Skip to main content

Inter-Relationship Between the Inflammation and Heat Shock Protein in Cancer Development: A Possible Target for Diagnosis and Cancer Immunotherapy

  • Chapter
  • First Online:
Heat Shock Proteins in Human Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 21))

  • 366 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APCs:

antigen-presenting cells

APE1:

apurinic/apyrimidinic endonuclease

BCG:

Bacille Calmette–Guérin

BER:

base excision repair

CHKI:

checkpoint kinase 1

CLL:

chronic lymphocytic leukemia

CTL:

cytotoxic T cell responses

CTLs:

cytotoxic T-lymphocytes

DCs:

dendritic cells

DDR:

DNA damage response

EBV:

Epstein-Barr virus

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HPV:

Human Papillomavirus

MAPK:

mitogen-activated protein kinase

MGMT:

O6-meG-DNA methyltransferase

MIBC:

muscle-invasive bladder cancer

MIF:

macrophage-derived migration inhibitory- factor

NMIBC:

nonmuscle-invasive bladder cancer

RANTES:

regulated on activation normal T cell expressed and secreted

SCC:

squamous cell carcinoma

SMAC:

second mitochondrial-derived activator of caspase

TAM:

tumor-associated macrophages

TGF-β:

transforming growth factor-β

TLR2:

toll-like receptors-2

TNF-alpha:

tumour necrosis factor-alpha

UDG:

uracil DNA glycosylase

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  2. Hölzel M, Bovier A, Tüting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365

    Article  PubMed  CAS  Google Scholar 

  3. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781

    Article  CAS  PubMed  Google Scholar 

  4. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  CAS  PubMed  Google Scholar 

  5. Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G et al (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 46:1291–1301

    Article  CAS  PubMed  Google Scholar 

  6. Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  8. Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macario AJ, de Macario EC (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501

    Article  CAS  PubMed  Google Scholar 

  10. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  11. Di Felice V, Ardizzone N, Marcianò V, Bartolotta T, Cappello F, Farina F et al (2005) Senescence-associated HSP60 expression in normal human skin fibroblasts. Anat Rec A Discov Mol Cell Evol Biol Off Publ Am Assoc Anatom 284:446–453

    Google Scholar 

  12. Walsh D, Grantham J, Zhu X, Wei JL, Taylor R, Edwards M (1999) The role of heat shock proteins in mammalian differentiation and development. Env Med Annu Rep Res Inst Environ Med Nagoya Univ 43:79–87

    CAS  Google Scholar 

  13. Macario AJ, Cappello F, Zummo G, Conway de Macario E (2010) Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Ann NY Acad Sci 1197:85–93

    Article  CAS  PubMed  Google Scholar 

  14. Voellmy R (1994) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr 4:357–401

    CAS  PubMed  Google Scholar 

  15. Kirchhoff S, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904

    Article  CAS  PubMed  Google Scholar 

  16. Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720

    Article  CAS  PubMed  Google Scholar 

  17. SŐti C, Csermely P (1998) Molecular chaperones in the etiology and therapy of cancer. Pathol Oncol Res 4:316–321

    Article  PubMed  Google Scholar 

  18. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci 83:3121–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ (2004) Glycoprotein 96 can chaperone both MHC class I-and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172:6087–6092

    Article  CAS  PubMed  Google Scholar 

  21. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185

    Article  CAS  PubMed  Google Scholar 

  22. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436

    Article  CAS  PubMed  Google Scholar 

  24. Ferrero-Miliani L, Nielsen O, Andersen P, Girardin S (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 147:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860

    Article  CAS  PubMed  Google Scholar 

  26. Oyinloye BE, Adenowo AF, Kappo AP (2015) Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals 8:151–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korniluk A, Koper O, Kemona H, Dymicka-Piekarska V (2017) From inflammation to cancer. Ir J Med Sci 186:57–62

