12. Alqarni AS, Ali H, Iqbal J, Owayss AA, Smith BH (2019) Expression of heat shock proteins in adult honey bee (Apis mellifera L.) workers under hot-arid subtropical ecosystems. Saudi J Biol Sci 26(7):1372–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Srivastava P (2004) Heat-shock proteins. In: Coligan JE et al (eds) Current protocols in immunology, p Appendix 1: Appendix 1T. https://doi.org/10.1002/0471142735.ima01ts58

    Chapter  Google Scholar 

  14. Zininga T, Ramatsui L, Shonhai A (2018) Heat shock proteins as immunomodulants. Molecules 23(11):E2846

    Article  PubMed  CAS  Google Scholar 

  15. Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105(8):1012–1017

    Article  CAS  PubMed  Google Scholar 

  16. Edkins AL, Price JT, Pockley AG, Blatch GL (2017) Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective. Philos Trans R Soc Lond Ser B Biol Sci 373(1738):20160521

    Article  CAS  Google Scholar 

  17. Weidinger S, Klopp N, Rummler L, Wagenpfeil S, Novak N, Baurecht HJ, Groer W, Darsow U, Heinrich J, Gauger A, Schafer T (2005) Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol 116:177–184

    Article  CAS  PubMed  Google Scholar 

  18. Larsen FS, Hanifin J (2002) Epidemiology of atopic dermatitis. Immunol Allergy Clin N Am 22:1–24

    Article  Google Scholar 

  19. Akdis CA, Akdis M, Bieber T, Bindslev-Jensen C, Boguniewicz M, Eigenmann P, Hamid Q, Kapp A, Leung DY, Lipozencic J, Luger TA (2006) Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL Consensus Report. Allergy 61:969–987

    Article  CAS  PubMed  Google Scholar 

  20. Tsakok T, Marrs T, Mohsin M, Baron S, du Toit G, Till S, Flohr C (2016) Does atopic dermatitis cause food allergy? A systematic review. J Allergy Clin Immunol 137:1071–1078

    Article  PubMed  Google Scholar 

  21. Kapur S, Watson W, Carr S (2018) Atopic dermatitis. Allergy Asthma Clin Immunol 14:2–52

    Article  Google Scholar 

  22. Avena-Woods C (2017) Overview of atopic dermatitis. Am J Manag Care 23(8 Suppl):S115–S123

    PubMed  Google Scholar 

  23. Bandier J, Ross-Hansen K, Carlsen BC, Tanassi JT, Johansen JD, Heegaard NH (2016) Quantification of epidermal Filaggrin in human skin and its response to skin irritation. J Invest Dermatol 136:1296–1299

    Article  CAS  PubMed  Google Scholar 

  24. Berke R, Singh A, Guralnick M (2012) Atopic dermatitis: an overview. Am Fam Physician 86:35–42

    PubMed  Google Scholar 

  25. Buske-Kirschbaum A, Geiben A, Hellhammer D (2001) Psychobiological aspects of atopic dermatitis: an overview. Psychother Psychosom 70:6–16

    Article  CAS  PubMed  Google Scholar 

  26. Hägermark Ö, Wahlgren CF (1995) Treatment of itch. Semin Dermatol 14(4):320–325

    Article  PubMed  Google Scholar 

  27. Yosipovitch G, Hundley JL (2004) Practical guidelines for relief of itch. Dermatol Nurs 16:325–332

    PubMed  Google Scholar 

  28. Ghoreishi M, Yokozeki H, Hua WM, Nishioka K (2000) Expression of 27 KD, 65 KD and 72/73 KD heat shock protein in atopic dermatitis: comparison with those in normal skin and contact dermatitis. J Dermatol 27:370–379

    Article  CAS  PubMed  Google Scholar 

  29. Ergun T, İnce Ü, Ekşioğlu-Demiralp E, Direskeneli H, Gürbüz O, Gürses L, Aker F, Akoğlu T (2001) HSP 60 expression in mucocutaneous lesions of Behcet’s disease. J Am Acad Dermatol 45:904–909

    Article  CAS  PubMed  Google Scholar 

  30. Kapitein B, Aalberse JA, Klein MR, de Jager W, Hoekstra MO, Knol EF, Prakken BJ (2013) Recognition of self-heat shock protein 60 by T cells from patients with atopic dermatitis. Cell Stress Chaperones 18:87–95

