Skip to main content

Role of Heat Shock Factors in Diseases and Immunity

  • Chapter
  • First Online:
Heat Shock Proteins in Human Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALS:

amyotrophic lateral sclerosis

AMPK:

5′-AMP-activated protein kinase

CDK4:

cyclin-dependent kinase 4

DNA:

Deoxyribonucleic Acid

HIF1α:

hypoxia-inducible factor 1α

HSE:

heat shock element (s)

HSF:

heat shock factor (s)

HSP:

heat shock family

Hsp:

heat shock protein (s)

HSR:

heat shock response (s)

mRNA:

messenger RNA

MS:

mass spectrometry

PTM:

post translational modification (s)

ROS:

reactive oxygen species

SBMA:

spinal and bulbar muscular atrophy

SOD 1:

superoxide dismutase 1

SUMO:

small ubiquitin-like modifier

TauT:

taurine transporter

UPS:

ubiquitin mediated proteolysis

α-syn:

α-synuclein

References

  1. Ã…kerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545

    PubMed  PubMed Central  Google Scholar 

  2. Anckar J, Sistonen L (2011) Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115

    CAS  PubMed  Google Scholar 

  3. Auluck PK, Chan HE, Trojanowski JQ, Lee VMY, Bonini NM (2002) Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295(5556):865–868

    CAS  PubMed  Google Scholar 

  4. Baird NA, Douglas PM, Simic MS, Grant AR, Moresco JJ, Wolff SC et al (2014) HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span. Science 346(6207):360–363

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Balasubramaniam B, Alexpandi R, Darjily DR (2019c) Exploration of the optimized parameters for bioactive prodigiosin mass production and its biomedical applications in vitro as well as in silico. Biocatal Agric Biotechnol 22:101385

    Google Scholar 

  6. Balasubramaniam B, Prithika U, Balamurugan K (2019a) Prevalence of bacterial infections in respiratory tract. In the Book: pocket guide to bacterial infections, 79

    Google Scholar 

  7. Balasubramaniam B, Vinitha T, Deepika S, JebaMercy G, VenkataKrishna LM, Balamurugan K (2019b) Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection. Int J Biol Macromol 137:620–646

    CAS  PubMed  Google Scholar 

  8. Calderwood SK (2007) Introduction: heat shock proteins—from Drosophila stress proteins to mediators of human disease. In: Cell stress proteins. Springer, New York, pp 1–4

    Google Scholar 

  9. Calderwood SK, Wang Y, Xie X, Khaleque MA, Chou SD, Murshid A et al (2010) Signal transduction pathways leading to heat shock transcription. Signal Transduct Insights 2:STI–S3994

    Google Scholar 

  10. Chen HJ, Mitchell JC, Novoselov S, Miller J, Nishimura AL, Scotter EL et al (2016) The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis. Brain 139(5):1417–1432

    PubMed  PubMed Central  Google Scholar 

  11. Chen Y, Wang B, Liu D, Li JJ, Xue Y, Sakata K et al (2014) Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment. J Neurosci 34(7):2464–2470

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dai C, Sampson SB (2016) HSF1: guardian of proteostasis in cancer. Trends Cell Bio 26(1):17–28

    CAS  Google Scholar 

  13. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130(6):1005–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dai S, Tang Z, Cao J, Zhou W, Li H, Sampson S, Dai C (2015) Suppression of the HSF 1-mediated proteotoxic stress response by the metabolic stress sensor AMPK. EMBO J 34(3):275–293

    CAS  PubMed  Google Scholar 

  15. Dinkova-Kostova AT (2012) The role of sulfhydryl reactivity of small molecules for the activation of the KEAP1/NRF2 pathway and the heat shock response. Scientifica 2012:606104

    PubMed  PubMed Central  Google Scholar 

  16. Gerakis Y, Hetz C (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer's disease. FEBS J 285(6):995–1011

    CAS  PubMed  Google Scholar 

  17. Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Bio 19(1):4

    CAS  Google Scholar 

  18. Gowrishankar S, Pandian SK, Balasubramaniam B, Balamurugan K (2019) Quorum quelling efficacy of marine cyclic dipeptide-cyclo (L-leucyl-L-prolyl) against the uropathogen Serratia marcescens. Food Chem Toxicol 123:326–336