    Article  CAS  PubMed  Google Scholar 

  28. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4:221–233

    Article  PubMed  CAS  Google Scholar 

  29. Vallespí MG, García I (2008) Heat-shock proteins in inflammation and cancer. Biotecnol Apl 25:208–215

    Google Scholar 

  30. Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  32. Whitesell L, Lindquist SL (2004) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761

    Article  CAS  Google Scholar 

  33. Yang Y, Rao R, Shen J, Tang Y, Fiskus W, Nechtman J et al (2008) Role of acetylation and extracellular location of heat shock protein 90α in tumor cell invasion. Cancer Res 68:4833–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suriano R, Ghosh SK, Ashok BT, Mittelman A, Chen Y, Banerjee A et al (2005) Differences in glycosylation patterns of heat shock protein, gp96: implications for prostate cancer prevention. Cancer Res 65:6466–6475

    Article  CAS  PubMed  Google Scholar 

  35. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407

    Article  CAS  PubMed  Google Scholar 

  36. Castro JE, Prada CE, Loria O, Kamal A, Chen L, Burrows FJ et al (2005) ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 106:2506–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761

    Article  CAS  PubMed  Google Scholar 

  38. Somu P, Paul S (2019) HSP90 and its inhibitors for Cancer therapy: use of Nano-delivery system to improve its clinical application. In: Heat shock protein 90 in human diseases and disorders. Springer, pp 159–182

    Google Scholar 

  39. Yano M, Naito Z, Tanaka S, Asano G (1996) Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res 87:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim SO, Park SG, Yoo J-H, Park YM, Kim H-J, Jang K-T et al (2005) Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol: WJG 11:2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C et al (2004) Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol 6:507

    Article  CAS  PubMed  Google Scholar 

  42. Seo J-S, Park Y-M, Kim J-I, Shim E-H, Kim C-W, Jang J-J et al (1996) T cell lymphoma in transgenic mice expressing the humanHsp70gene. Biochem Biophys Res Commun 218:582–587

    Article  CAS  PubMed  Google Scholar 

  43. Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo A-P et al (1998) Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58:5495–5499

    CAS  PubMed  Google Scholar 

  44. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81:15–27

    Article  CAS  PubMed  Google Scholar 

  45. Buzzard KA, Giaccia AJ, Killender M, Anderson RL (1998) Heat shock protein 72 modulates pathways of stress-induced apoptosis. J Biol Chem 273:17147–17153

    Article  CAS  PubMed  Google Scholar 

  46. Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  CAS  PubMed  Google Scholar 

  47. Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N et al (2003) Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance. Blood 102:3379–3386

    Article  CAS  PubMed  Google Scholar 

  48. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M et al (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60:7099–7105

    CAS  PubMed  Google Scholar 

  49. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Calderwood SK, Gong J, Murshid A (2016) Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol 7:159

    PubMed  PubMed Central  Google Scholar 

  51. Paget J (1887) The Morton lecture on cancer and cancerous diseases. Br Med J 2:1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smith EF (1925) Some newer aspects of cancer research. Science 61:595–601

    Article  CAS  PubMed  Google Scholar 

  53. Zaghloul MS (2012) Bladder cancer and schistosomiasis. J Egypt Natl Canc Inst 24:151–159

    Article  PubMed  Google Scholar 

  54. Elsebai I (1977) Parasites in the etiology of cancer—bilharziasis and bladder cancer. CA Cancer J Clin 27:100–106

    Article  CAS  PubMed  Google Scholar 

  55. Marletta MA (1988) Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol 1:249–257

    Article  CAS  PubMed  Google Scholar 

  56. O’Brien PJ (1988) Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics: the reactivity of these radicals with GSH, DNA, and unsaturated lipid. Free Radic Biol Med 4:169–183

    Article  PubMed  Google Scholar 

  57. Maresca B, Carratu L (1992) The biology of the heat shock response in parasites. Parasitol Today 8:260–266

    Article  CAS  PubMed  Google Scholar 

  58. Lebret T, Watson RWG, Molinié V, O’Neill A, Gabriel C, Fitzpatrick JM et al (2003) Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer Interdiscip Int J Am Cancer Soc 98:970–977

