Skip to main content

Overview of Multifaceted Role and Significance of Heat Shock Proteins During Inflammation, Apoptosis and Other Diseases

  • Chapter
  • First Online:
Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

  • 548 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

antigen presenting cell(s)

ATP:

adenosine triphosphate

COX:

cyclooxygenase

DC:

dendritic cells

HID:

human inflammatory disease(s)

HSF:

heat shock factor(s)

Hsp:

heat shock protein(s)

IBD:

inflammatory bowel disease

IL:

interleukin(s)

MHC I:

major histocompatibility complex class I

MS:

multiple sclerosis

NF-κ:

Bnuclear factor kappa-light-chain-enhancer of activated B cells

NK:

natural killer cells

NOD:

non-obese diabetic mice

PGE2:

Prostaglandin E2

PTM:

post translational modifications

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

RU:

rheumatoid arthritis

SOD:

superoxide dismutase

TLR:

toll-like receptor(s)

TNF:

tumor necrosis factor(s)

Tregs:

regulatory T cells

References

  1. Balasubramaniam B, Prithika U, Balamurugan K (2019a) Prevalence of bacterial infections in respiratory tract. In the Book: Pocket guide to bacterial infections, 79

    Google Scholar 

  2. Balasubramaniam B, Vinitha T, Deepika S, JebaMercy G, VenkataKrishna LM, Balamurugan K (2019b) Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection. Int J Biol Macromol 137:620–646

    Article  CAS  PubMed  Google Scholar 

  3. Balasubramaniam B, Alexpandi R, Darjily DR (2019c) Exploration of the optimized parameters for bioactive prodigiosin mass production and its biomedical applications in vitro as well as in silico. Biocat Agri Biotech:101385

    Google Scholar 

  4. Balasubramaniam B, VenkataKrishna LM, Vinitha T, JebaMercy G, Balamurugan K (2020) Salmonella enterica Serovar Typhi exposure elicits deliberate physiological alterations and triggers the involvement of ubiquitin mediated proteolysis pathway in Caenorhabditis elegans. Int J Biol Macromol 149:215–233

    Article  CAS  PubMed  Google Scholar 

  5. Beckingham KM, Armstrong JD, Texada MJ, Munjaal R, Baker DA (2007) Drosophila melanogaster-the model organism of choice for the complex biology of multi-cellular organisms. Gravit Space Res 18(2)

    Google Scholar 

  6. Bloemendal A, Van der Zee R, Rutten VP et al (1997) Experimental immunization with anti-rheumatic bacterial extract OM-89 induces T cell responses to heat shock protein (Hsp) 60 and Hsp70; modulation of peripheral immunological tolerance as its possible mode of action in the treatment of rheumatoid arthritis (RA). Clin Exp Immunol 110:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Kleer IM, Wedderburn LR, Taams LS et al (2004) CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis. J Immunol 172:6435–6443

    Article  PubMed  Google Scholar 

  8. DeMeester SL, Buchman TG, Cobb JP (2001) The heat shock paradox: does NF-kappaB determine cell fate? FASEB J 15:270–274

    Article  CAS  PubMed  Google Scholar 

  9. Edrey YH, Oddo S, Cornelius C, Caccamo A, Calabrese V, Buffenstein R (2014) Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents. J Neurosci Res 92(2):195–205

    Article  CAS  PubMed  Google Scholar 

  10. Garbuz DG, Astakhova LN, Zatsepina OG, Arkhipova IR, Nudler E, Evgen’ev MB (2011) Functional organization of hsp70 cluster in camel (Camelus dromedarius) and other mammals. PLoS One 6(11):e27205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghayour-Mobarhan M, Lamb DJ (2005) Heat shock protein antibody titers are reduced by statin therapy in dyslipidemic subjects: a pilot study. Angiology 56:61–68