    CAS  PubMed  Google Scholar 

  19. Havel LS, Li S, Li XJ (2009) Nuclear accumulation of polyglutamine disease proteins and neuropathology. Mol Brain 2(1):21

    PubMed  PubMed Central  Google Scholar 

  20. Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R et al (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13(13):1389–1405

    CAS  PubMed  Google Scholar 

  21. Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L (2016) The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 21(5):745–753

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin X, Moskophidis D, Mivechi NF (2011) Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab 14(1):91–103

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung MK, Kim KY, Lee NY, Kang YS, Hwang YJ, Kim Y et al (2013) Expression of taurine transporter (TauT) is modulated by heat shock factor 1 (HSF1) in motor neurons of ALS. Mol Neurobiol 47(2):699–710

    CAS  PubMed  Google Scholar 

  24. Kannappan A, Balasubramaniam B, Ranjitha R, Srinivasan R, Packiavathy IASV, Balamurugan K et al (2019) In vitro and in vivo biofilm inhibitory efficacy of geraniol-cefotaxime combination against Staphylococcus spp. Food Chem Toxicol 125:322–332

    CAS  PubMed  Google Scholar 

  25. Kaul G, Thippeswamy H (2011) Role of heat shock proteins in diseases and their therapeutic potential. Indian J Microbiol 51(2):124–131

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim G, Meriin AB, Gabai VL, Christians E, Benjamin I, Wilson A et al (2012) The heat shock transcription factor Hsf1 is downregulated in DNA damage–associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell 11(4):617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee YJ, Kim EH, Lee JS, Jeoung D, Bae S, Kwon SH, Lee YS (2008) HSF1 as a mitotic regulator: phosphorylation of HSF1 by Plk1 is essential for mitotic progression. Cancer Res 68(18):7550–7560

    CAS  PubMed  Google Scholar 

  28. Liangliang X, Yonghui H, Shunmei E, Shoufang G, Wei Z, Jiangying Z (2010) Dominant-positive HSF1 decreases alpha-synuclein level and alpha-synuclein-induced toxicity. Mol Biol Rep 37(4):1875–1881

    PubMed  Google Scholar 

  29. Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT (2016) Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation. Mol Cell 62(1):63–78

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marudhupandiyan S, Prithika U, Balasubramaniam B, Balamurugan K (2017) RACK-1, a multifaceted regulator is required for C. elegans innate immunity against S. flexneri M9OT infection. Dev Comp Immunol 74:227–236

    CAS  PubMed  Google Scholar 

  31. Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, Psaroulis D et al (2010) Morphological changes of the human purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 25(7):585–591

    PubMed  Google Scholar 

  32. Mercier PA, Winegarden NA, Westwood JT (1999) Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress. J Cell Sci 112(16):2765–2774

    CAS  PubMed  Google Scholar 

  33. Metzler B, Abia R, Ahmad M, Wernig F, Pachinger O, Hu Y, Xu Q (2003) Activation of heat shock transcription factor 1 in atherosclerosis. Am J Pathol 162(5):1669–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Meyer AS, Baker TA (2011) Proteolysis in the Escherichia coli heat shock response: a player at many levels. Curr Opin Microbiol 14(2):194–199

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK (2018b) Synergistic effect of quinic acid derived from Syzygium cumini and undecanoic acid against Candida spp. biofilm and virulence. Front Microbiol 9:2835

    PubMed  PubMed Central  Google Scholar 

  36. Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK (2018a) Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida spp. J Basic Microbiol 58(4):343–357

    CAS  PubMed  Google Scholar 

  37. Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10(12):930

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Parker CS, Topol J (1984) A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell 37(1):273–283

    CAS  PubMed  Google Scholar 

  39. Prithika U, Balamurugan K (2019) Dynamics of heat shock proteins in immunity and aging. In: Heat shock proteins in signaling pathways. Springer, Cham, pp 91–100

    Google Scholar 

  40. Prithika U, Deepa V, Balamurugan K (2016) External induction of heat shock stimulates the immune response and longevity of Caenorhabditis elegans towards pathogen exposure. Innate Immun 22(6):466–478