    CAS  Google Scholar 

  59. Kasai K, Kobayashi R (1919) The stomach spirochete occurring in mammals. J Parasitol 6(1):10

    Article  Google Scholar 

  60. Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10:403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kountouras J, Doulberis M, Papaefthymiou A, Polyzos SA, Touloumtzi M, Elisabeth V et al (2019) Helicobacter pylori infection and gastrointestinal tract cancer biology: considering a double-edged sword reflection. Cell Mol Life Sci:1–2

    Google Scholar 

  62. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH (1999) A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190:1375–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeo M, Hk P, Kim DK, Cho SW, Kim YS, Cho SY et al (2004) Restoration of heat shock protein70 suppresses gastric mucosal inducible nitric oxide synthase expression induced by helicobacter pylori. Proteomics 4:3335–3342

    Article  CAS  PubMed  Google Scholar 

  64. Iacopini F, Consolazio A, Bosco D, Marcheggiano A, Bella A, Pica R et al (2003) Oxidative damage of the gastric mucosa in helicobacter pylori positive chronic atrophic and nonatrophic gastritis, before and after eradication. Helicobacter 8:503–512

    Article  CAS  PubMed  Google Scholar 

  65. Yamaoka Y, Kita M, Kodama T, Sawai N, Kashima K, Imanishi J (1997) Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive helicobacter pylori strains. Gut 41:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crabtree J, Farmery S, Lindley I, Figura N, Peichl P, Tompkins D (1994) CagA/cytotoxic strains of helicobacter pylori and interleukin-8 in gastric epithelial cell lines. J Clin Pathol 47:945–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kitadai Y, Haruma K, Sumii K, Yamamoto S, Ue T, Yokozaki H et al (1998) Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 152:93

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Takenaka R, Yokota K, Ayada K, Mizuno M, Zhao Y, Fujinami Y et al (2004) Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology 150:3913–3922

    Article  CAS  PubMed  Google Scholar 

  69. Evans D, Evans D, Engstrand L, Graham D (1992) Urease-associated heat shock protein of helicobacter pylori. Infect Immun 60:2125–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rous P (1983) Landmark article (JAMA 1911; 56: 198). Transmission of a malignant new growth by means of a cell-free filtrate by Peyton Rous. J Am Med Assoc 250:1445–1449

    Article  CAS  Google Scholar 

  71. D-f Y, Wu X-h, X-q S, Yao M, Wu W, Qiu L-W et al (2006) Abnormal expression of HSP gp96 associated with HBV replication in human hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 5:381–386

    Google Scholar 

  72. Harimoto N, Shimada M, Aishima S, Kitagawa D, Itoh S, Tsujita E et al (2004) The role of heat shock protein 27 expression in hepatocellular carcinoma in Japan: special reference to the difference between hepatitis B and C. Liver Int 24:316–321

    Article  CAS  PubMed  Google Scholar 

  73. Cheung RK, Dosch H-M (1993) The growth transformation of human B cells involves superinduction of hsp70 and hsp90. Virology 193:700–708

    Article  CAS  PubMed  Google Scholar 

  74. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991

    Article  CAS  PubMed  Google Scholar 

  75. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  CAS  PubMed  Google Scholar 

  76. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107

    Article  CAS  PubMed  Google Scholar 

  77. Seigneuric R, Mjahed H, Gobbo J, Joly A-L, Berthenet K, Shirley S et al (2011) Heat shock proteins as danger signals for cancer detection. Front Oncol 1:37

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tan HT, Low J, Lim SG, Chung MC (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276:6880–6904

    Article  CAS  PubMed  Google Scholar 

  79. Martín R, Azcona JI, García T, Hernández PE, Sanz B (1988) Sandwich ELISA for detection of horse meat in raw meat mixtures using antisera to muscle soluble proteins. Meat Sci 22:143–153

