Advertisement

Genetic Mapping of Complex Traits in Cucurbits

  • María José Gonzalo
  • Antonio J. MonforteEmail author
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)

Abstract

The broad phenotypic diversity displayed among species belonging to the Cucurbitaceae family for interesting agronomical traits is mostly under polygenic control. Important crops included in this family, such as melon, cucumber, watermelon and squash, have been studied intensively in the last decades to understand the genetic control of this diversity. The development of genomic sequencing projects for different cucurbit species has facilitated the generation of saturated genetic maps, making possible the consistent identification and localization of QTLs involved in interesting traits related to yield, fruit quality, fruit morphology, vegetative growth or disease resistance, among others. In the current chapter, the mapping approaches for genetic dissection of complex traits in the four major cucurbit species mentioned above has been compiled, including a summary of the identified QTLs for the most relevant traits for each species.

Keywords

Quantitative Trait Loci Molecular marker Phenotypic diversity Melon Cucumber Watermelon Squash 

Notes

Acknowledgements

This work has been funded in part by Spanish Ministry of Economy and Competitiveness grants AGL2012-40130-C02-02 and AGL2015-64625-C02-02.

References

  1. Abdelmohsin ME, Pitrat M. Pleiotropic effect of sex expression on fruit shape in melon. In: Pitrat M, editor. 9th EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon: INRA; 2008. p. 551–6.Google Scholar
  2. Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, et al. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics. 2015;16:4.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ayub R, Guis M, BenAmor M, Gillot L, Roustan JP, Latche A, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol. 1996;14:862–6.PubMedCrossRefGoogle Scholar
  4. Baudracco-Arnas S, Pitrat M. A genetic map of melon (Cucumis melo L) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet. 1996;93:57–64.PubMedCrossRefGoogle Scholar
  5. Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bo K, Ma Z, Chen J, Weng Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet. 2015;128:25–39.PubMedCrossRefGoogle Scholar
  7. Boissot N, Thomas S, Sauvion N, Marchal C, Pavis C, Dogimont C. Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theor Appl Genet. 2010;121:9–20.PubMedCrossRefGoogle Scholar
  8. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.PubMedCrossRefGoogle Scholar
  9. Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One. 2009;4:e6144.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome. 2000;44:111–9.CrossRefGoogle Scholar
  11. Brotman Y, Normantovich M, Goldenberg Z, Zvirin Z, Kovalski I, Stovbun N, et al. Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol Plant. 2013;6:235–8.PubMedCrossRefGoogle Scholar
  12. Brown RN, Myers JR. A genetic map of squash (Cucurbita ssp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hortic Sci. 2002;127:568–75.Google Scholar
  13. Bu F, Chen H, Shi Q, Zhou Q, Gao D, Zhang Z, Huang S. A major quantitative trait locus conferring subgynoecy in cucumber. Theor Appl Genet. 2016;129:97–104. doi: 10.1007/s00122-015-2612-z.
  14. Burger Y, Saar U, Katzir N, Paris HS, Yeselson Y, Levin I, et al. A single recessive gene for sucrose accumulation in Cucumis melo fruit. J Am Soc Hortic Sci. 2002;127:938–43.Google Scholar
  15. Call AD, Wehner TC. Gene list 2010 for cucumber. Cucurbit Genet Coop Rep. 2011;34:69–103.Google Scholar
  16. Cohen S, Tzuri G, Harel-Beja R, Itkin M, Portnoy V, Sa’ar U, et al. Co-mapping studies of QTLs for fruit acidity and candidate genes of organic acid metabolism and proton transport in sweet melon (Cucumis melo L.). Theor Appl Genet. 2012;125:343–53.PubMedCrossRefGoogle Scholar
  17. Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, et al. The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nat Commun. 2014;5:4026.PubMedCrossRefGoogle Scholar
  18. Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD. Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet. 2008;117:1345–59.PubMedCrossRefGoogle Scholar
  19. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica. 2002;125:373–84.CrossRefGoogle Scholar
