Skip to main content

Protective Role of Heat Shock Proteins During Neurodegeneration in Parkinson’s Disease

  • Chapter
  • First Online:
Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ach:

Acetylcholine

AD:

Alzheimer’s disease

ALP:

Autophagy-lysosomal pathways

ALS:

Amyotrophic lateral sclerosis

AZ:

Active zone

BAG1:

BAG family molecular chaperone regulator 1

CHIP:

Carboxyl terminus of HSC70-interacting protein

CMA:

Chaperone-mediated autophagy

DA:

Dopamine/dopaminergic

DAT:

Dopamine transporter

DLB:

Dementia with Lewy Bodies

EOPD:

Early-onset Parkinson’s disease

ER:

Endoplasmic reticulum

FTD:

Frontotemporal dementia

GPe:

External globus pallidus

GPi:

Internal globus pallidus

HD:

Huntington’s disease

HIP:

HSC70-interacting protein

HOP:

HSP40 and HSP70–HSP90 organizing protein

HSC70:

Heat shock cognate 71 kda protein

HSEs:

HSP Sequence-binding Elements

HSF:

Heat shock factors

HSP:

Heat shock protein

LAMP2A:

Lysosome-associated membrane protein type 2A

LBs:

Lewy bodies

LC3:

Light chain 3/ALP marker

MPTP :

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MW:

Molecular weight

NAC:

Non-amyloid-β component

NT:

Neurotransmitter

PD:

Parkinson’s disease

PSI :

Peptidyl aldehyde selective inhibitor

PTM:

Post-translational modification

RAC:

Ribosome-associated complex

ROS:

Reactive oxygen species

sHSP:

Small Heat shock protein

SNpc:

Substantia nigra pars compacta

SNpr:

Substantia nigra pars reticulata

STN:

Subthalamic nucleus

SV:

Synaptic vesicle

Ub:

Ubiquitin

UCH-L1 :

Ubiquitin carboxy-terminal hydrolase L1

UPS:

Ubiquitin-proteasome system

VMAT2:

Vesicular monoamine transporter 2

α-Syn:

α-Synuclein

References

  1. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–31

    CAS  PubMed  Google Scholar 

  2. Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA (2017) MicroRNAs and target genes as biomarkers for the diagnosis of early onset of Parkinson disease. Front Mol Neurosci 10:352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 295(5556):865–868

    Article  CAS  PubMed  Google Scholar 

  4. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta, Proteins Proteomics 1854(4):291–319

    Article  CAS  Google Scholar 

  5. Bandyopadhyay U, Cuervo AM (2007) Chaperone-mediated autophagy in aging and neurodegeneration: lessons from alpha-synuclein. Exp Gerontol 42(1–2):120–128

    Article  PubMed  CAS  Google Scholar 

  6. Birkmayer W, Hornykiewicz O (1961) The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 73:787–788

    CAS  PubMed  Google Scholar 

  7. Bridi JC, Hirth F (2018) Mechanisms of α-Synuclein induced Synaptopathy in Parkinson’s disease. Front Neurosci 12:80

    Article  PubMed  PubMed Central  Google Scholar 

  8. Broer L, Koudstaal PJ, Amin N, Rivadeneira F, Uitterlinden AG, Hofman A, Oostra BA, Breteler MMB, Ikram A, van Duijn CM (2011) Association of heat shock proteins with Parkinson’s disease. Eur J Epidemiol 26:933–935

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bruinsma IB, Bruggink KA, Kinast K, Versleijen AA, Segers-Nolten IM, Subramaniam V, Kuiperij HB, Boelens W, de Waal RM, Verbeek MM (2011) Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 79:2956–2967

    Article  CAS  PubMed  Google Scholar 

  10. Cao Y, Ohwatari N, Matsumoto T, Kosaka M, Ohtsuru A, Yamashita S (1999) TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflugers Arch 438(3):239–244

    Article  CAS  PubMed  Google Scholar 

  11. Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of drosophila. Proc Natl Acad Sci U S A 102(29):10345–10350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273(7):1331–1349

    Article  CAS  PubMed  Google Scholar 

  13. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295

    Article  CAS  PubMed  Google Scholar 

  16. Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V (2015) Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 12:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dijkstra AA, Ingrassia A, de Menezes RX, van Kesteren RE, Rozemuller AJ, Heutink P, van de Berg WD (2015) Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia Nigra in early stage Parkinson’s disease. PLoS One 10(6):e0128651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord 23(Suppl 3):S497–S508

    Article  PubMed  Google Scholar 

  19. Fan GH, Zhou HY, Yang H, Chen SD (2006) Heat shock proteins reduce alpha-synuclein aggregation induced by MPP+ in SK-N-SH cells. FEBS Lett 580(13):3091–3098

    Article  CAS  PubMed  Google Scholar 

  20. Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 351(5):1081–1100

    Article  CAS  PubMed  Google Scholar 

  21. Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Busceti CL, Ruffoli R, Soldani P, Ruggieri S, Alessandri MG et al (2003) Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci 23(26):8955–8966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  CAS  PubMed  Google Scholar 

  23. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278(44):43628–43635

    Article  CAS  PubMed  Google Scholar 

  24. Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C (2016) The ubiquitin-proteasome system: potential therapeutic targets for Alzheimer’s disease and spinal cord injury. Front Mol Neurosci 9:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Guertin MJ, Lis JT (2010) Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genet 6(9):e1001114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  CAS  PubMed  Google Scholar 