    Article  PubMed  Google Scholar 

  80. Bayer C, Liebhardt ME, Schmid TE, Trajkovic-Arsic M, Hube K, Specht HM et al (2014) Validation of heat shock protein 70 as a tumor-specific biomarker for monitoring the outcome of radiation therapy in tumor mouse models. Int J Radiat Oncol Biol Phys 88:694–700

    Article  CAS  PubMed  Google Scholar 

  81. Abe M, Manola JB, Oh WK, Parslow DL, George DJ, Austin CL et al (2004) Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 3:49–53

    Article  CAS  PubMed  Google Scholar 

  82. Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Toda T, Sakaida I et al (2003) Proteomic profiling of heat shock protein 70 family members as biomarkers for hepatitis C virus-related hepatocellular carcinoma. Proteomics 3:2487–2493

    Article  CAS  PubMed  Google Scholar 

  83. Feng JT, Liu YK, Song HY, Dai Z, Qin LX, Almofti MR et al (2005) Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics 5:4581–4588

    Article  CAS  PubMed  Google Scholar 

  84. Fujita Y, Nakanishi T, Miyamoto Y, Hiramatsu M, Mabuchi H, Miyamoto A et al (2008) Proteomics-based identification of autoantibody against heat shock protein 70 as a diagnostic marker in esophageal squamous cell carcinoma. Cancer Lett 263:280–290

    Article  CAS  PubMed  Google Scholar 

  85. Syrigos KN, Harrington KJ, Karayiannakis AJ, Sekara E, Chatziyianni E, Syrigou EI et al (2003) Clinical significance of heat shock protein-70 expression in bladder cancer. Urology 61:677–680

    Article  PubMed  Google Scholar 

  86. Margel D, Pesvner-Fischer M, Baniel J, Yossepowitch O, Cohen IR (2011) Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. Eur Urol 59:113–119

    Article  CAS  PubMed  Google Scholar 

  87. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL et al (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67:2932–2937

    Article  CAS  PubMed  Google Scholar 

  88. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta Biomembr Prot Proteom 1854:291–319

    Article  CAS  Google Scholar 

  89. Zeng L, Tan J, Lu W, Lu T, Hu Z (2013) The potential role of small heat shock proteins in mitochondria. Cell Signal 25:2312–2319

    Article  CAS  PubMed  Google Scholar 

  90. Santiago-O’Farrill JM, Kleinerman ES, Hollomon MG, Livingston A, Wang W-L, Tsai J-W et al (2018) Phosphorylated heat shock protein 27 as a potential biomarker to predict the role of chemotherapy-induced autophagy in osteosarcoma response to therapy. Oncotarget 9:1602

    Article  PubMed  Google Scholar 

  91. Rappa F, Pitruzzella A, Gammazza AM, Barone R, Mocciaro E, Tomasello G et al (2016) Quantitative patterns of Hsps in tubular adenoma compared with normal and tumor tissues reveal the value of Hsp10 and Hsp60 in early diagnosis of large bowel cancer. Cell Stress Chaperones 21:927–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kondo Y, Ueno Y, Kobayashi K, Kakazu E, Shiina M, Inoue J et al (2010) Hepatitis B virus replication could enhance regulatory T cell activity by producing soluble heat shock protein 60 from hepatocytes. J Infect Dis 202:202–213

    Article  CAS  PubMed  Google Scholar 

  93. Shekhawat SD, Purohit HJ, Taori GM, Daginawala HF, Kashyap RS (2016) Evaluation of host Hsp (s) as potential biomarkers for the diagnosis of tuberculous meningitis. Clin Neurol Neurosurg 140:47–51

    Article  PubMed  Google Scholar 

  94. Matsumoto H, Wang X, Ohnishi T (1995) Binding between wild-type p53 and hsp72 accumulated after UV and γ-ray irradiation. Cancer Lett 92:127–133

    Article  CAS  PubMed  Google Scholar 

  95. Nunes E, Candreva EC, Keszenman D, Salvo VA (1993) The mutagenic effect of elevated temperatures in yeast is blocked by a previous heat shock. Mutat Res Fundam Mol Mech Mutagen 289:165–170