    Article  CAS  PubMed  Google Scholar 

  12. Gowrishankar S, Pandian SK, Balasubramaniam B, Balamurugan K (2019) Quorum quelling efficacy of marine cyclic dipeptide-cyclo (L-leucyl-L-prolyl) against the uropathogen Serratia marcescens. Food Chem Toxicol 123:326–336

    Article  CAS  PubMed  Google Scholar 

  13. Han S, Yang A, Lee S, Lee HW, Park CB, Park HS (2017) Expanding the genetic code of Mus musculus. Nat Commun 8:14568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hauet-Broere F, Wieten L, Guichelaar T, Berlo S, Van der Zee R, Van Eden W (2006) Heat shock proteins induce T cell regulation of chronic inflammation. Ann Rheum Dis 65(Suppl 3):iii65–iii68

    PubMed  PubMed Central  Google Scholar 

  15. Hoshino T, Murao N, Namba T, Takehara M, Adachi H, Katsuno M, Sobue G, Matsushima T, Suzuki T, Mizushima T (2011) Suppression of Alzheimer’s disease-related phenotypes by expression of heat shock protein 70 in mice. J Neurosci 31(14):5225–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exercise Rehabil 12(4):255–259

    Article  Google Scholar 

  17. Ji L (1995) Oxidative stress during exercise: implication of antioxidant nutrients. Free Radic Biol Med 18:1079–1086

    Article  CAS  PubMed  Google Scholar 

  18. Jin B, Sun T, Yu XH et al (2012) The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012:836485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kannappan A, Balasubramaniam B, Ranjitha R, Srinivasan R, Packiavathy IASV, Balamurugan K et al (2019) In vitro and in vivo biofilm inhibitory efficacy of geraniol-cefotaxime combination against Staphylococcus spp. Food Chem Toxicol 125:322–332

    Article  CAS  PubMed  Google Scholar 

  20. Kim MG, Jung Cho E, Won Lee J et al (2014) Tregs contribute to HSP70-induced renoprotective effect is partially mediated by CD4+CD25+Foxp3+ regulatory T cells in ischemia/reperfusion-induced acute kidney injury. Kidney Int 85:62–71

    Article  CAS  PubMed  Google Scholar 

  21. Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J (2016) Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 41(3):317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lanneau D, Wettstein G, Bonniaud P, Garrido C (2010) Heat shock proteins: cell protection through protein triage. Sci World J 10:1543–1552

    Article  CAS  Google Scholar 

  23. Lee AS (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol 4(2):267–273

    Article  CAS  PubMed  Google Scholar 

  24. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21(3):485–495

    Article  CAS  PubMed  Google Scholar 

  26. Lundberg K, Wegner N, Yucel-Lindberg T, Venables PJ (2010) Periodontitis in RA-the citrullinated enolase connection. Nat Rev Rheumatol 6:727–730

    Article  CAS  PubMed  Google Scholar 

  27. Marcenaro E, Carlomagno S, Pesce S et al (2011) Bridging innate NK cell functions with adaptive immunity. Adv Exp Med Biol 780:45–55

    Article  CAS  PubMed  Google Scholar 

  28. Marudhupandiyan S, Prithika U, Balasubramaniam B, Balamurugan K (2017) RACK-1, a multifaceted regulator is required for C. elegans innate immunity against S. flexneri M9OT infection. Dev Comp Immunol 74:227–236

    Article  CAS  PubMed  Google Scholar 

  29. Miyara M, Sakaguch S (2007) Natural regulatory T cells mechanisms of suppression. Trends Mol Med 13:108–116

    Article  CAS  PubMed  Google Scholar 

  30. Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK (2018a) Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida spp. J Basic Microbiol 58(4):343–357

    Article  CAS  PubMed  Google Scholar 

  31. Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK (2018b) Synergistic effect of quinic acid derived from Syzygium cumini and undecanoic acid against Candida spp. biofilm and virulence. Front Microbiol 9:2835

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev:3164734

    Google Scholar 

  33. Oyinloye BE, Adenowo AF, Kappo AP (2015) Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals 8:151–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prithika U, Balamurugan K (2019) Dynamics of heat shock proteins in immunity and aging. In: Heat shock proteins in signaling pathways. Springer, Cham, pp 91–100