    CAS  PubMed  Google Scholar 

  41. Rasouly A, Ron EZ (2009) Interplay between the heat shock response and translation in Escherichia coli. Res Microbiol 160(4):288–296

    CAS  PubMed  Google Scholar 

  42. Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M et al (2014) Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156(5):975–985

    CAS  PubMed  Google Scholar 

  43. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(7s):S10

    Google Scholar 

  44. Sathya S, Shanmuganathan B, Balasubramaniam B, Balamurugan K, Devi KP (2019) Phytol loaded PLGA nanoparticles regulate the expression of Alzheimer's related genes and neuronal apoptosis against amyloid-β induced toxicity in Neuro-2a cells and transgenic Caenorhabditis elegans. Food Chem Toxicol 14:110962

    Google Scholar 

  45. Seo HR, Chung DY, Lee YJ, Lee DH, Kim JI, Bae S et al (2006) Heat shock protein 25 or inducible heat shock protein 70 activates heat shock factor 1 dephosphorylation on serine 307 through inhibition of erk1/2 phosphorylation. J Biol Chem 281(25):17220–17227

    CAS  PubMed  Google Scholar 

  46. Shanmuganathan B, Sathya S, Balasubramaniam B, Balamurugan K, Devi KP (2019) Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer's model. Nitric Oxide 91:52–66

    CAS  PubMed  Google Scholar 

  47. Singh V, Aballay A (2006) Heat shock and genetic activation of HSF-1 enhance immunity to bacteria. Cell Cycle 5(21):2443–2446

    CAS  PubMed  Google Scholar 

  48. Vigneshwari L, Balasubramaniam B, Sethupathy S, Pandian SK, Balamurugan K (2018) O-GlcNAcylation confers protection against Staphylococcus aureus infection in Caenorhabditis elegans through ubiquitination. RSC Adv 8(41):23089–23100

    CAS  Google Scholar 

  49. Voellmy R (1994) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr 4(4):357–401

    CAS  PubMed  Google Scholar 

  50. West JD, Wang Y, Morano KA (2012) Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 25(10):2036–2053

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11(1):441–469

    CAS  PubMed  Google Scholar 

  52. Xu YM, Huang DY, Chiu JF, Lau AT (2012) Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J Proteome Res 11(5):2625–2634

    CAS  PubMed  Google Scholar 

  53. Yang J, Bridges K, Chen KY, Liu AYC (2008) Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 3(8):e2864

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Editor(s) for inviting us to write the chapter. KB gratefully acknowledges the DBT [Department of Biotechnology, Government of India (GOI)] [BT/PR17367/MED/122/44/2016] for the financial support in the form of major research project grant. BB acknowledges with the gratitude to UGC-BSR (University Grants commission - Basic Scientific Research, GOI) for the financial support in the form of UGC-BSR-Fellow and UGC-BSR SRF [Ref. No. F.25-1/2014-15(BSR)/7-326/2011(BSR) dt. 13.03.2015] and Bioinformatics Infrastructure Facility (BIF), funded by the DBT, Ministry of Science and Technology, GOI for the financial support in the form of DBT-BIF-Studentship [Ref. No. A13/DBF-BIF Studentship/5038/2014 dt. 10.09.2014]. Authors acknowledge the Computational and Bioinformatics Facility (BIF) provided by the Alagappa University Bioinformatics Infrastructure Facility (funded by DBT, GOI; Ref. No. BT/BI/25/012/2012, BIF), DST-FIST [Grant No. SR/FST/LSI-639/2015(C)], DST-PURSE [Grant No. SR/PURSE Phase 2/38 (G)], and UGC-SAP [Grant No. F.5-1/2018/DRS-II(SAP-II)]. The Authors thankfully acknowledge the RUSA 2.0 [F. 24-51/2014-U, Policy (TN Multi-Gen), Dept of Education, GOI].

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaswamy Balamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramaniam, B., Balamurugan, K. (2020). Role of Heat Shock Factors in Diseases and Immunity. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Human Diseases. Heat Shock Proteins, vol 21. Springer, Cham. https://doi.org/10.1007/7515_2020_21

Download citation

Publish with us

Policies and ethics