    Article  CAS  Google Scholar 

  96. Mendez F, Sandigursky M, Franklin WA, Kenny MK, Kureekattil R, Bases R (2000) Heat-shock proteins associated with base excision repair enzymes in HeLa cells. Radiat Res 153:186–195

    Article  CAS  PubMed  Google Scholar 

  97. Sottile ML, Nadin SB (2018) Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 23:303–315

    Article  CAS  PubMed  Google Scholar 

  98. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bridge G, Rashid S, Martin S (2014) DNA mismatch repair and oxidative DNA damage: implications for cancer biology and treatment. Cancers 6:1597–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366

    Article  CAS  PubMed  Google Scholar 

  101. Ikwegbue P, Masamba P, Oyinloye B, Kappo A (2018) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11:2

    Article  CAS  Google Scholar 

  102. McNulty S, Colaco CA, Blandford LE, Bailey CR, Baschieri S, Todryk S (2013) Heat-shock proteins as dendritic cell-targeting vaccines–getting warmer. Immunology 139:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Calderwood SK, Mambula SS, Gray PJ Jr (2007) Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci 1113:28–39

    Article  CAS  PubMed  Google Scholar 

  104. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S et al (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372:145–154

    Article  CAS  PubMed  Google Scholar 

  105. Tsan M-F, Gao B (2004) Cytokine function of heat shock proteins. Am J Phys Cell Phys 286:C739–CC44

    CAS  Google Scholar 

  106. Sin YY, Martin TP, Wills L, Currie S, Baillie GS (2015) Small heat shock protein 20 (Hsp20) facilitates nuclear import of protein kinase D 1 (PKD1) during cardiac hypertrophy. Cell Commun Signal 13:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Colaco C, Bailey C, Keeble J, Walker K (2004) BCG (Bacille Calmette–Guérin) HspCs (heat-shock protein–peptide complexes) induce T-helper 1 responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Portland Press Limited

    Google Scholar 

  108. Milani A, Basirnejad M, Bolhassani A (2019) Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions. Immunotherapy 11:215–239

    Article  CAS  PubMed  Google Scholar 

  109. Bolhassani A, Rafati S (2008) Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 7:1185–1199

    Article  CAS  PubMed  Google Scholar 

  110. Gong J, Zhang Y, Durfee J, Weng D, Liu C, Koido S et al (2010) A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. J Immunol 184:488–496

    Article  CAS  PubMed  Google Scholar 

  111. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM et al (2018) When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol 15:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A et al (2013) Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res 19:205–214

    Article  CAS  PubMed  Google Scholar 

  113. Caudill MM, Li Z (2001) HSPPC-96: a personalised cancer vaccine. Expert Opin Biol Ther 1:539–547

    Article  CAS  PubMed  Google Scholar 

  114. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G et al (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 10:3699–3707

    Article  CAS  PubMed  Google Scholar 

  115. Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US et al (2015) Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx)–from preclinical studies to a clinical phase II trial. Front Immunol 6:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Shevtsov M, Multhoff G (2016) Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171

    PubMed  PubMed Central  Google Scholar 

  117. Li J, Liu H, Zhang X, Xu J, Hu W, Liang M et al (2009) A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther 16:376

    Article  CAS  PubMed  Google Scholar 

  118. Li R, Qian J, Zhang W, Fu W, Du J, Jiang H et al (2014) Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma. Br J Haematol 166:690–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Enomoto Y, Bharti A, Khaleque AA, Song B, Liu C, Apostolopoulos V et al (2006) Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol 177:5946–5955

    Article  CAS  PubMed  Google Scholar 

  120. Brown WC, Ruef BJ, Norimine J, Kegerreis KA, Suarez CE, Conley PG et al (2001) A novel 20-kilodalton protein conserved in Babesia bovis and B. bigemina stimulates memory CD4+ T lymphocyte responses in B. bovis-immune cattle. Mol Biochem Parasitol 118:97–109