  20. Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, et al. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009;9:90.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei ZJ, et al. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011;11:111.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Diaz A, Zarouri B, Fergany M, Eduardo I, Alvarez JM, Pico B, et al. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ melon (Cucumis melo L.). Plos One. 2014;9:e104188.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Diaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, et al. Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed. 2015;35:7.CrossRefGoogle Scholar
  24. Dogimont C, Chovelon V, Pauquet J, Boualem A, Bendahmane A. The Vat locus encodes for a CC-NBS-LRR protein that confers resistance to Aphis gossypii infestation and A. gossypii-mediated virus resistance. Plant J. 2014;80:993–1004.PubMedCrossRefGoogle Scholar
  25. Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, et al. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci. 2007;132:80–9.Google Scholar
  26. Essafi A, Diaz-Pendon JA, Moriones E, Monforte AJ, Garcia-Mas J, Martin-Hernandez AM. Dissection of the oligogenic resistance to Cucumber mosaic virus in the melon accession PI 161375. Theor Appl Genet. 2009;118:275–84.PubMedCrossRefGoogle Scholar
  27. Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 2012;13:80.CrossRefGoogle Scholar
  28. Esteras C, Formisano G, Roig C, Díaz A, Blanca J, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126:1285–303.PubMedCrossRefGoogle Scholar
  29. Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet. 2003;107:864–74.PubMedCrossRefGoogle Scholar
  30. Feder A, Burger J, Gao S, Lewinsohn E, Katzir N, Schaffer AA, et al. A Kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Phys. 2015;169:1714–26.Google Scholar
  31. Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, et al. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet. 2008;118:139–50.PubMedCrossRefGoogle Scholar
  32. Ferriol M, Picó B, Nuez F. Morphological and molecular diversity of a collection of Cucurbita maxima landraces. Am Soc Hort Sci. 2004;129:60–9.Google Scholar
  33. Fita A, Pico B, Monforte AJ, Nuez F. Genetics of root system architecture using near-isogenic lines of melon. J Am Soc Hortic Sci. 2008;133:448–58.Google Scholar
  34. Fukino N, Ohara T, Monforte A, Sugiyama M, Sakata Y, Kunihisa M, et al. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet. 2008;118:165–75.PubMedCrossRefGoogle Scholar
  35. Fukino N, Ohara T, Sugiyama M, Kubo N, Hirai M, Sakata Y, et al. Mapping of a gene that confers short lateral branching (slb) in melon (Cucumis melo L.). Euphytica. 2012;187:133–43.CrossRefGoogle Scholar
  36. Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S. Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed. 2013;32:267–77.CrossRefGoogle Scholar
  37. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109:11872–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gonda I, Lev S, Bar E, Sikron N, Portnoy V, Davidovich-Rikanati R, et al. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit. Plant J. 2013;74:458–72.PubMedCrossRefGoogle Scholar
  39. Gong L, Stift G, Kofler R, Pachner M, Lelley T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet. 2008a;117:37–48.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gong L, Pachner M, Kalai K, Lelley T. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome. 2008b;51:878–87.PubMedCrossRefGoogle Scholar
  41. Gonzalo MJ, Oliver M, Garcia-Mas J, Monforte AJ, Dolcet-Sanjuan R, Katzir N, et al. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet. 2005;110:802–11.PubMedCrossRefGoogle Scholar
  42. Guiu-Aragones C, Monforte AJ, Saladie M, Correa RX, Garcia-Mas J, Martin-Hernandez AM. The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Mol Breed. 2014;34:351–62.CrossRefGoogle Scholar
  43. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51–U82.PubMedCrossRefGoogle Scholar
  44. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet. 2010;121:511–33.PubMedCrossRefGoogle Scholar
  45. Hashizume T, Shimamoto I, Harushima Y, Yui M, Sato T, Imai T, Hirai M. Construction of a linkage map for watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) using random amplified polymorphic DNA (RAPD). Euphytica. 1996;90:265–73.CrossRefGoogle Scholar