  27. Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7(6):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones DR, Moussaud S, McLean P (2014) Targeting heat shock proteins to modulate alphasynuclein toxicity. Ther Adv Neurol Disord 7:33–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Karunanithi S, Brown IR (2015) Heat shock response and homeostatic plasticity. Front Cell Neurosci 9:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6):365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klucken J, Shin Y, Hyman BT, McLean PJ (2004) A single amino acid substitution differentiates Hsp70-dependent effects on alpha-synuclein degradation and toxicity. Biochem Biophys Res Commun 325(1):367–373

    Article  CAS  PubMed  Google Scholar 

  32. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    Article  CAS  PubMed  Google Scholar 

  33. Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 46(11):1291–1301

    Article  CAS  PubMed  Google Scholar 

  34. Lester DB, Rogers TD, Blaha CD (2010) Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16(3):137–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maiti P, Manna J (2019) Dysregulation of heat shock proteins in neurodegenerative diseases: restorative roles of small molecules and natural compounds. In: Asea A, Kaur P (eds) Heat shock proteins in neuroscience. Heat shock proteins, vol 20. Springer, Cham

    Google Scholar 

  36. Maiti P, Manna J, Veleri S, Frautschy S (2014) Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int 2014:495091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: targets for potential treatments. Transl Neurodegener 6:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Matz JM, Blake MJ, Tatelman HM, Lavoi KP, Holbrook NJ (1995) Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am J Phys 269(1 Pt 2):R38–R47

    CAS  Google Scholar 

  39. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McNaught KS, Mytilineou C, Jnobaptiste R, Yabut J, Shashidharan P, Jennert P, Olanow CW (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81(2):301–306

    Article  CAS  PubMed  Google Scholar 

  41. McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56(1):149–162

    Article  CAS  PubMed  Google Scholar 

  42. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90(4):675–691

    Article  CAS  PubMed  Google Scholar 

  43. Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H (2017) Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 20(11):1560–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T, Halliday GM (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov Disord 30(12):1639–1647

    Article  CAS  PubMed  Google Scholar 

  45. Parent M, Parent A (2010) Substantia Nigra and Parkinson’s disease: a brief history of their long and intimate relationship. Can J Neurol Sci 37(3):313–319

    Article  PubMed  Google Scholar 

  46. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  47. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev 14:19–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rideout HJ, Lang-Rollin IC, Savalle M, Stefanis L (2005) Dopaminergic neurons in rat ventral midbrain cultures undergo selective apoptosis and form inclusions, but do not up-regulate iHSP70, following proteasomal inhibition. J Neurochem 93(5):1304–1313

    Article  CAS  PubMed  Google Scholar 

  49. Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1(2):97–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodrigues e SAM, Geldsetzer F, Holdorff B, Kielhorn FW, Balzer-Geldsetzer M, Oertel WH, Hurtig H, Dodel R (2010) Who was the man who discovered the “Lewy bodies”? Mov Disord 25(12):1765–1773

    Article  Google Scholar 

  51. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    Article  CAS  PubMed  Google Scholar 

  52. Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T et al (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23(1):47–51

    Article  CAS  PubMed  Google Scholar 

  53. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65(3):363–366

    Article  CAS  PubMed  Google Scholar 

  54. Sullivan PG, Dragicevic NB, Deng JH, Bai Y, Dimayuga E, Ding Q, Chen Q, Bruce-Keller AJ, Keller JN (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279(20):20699–20707

    Article  CAS  PubMed  Google Scholar 

  55. Sun J, Wang L, Bao H, Premi S, Das U, Chapman ER, Roy S (2019) Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc Natl Acad Sci U S A 116(23):11113–11115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K (2011) Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis 43(3):690–697

    Article  CAS  PubMed  Google Scholar 

  58. Tantucci M, Mariucci G, Taha E, Spaccatini C, Tozzi A, Luchetti E, Calabresi P, Ambrosini MV (2009) Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience 163(3):735–740

    Article  CAS  PubMed  Google Scholar 

  59. Toulorge D, Schapira AH, Hajj R (2016) Molecular changes in the postmortem parkinsonian brain. J Neurochem 139(Suppl 1):27–58

    Article  CAS  PubMed  Google Scholar 

  60. Vahid S, Thaper D, Zoubeidi A (2017) Chaperoning the Cancer: the Proteostatic functions of the heat shock proteins in Cancer. Recent Pat Anticancer Drug Discov 12(1):35–47

    Article  CAS  PubMed  Google Scholar 

  61. Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100

    Article  CAS  PubMed  Google Scholar 

  62. Wyttenbach A (2004) Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci 23(1–2):69–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the PhD program of biotechnology at the Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Ghit .

Editor information

Editors and Affiliations

Ethics declarations

Funding: This article did not receive any specific grant from funding agencies.

Disclosure of Interests: There are no conflicts of interest regarding this work.

Ethical Approval for Studies involving Humans: This article does not contain any studies with human participants performed by the author.

Ethical Approval for Studies involving Animals: This article does not contain any studies with animals performed by the author.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghit, A. (2020). Protective Role of Heat Shock Proteins During Neurodegeneration in Parkinson’s Disease. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2020_23

Download citation

Publish with us

Policies and ethics