    Article  CAS  PubMed  Google Scholar 

  121. He L, Yu Q, Zhang W-J, Zhang Q-L, Fan L-Z, Miao X-Y et al (2014) Molecular cloning and characterization of a novel heat shock protein 20 of Babesia orientalis. Vet Parasitol 204:177–183

    Article  CAS  PubMed  Google Scholar 

  122. Montalvo-Álvarez AM, Folgueira C, Carrión J, Monzote-Fidalgo L, Cañavate C, Requena JM (2008) The Leishmania HSP20 is antigenic during natural infections, but, as DNA vaccine, it does not protect BALB/c mice against experimental L. amazonensis infection. Biomed Res Int 2008

    Google Scholar 

  123. Norimine J, Mosqueda J, Palmer GH, Lewin HA, Brown WC (2004) Conservation of Babesia bovis small heat shock protein (Hsp20) among strains and definition of T helper cell epitopes recognized by cattle with diverse major histocompatibility complex class II haplotypes. Infect Immun 72:1096–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ortiz JMJ, Zajac MPDM, Zanetti FA, Molinari MP, Gravisaco MJ, Calamante G et al (2014) Vaccine strategies against Babesia bovis based on prime-boost immunizations in mice with modified vaccinia Ankara vector and recombinant proteins. Vaccine 32:4625–4632

    Article  CAS  Google Scholar 

  125. Chionh YT, Arulmuruganar A, Venditti E, Ng GZ, Han J-X, Entwisle C et al (2014) Heat shock protein complex vaccination induces protection against helicobacter pylori without exogenous adjuvant. Vaccine 32:2350–2358

    Article  CAS  PubMed  Google Scholar 

  126. Fang L, Sun L, Yang J, Gu Y, Zhan B, Huang J et al (2014) Heat shock protein 70 from Trichinella spiralis induces protective immunity in BALB/c mice by activating dendritic cells. Vaccine 32:4412–4419

    Article  CAS  PubMed  Google Scholar 

  127. Coutanceau E, Legras P, Marsollier L, Reysset G, Cole ST, Demangel C (2006) Immunogenicity of Mycobacterium ulcerans Hsp65 and protective efficacy of a Mycobacterium leprae Hsp65-based DNA vaccine against Buruli ulcer. Microbes Infect 8:2075–2081

    Article  CAS  PubMed  Google Scholar 

  128. Bolhassani A, Talebi S, Anvar A (2017) Endogenous and exogenous natural adjuvants for vaccine development. Mini Rev Med Chem 17:1442–1456

    Article  CAS  PubMed  Google Scholar 

  129. Li H, Zhou M, Han J, Zhu X, Dong T, Gao GF et al (2005) Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol 174:195–204

    Article  CAS  PubMed  Google Scholar 

  130. Li H-T, Yan J-B, Li J, Zhou M-H, Zhu X-D, Zhang Y-X et al (2005) Enhancement of humoral immune responses to HBsAg by heat shock protein gp96 and its N-terminal fragment in mice. World J Gastroenterol: WJG 11:2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen C, Li J, Bi Y, Yang L, Meng S, Zhou Y et al (2013) Synthetic B-and T-cell epitope peptides of porcine reproductive and respiratory syndrome virus with Gp96 as adjuvant induced humoral and cell-mediated immunity. Vaccine 31:1838–1847

    Article  CAS  PubMed  Google Scholar 

  132. Pishraft-Sabet L, Kosinska AD, Rafati S, Bolhassani A, Taheri T, Memarnejadian A et al (2015) Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96. Arch Virol 160:141–152

    Article  CAS  PubMed  Google Scholar 

  133. Hajizadeh MR, Mokarram P (2013) Recombinant nonstructural 3 protein, rNS3, of hepatitis C virus along with recombinant GP96 induce IL-12, TNFα and α5integrin expression in antigen presenting cells. Hepat Mon 13

    Google Scholar 

  134. Bolhassani A, Zahedifard F, Taghikhani M, Rafati S (2008) Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine 26:3362–3370