  46. Hashizume T, Shimamoto I, Hirai M. Construction of a linkage map and QTL analysis of horticultural traits for watermelon Citrullus lanatus (Thunb.) Matsum & Nakai using RAPD, RFLP and ISSR markers. Theor Appl Genet. 2003;106:779–85.PubMedCrossRefGoogle Scholar
  47. He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.PubMedCrossRefGoogle Scholar
  48. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41:1275–81.PubMedCrossRefGoogle Scholar
  49. Hughes MB. The inheritance of 2 characters of Cucumis melo and their interrelationship. Proc Amer Soc Hort Sci. 1948;52:399–402.Google Scholar
  50. Hwang J, Oh J, Kim Z, Staub JE, Chung SM, Park Y. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.). Mol Breed. 2014;34:949–61.CrossRefGoogle Scholar
  51. Iman MK, Abo-Bakr MA, Hanna HY. Inheritance of some economic characters in crosses between sweet melon and snake cucumber. I. Inheritance of qualitative characters. Assiut J Ag Sci. 1972;3:363–80.Google Scholar
  52. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA. The fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J. 2004;39:283–97.PubMedCrossRefGoogle Scholar
  53. Kennard WC, Havey MJ. Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet. 1995;91:53–61.PubMedGoogle Scholar
  54. Kennard WC, Poetter K, Dijkhuizen A, Meglic V, Staub JE, Havey MJ. Linkages among RFLP, RAPD, isozyme, disease-resistance, and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet. 1994;89:42–8.Google Scholar
  55. Kim H, Han D, Kang J, Choi Y, Levi A, Lee GP, et al. Sequence-characterized amplified polymorphism markers for selecting rind stripe pattern in watermelon (Citrullus lanatus L.). Hort Environ Biotech. 2015;56:341–9.CrossRefGoogle Scholar
  56. Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, et al. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet. 2014;127:2105–15.PubMedCrossRefGoogle Scholar
  57. Lee YH, Jeon HJ, Hong KH, Kim BD. Use of random amplified polymorphic DNA for linkage group analysis in an interspecific cross hybrid F2 generation of Cucurbita. J Kor Soc Hortic Sci. 1995;36:323–30.Google Scholar
  58. Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Levi A, Thomas CE, Zhang XP, Joobeur T, Dean RA, Wehner TC, et al. A genetic linkage map for watermelon based on randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci. 2001;126(6):730–7.Google Scholar
  60. Levi A, Newman M, Reddy UK, Zhang X, Xu Y. ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. Am Soc Hort Sci. 2004;129:553–8.Google Scholar
  61. Levi A, Wechter P, Massey L, Carter L, Hopkins D. An extended genetic linkage map for watermelon based on a testcross and a BC2F2 population. Am J Plant Sci. 2011;2:93–110.CrossRefGoogle Scholar
  62. Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Meir A, Zamir D, et al. Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. J Agric Food Chem. 2005;53:3142–8.PubMedCrossRefGoogle Scholar
  63. Li XZ, Yuan XJ, Jiang S, Pan JS, Deng SL, Wang G, He HL, Wu AZ, Zhu LH, Koba T, Cai R. Detecting QTLs for plant architecture traits in cucumber (Cucumis sativus L.). Breed Sci. 2008;58:453–60.CrossRefGoogle Scholar
  64. Liu S, Gao P, Wang X, Davis AR, Baloch AM, Luan F. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica. 2015;202:411–26.CrossRefGoogle Scholar
  65. Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, et al. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet. 2014;127:1491–9.PubMedCrossRefGoogle Scholar
  66. Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhang SP. Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breed. 2015;35:64–72.CrossRefGoogle Scholar
  67. McGregor CE, Waters V, Vashisth T, Abdel-Haleem H. Flowering time in watermelon is associated with a major quantitative trait locus on chromosome 3. J Am Soc Hortic Sci. 2014;139:48–53.Google Scholar
  68. Meru G, McGregor C. Genetic mapping of seed traits correlated with seed oil percentage in watermelon. HortScience. 2013;48:955–9.Google Scholar
  69. Meru G, McGregor C. Quantitative trait loci and candidate genes associated with fatty acid content of watermelon seed. J Am Soc Hortic Sci. 2014;139:433–41.Google Scholar
  70. Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;182:167–76.CrossRefGoogle Scholar
  71. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.PubMedCrossRefGoogle Scholar
  72. Monforte AJ, Diaz A, Cano-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot. 2014;65:4625–37.PubMedCrossRefGoogle Scholar