    Article  CAS  PubMed  Google Scholar 

  31. Niiyama S, Yoshino T, Matsukuma S, Mukai H (2016) Heat shock protein 27 kDa content in stratum Corneum correlates with severity of atopic dermatitis. Acta Derm Venereol 96:976–977

    Article  CAS  PubMed  Google Scholar 

  32. Albanesi C, Madonna S, Gisondi P, Girolomoni G (2018) The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol 9:1549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Christophers E (2001) Psoriasis – epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320

    Article  CAS  PubMed  Google Scholar 

  34. Wu W, Debbaneh M, Moslehi H, Koo J, Liao W (2014) Tonsillectomy as a treatment for psoriasis: a review. J Dermatolog Treat 25:482–486

    Article  PubMed  Google Scholar 

  35. Buquicchio R, Foti C, Ventura MT (2018) The psoriasis pathogenesis and the metabolic risk. Open Dermatol J 12:70–79

    Article  CAS  Google Scholar 

  36. Lowes MA, Suárez-Fariñas M, Krueger JG (2014) Immunology of psoriasis. Annu Rev Immunol 32:227–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seifarth FG, Lax JEM, Harvey J, DiCorleto PE, Husni ME, Chandrasekharan UM, Tytell M (2018) Topical heat shock protein 70 prevents imiquimod-induced psoriasis-like inflammation in mice. Cell Stress Chaperones 23(5):1129–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffiths CE, Barker JN (2007) Pathogenesis and clinical features of psoriasis. Lancet 370:63–271

    Article  CAS  Google Scholar 

  39. Raho G, Koleva DM, Garattini L, Naldi L (2012) The burden of moderate to severe psoriasis. PharmacoEconomics 30:1005–1013

    Article  PubMed  Google Scholar 

  40. Heldwein KA, Fenton MJ (2002) The role of toll-like receptors in immunity against mycobacterial infection. Microbes Infect 4:937–944

    Article  CAS  PubMed  Google Scholar 

  41. Kaisho T, Akira S (2000) Critical roles of toll-like receptors in host defense. Crit Rev Immunol 20(5):393–405

    Article  CAS  PubMed  Google Scholar 

  42. Boehncke WH, Dahlke A, Zollner TM, Sterry W (1994) Differential expression of heat shock protein 70 (HSP70) and heat shock cognate protein 70 (HSC70) in human epidermis. Arch Dermatol Res 287:68–71

    Article  CAS  PubMed  Google Scholar 

  43. Kakeda M, Arock M, Schlapbach C, Yawalkar N (2014) Increased expression of heat shock protein 90 in keratinocytes and mast cells in patients with psoriasis. J Am Acad Dermatol 70:683–690

    Article  CAS  PubMed  Google Scholar 

  44. Wang WM, Jin HZ (2019) Heat shock proteins and psoriasis. Eur J Dermatol 29:121–125

    CAS  PubMed  Google Scholar 

  45. Curry JL, Qin JZ, Bonish B, Carrick R, Bacon P, Panella J, Robinson J, Nickoloff BJ (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127:178–186

    Article  CAS  PubMed  Google Scholar 

  46. Fang H, Zhang Y, Li N, Wang G, Liu Z (2018) The autoimmune skin disease bullous pemphigoid: the role of mast cells in autoantibody-induced tissue injury. Front Immunol 9:407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schulze F, Kasperkiewicz M, Zillikens D, Schmidt E (2013) Bullöses Pemphigoid. Hautarzt 64:931–945

    Article  CAS  PubMed  Google Scholar 

  48. Okon L, Werth V (2014) Bullous Pemphigoid, mucous membrane Pemphigoid and pemphigus vulgaris: an update on pathobiology. Curr Oral Health Rep 1:180–189

    Article  Google Scholar 

  49. Raveendran MN, Srinivasan SM (2017) Postpartum bullous pemphigoid-A case report. Our Dermatol Online/Nasza Dermatologia Online 8:2

    Article  Google Scholar 

  50. Tukaj S, Kleszczyński K, Vafia K, Groth S, Meyersburg D, Trzonkowski P, Ludwig RJ, Zillikens D, Schmidt E, Fischer TW, Kasperkiewicz M (2013) Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid. PLoS One 8:7–0496