    Article  CAS  PubMed  Google Scholar 

  135. Gong X, Gai W, Xu J, Zhou W, Tien P (2009) Glycoprotein 96-mediated presentation of human immunodeficiency virus type 1 (HIV-1)-specific human leukocyte antigen class I-restricted peptide and humoral immune responses to HIV-1 p24. Clin Vaccine Immunol 16:1595–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nasiri V, Dalimi A, Ghaffarifar F, Bolhassani A (2016) Immunogenicity and efficacy of live L. tarentolae expressing KMP11-NTGP96-GFP fusion as a vaccine candidate against experimental visceral Leishmaniasis caused by L. infantum. Iran J Parasitol 11:144

    PubMed  PubMed Central  Google Scholar 

  137. Hosseinzadeh S, Bolhassani A, Rafati S, Taheri T, Zahedifard F, Daemi A et al (2013) A non-pathogenic live vector as an efficient delivery system in vaccine design for the prevention of HPV16 E7-overexpressing cancers. Drug Deliv 20:190–198

    Article  CAS  PubMed  Google Scholar 

  138. Daemi A, Bolhassani A, Rafati S, Zahedifard F, Hosseinzadeh S, Doustdari F (2012) Different domains of glycoprotein 96 influence HPV16 E7 DNA vaccine potency via electroporation mediated delivery in tumor mice model. Immunol Lett 148:117–125

    Article  CAS  PubMed  Google Scholar 

  139. Mohit E, Bolhassani A, Zahedifard F, Taslimi Y, Rafati S (2012) The contribution of NT-gp96 as an adjuvant for increasing HPV16 E7-specific immunity in C57BL/6 mouse model. Scand J Immunol 75:27–37

    Article  CAS  PubMed  Google Scholar 

  140. Zhang H, Huang W (2006) Fusion proteins of Hsp70 with tumor-associated antigen acting as a potent tumor vaccine and the C-terminal peptide-binding domain of Hsp70 being essential in inducing antigen-independent anti-tumor response in vivo. Cell Stress Chaperones 11:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li Y, Subjeck J, Yang G, Repasky E, Wang X-Y (2006) Generation of anti-tumor immunity using mammalian heat shock protein 70 DNA vaccines for cancer immunotherapy. Vaccine 24:5360–5370

    Article  CAS  PubMed  Google Scholar 

  142. Krupka M, Zachova K, Cahlikova R, Vrbkova J, Novak Z, Sebela M et al (2015) Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunol Lett 166:36–44

    Article  CAS  PubMed  Google Scholar 

  143. Milani A, Bolhassani A, Shahbazi S, Motevalli F, Sadat SM, Soleymani S (2017) Small heat shock protein 27: an effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunol Lett 191:16–22

    Article  CAS  PubMed  Google Scholar 

  144. Milani A, Bolhassani A, Heshmati M (2017) Delivery of HIV-1 Nef linked to heat shock protein 27 using a cationic polymer is more effective than cationic lipid in mammalian cells. Bratislavske lekarske listy 118:334–338

    CAS  PubMed  Google Scholar 

  145. Changhong S, Hai Z, Limei W, Jiaze A, Li X, Tingfen Z et al (2009) Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Tuberculosis 89:54–61

    Article  PubMed  CAS  Google Scholar 

  146. Shi C, Chen L, Chen Z, Zhang Y, Zhou Z, Lu J et al (2010) Enhanced protection against tuberculosis by vaccination with recombinant BCG over-expressing HspX protein. Vaccine 28:5237–5244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Science and Engineering Research Board, Government of India, for financial support (Grant No. SERB/F/4290/2016-17) and National Institute of Technology Rourkela, Government of India, for providing the infrastructural facility for carrying out this work.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Somu, P., Paul, S. (2020). Inter-Relationship Between the Inflammation and Heat Shock Protein in Cancer Development: A Possible Target for Diagnosis and Cancer Immunotherapy. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Human Diseases. Heat Shock Proteins, vol 21. Springer, Cham. https://doi.org/10.1007/7515_2020_19

Download citation

Publish with us

Policies and ethics