    Chapter  Google Scholar 

  35. Pugliese A (2012) The multiple origins of type 1 diabetes. Diabet Med 10:12081

    Google Scholar 

  36. Rajagopal D, Bal V, Mayor S, George A, Rath S (2006) A role for the Hsp90 molecular chaperone family in antigen presentation to T lymphocytes via major histocompatibility complex class II molecules. Eur J Immunol 36(4):828–841

    Article  CAS  PubMed  Google Scholar 

  37. Sathya S, Shanmuganathan B, Balasubramaniam B, Balamurugan K, Devi KP (2019) Phytol loaded PLGA nanoparticles regulate the expression of Alzheimer’s related genes and neuronal apoptosis against amyloid-β induced toxicity in Neuro-2a cells and transgenic Caenorhabditis elegans. Food Chem Toxicol 14:110962

    Google Scholar 

  38. Scheffold A, Hühn J, Höfer T (2005) Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur J Immunol 35:1336–1341

    Article  CAS  PubMed  Google Scholar 

  39. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shanmuganathan B, Sathya S, Balasubramaniam B, Balamurugan K, Devi KP (2019) Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer’s model. Nitric Oxide 91:52–66

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immumol 2(3):185–194

    Article  CAS  Google Scholar 

  42. Stelter F (2000) Structure/function relationships of CD14. Chem Immunol 74:25–41

    Article  CAS  PubMed  Google Scholar 

  43. Van Eden W, Van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5(4):318–330

    Article  PubMed  CAS  Google Scholar 

  44. Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, Wijesekara N, Martins RN, Fraser PE, Newsholme P (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat Inflamm 2015:105828–105817. https://doi.org/10.1155/2015/105828

    Article  CAS  Google Scholar 

  45. Vigneshwari L, Balasubramaniam B, Sethupathy S, Pandian SK, Balamurugan K (2018) O-GlcNAcylation confers protection against Staphylococcus aureus infection in Caenorhabditis elegans through ubiquitination. RSC Adv 8(41):23089–23100

    Article  CAS  Google Scholar 

  46. Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DA (2009) The development and function of regulatory T cells. Cell Mol Life Sci 66(16):2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Editor(s) for inviting us to write the chapter. KB gratefully acknowledges the Department of Biotechnology (DBT), Government of India (GOI) [Ref. No. BT/PR17367/MED/122/44/2016] for the financial support. BB thankfully acknowledges UGC-BSR (University Grants commission – Basic Scientific Research, GOI) for the financial assistance in the form of UGC-BSR-Fellow and UGC-BSR-SRF [Ref. No. F.25-1/2014-15(BSR)/7-326/2011(BSR) dt. 13.03.2015] and Bioinformatics Infrastructure Facility (BIF), supported by the DBT, Ministry of Science and Technology, GOI for the financial aid in the form of DBT-BIF-Studentship [Ref. No. A13/DBF-BIF Studentship/5038/2014 dt. 10.09.2014]. Authors also acknowledge the Bioinformatics Facility (BIF) provided by Alagappa University Bioinformatics Infrastructure Facility (funded by DBT, GOI; Ref. No. BT/BI/25/012/2012, BIF), DST-PURSE [Grant No. SR/PURSE Phase 2/38 (G)], DST-FIST [Grant No. SR/FST/LSI-639/2015(C)] and UGC-SAP [Grant No. F.5-1/2018/DRS-II(SAP-II)]. The Authors gratefully acknowledge the RUSA 2.0 [F. 24-51/2014-U, Policy (TN Multi-Gen), Dept of Education, GOI].

Disclosure of Interests

All authors declare that they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Balamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramaniam, B., Balamurugan, K. (2020). Overview of Multifaceted Role and Significance of Heat Shock Proteins During Inflammation, Apoptosis and Other Diseases. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2020_28

Download citation

Publish with us

Policies and ethics