    Article  CAS  Google Scholar 

  51. Kasperkiewicz M, Tukaj S, Gembicki AJ, Silló P, Görög A, Zillikens D, Kárpáti S (2014) Evidence for a role of autoantibodies to heat shock protein 60, 70, and 90 in patients with dermatitis herpetiformis. Cell Stress Chaperones 19:837–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kasperkiewicz M, Müller R, Manz R, Magens M, Hammers CM, Somlai C, Westermann J, Schmidt E, Zillikens D, Ludwig RJ, Orosz A (2011) Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets. Blood 117:6135–6142

    Article  CAS  PubMed  Google Scholar 

  53. Ikwegbue PC, Masamba P, Mbatha LS, Oyinloye BE, Kappo AP (2019) Interplay between heat shock proteins, inflammation and cancer: a potential cancer therapeutic target. Am J Cancer Res 9:2–242

    Google Scholar 

  54. Dubey A, Prajapati KS, Swamy M, Pachauri V (2015) Heat shock proteins: a therapeutic target worth to consider. Vet World 8(1):46–51

    Article  PubMed  PubMed Central  Google Scholar 

  55. Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol 31:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tukaj S, Kaminski M (2019) Heat shock proteins in the therapy of autoimmune diseases: too simple to be true? Cell Stress Chaperones 24:475–479

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lovett MC, Coates JR, Shu Y, Oglesbee MJ, Fenner W, Moore SA (2014) Quantitative assessment of hsp70, IL-1β and TNF-α in the spinal cord of dogs with E40K SOD1-associated degenerative myelopathy. Vet J 200:312–317

    Article  CAS  PubMed  Google Scholar 

  58. Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR (1990) Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci 87:1576–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores FDML, Vanags D, Naylor DJ, Hill GR, Suhrbier A (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280:4037–4047

    Article  CAS  PubMed  Google Scholar 

  60. Pockley AG, Henderson B (2017) Extracellular cell stress (heat shock) proteins—immune responses and disease: an overview. Philos Trans R Soc B Biol Sci 373:20160–20522

    Google Scholar 

  61. Williams B, Vanags D, Hall S, McCormack C, Foley P, Weiss J, Johnson B, Latz E, Feeney D (2008) Efficacy and safety of chaperonin 10 in patients with moderate to severe plaque psoriasis: evidence of utility beyond a single indication. Arch Dermatol 144:683–685

    Article  PubMed  Google Scholar 

  62. Jassies-van der Lee A, Rutten V, Van Kooten P, Van der Zee R, Willemse T (2008) Intradermal injection of Hsp60 induces cytokine responses in canine atopic and healthy skin. Cell Stress Chaperones 13:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194

    Article  CAS  PubMed  Google Scholar 

  64. Schulz R, Dobbelstein M, Moll UM (2012) HSP90 inhibitor antagonizing MIF: the specifics of pleiotropic cancer drug candidates. Onco Targets Ther 1:1425–1426

    Google Scholar 

  65. Kasperkiewicz M, Zillikens D, Schmidt E (2012) Pemphigoid diseases: pathogenesis, diagnosis, and treatment. Autoimmunity 45:55–70

    Article  CAS  PubMed  Google Scholar 

  66. Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA, Steed PM (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58:3765–3775

    Article  CAS  PubMed  Google Scholar 

  67. Yun TJ, Harning EK, Giza K, Rabah D, Li P, Arndt JW, Luchetti D, Biamonte MA, Shi J, Lundgren K, Manning A (2011) EC144, a synthetic inhibitor of heat shock protein 90, blocks innate and adaptive immune responses in models of inflammation and autoimmunity. J Immunol 186:563–575

    Article  CAS  PubMed  Google Scholar 

  68. Tukaj S, Zillikens D, Kasperkiewicz M (2015) Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases. Exp Dermatol 24:567–571

    Article  CAS  PubMed  Google Scholar 

  69. Van den Bergh F, Eliason SL, Burmeister BT, Giudice GJ (2012) Collagen XVII (BP 180) modulates keratinocyte expression of the proinflammatory chemokine, IL-8. Exp Dermatol 21:605–611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Tukaj S, Węgrzyn G (2016) Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 21:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors will like to acknowledge Dr. Sesan John Owonubi for proofreading this manuscript. None of the authors received any kind of funding towards the work presented in this article.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Human

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abidemi Paul Kappo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikwegbue, P.C., Revaprasadu, N., Kappo, A.P. (2020). Therapeutic Potential of Heat Shock Proteins in Human Inflammation/Autoimmune Skin Diseases: Future Directions. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2020_36

Download citation

Publish with us

Policies and ethics