  73. Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J. Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet. 2008;116:589–602.PubMedCrossRefGoogle Scholar
  74. Navot N, Sarfatti M, Zamir D. Linkage relationships of genes affecting bitterness and flesh color in watermelon. J Hered. 1990;81:162–5.Google Scholar
  75. Nie J, He H, Peng J, Yang X, Bie B, Zhao J, Wang Y, Si L, Pan J-S, Cai R. Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed. 2015;35:7.CrossRefGoogle Scholar
  76. Nieto C, Morales M, Orjeda G, Clepet C, Monfort A, Sturbois B, et al. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 2006;48:452–62.PubMedCrossRefGoogle Scholar
  77. Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, et al. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics. 2014;15:767.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Obando-Ulloa JM, Moreno E, Garcia-Mas J, Nicolai B, Lammertyn J, Monforte AJ, et al. Climacteric or non-climacteric behavior in melon fruit – 1. Aroma volatiles. Postharvest Biol Technol. 2008;49:27–37.CrossRefGoogle Scholar
  79. Obando-Ulloa JM, Eduardo I, Monforte AJ, Fernandez-Trujillo JP. Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Sci Hortic. 2009;121:425–33.CrossRefGoogle Scholar
  80. Obando-Ulloa JM, Ruiz J, Monforte AJ, Fernandez-Trujillo JP. Aroma profile of a collection of near-isogenic lines of melon (Cucumis melo L.). Food Chem. 2010;118:815.CrossRefGoogle Scholar
  81. Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese A, Arroyo M, et al. Construction of a reference linkage map for melon. Genome. 2001;44:836–45.PubMedCrossRefGoogle Scholar
  82. Palomares-Rius FJ, Viruel MA, Yuste-Lisbona FJ, Lopez-Sese AI, Gomez-Guillamon ML. Simple sequence repeat markers linked to QTL for resistance to watermelon mosaic virus in melon. Theor Appl Genet. 2011;123:1207–14.PubMedCrossRefGoogle Scholar
  83. Pang X, Zhou X, Wan H, Chen J. QTL mapping of Downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol. 2013;161:536–43.CrossRefGoogle Scholar
  84. Paris H. In summer squash. In: Prohens J, Nuez F, editors. Handbook of plant breeding vegetables I Part 4, vol. 1. New York: Springer; 2008. p. 351–81.Google Scholar
  85. Paris MK, Zalapa JE, McCreight JD, Staub JE. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breed. 2008;22:405–19.Google Scholar
  86. Perchepied L, Dogimont C, Pitrat M. Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet. 2005a;111:65–74.PubMedCrossRefGoogle Scholar
  87. Perchepied L, Bardin M, Dogimont C, Pitrat A. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology. 2005b;95:556–65.PubMedCrossRefGoogle Scholar
  88. Perin C, Hagen LS, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, et al. A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet. 2002a;104:1017–34.PubMedCrossRefGoogle Scholar
  89. Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics. 2002b;266:933–41.PubMedCrossRefGoogle Scholar
  90. Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, et al. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 2002c;129:300–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pitrat M. Melon (Cucumis melo L.). In: Prohens J, Nuez F, editors. Handbook of crop breeding, Vegetables, vol. I. New York: Springer; 2008. p. 283–315.Google Scholar
  92. Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, et al. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol Biol. 2008;66:647–61.PubMedCrossRefGoogle Scholar
  93. Prothro J, Sandlin K, Abdel-Haleem H, Bachlava E, White V, Knapp S, et al. Main and Epistatic Quantitative Trait Loci associated with seed size in watermelon. J Am Soc Hortic Sci. 2012a;137:452–7.Google Scholar
  94. Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SJ, et al. Mapping of the Egusi seed trait locus (eg) and Quantitative Trait Loci associated with seed oil percentage in watermelon. J Am Soc Hortic Sci. 2012b;137:311–5.Google Scholar
  95. Prothro J, Abdel-Haleem H, Bachlava E, White V, Knapp S, McGregor C. Quantitative Trait Loci associated with sex expression in an inter-subspecific watermelon population. J Am Soc Hortic Sci. 2013;138:125–30.Google Scholar
  96. Ramamurthy RK, Waters BM. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica. 2015;204:163–77.CrossRefGoogle Scholar
  97. Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, et al. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered. 2015;106:166–76.PubMedCrossRefGoogle Scholar
  98. Ren Y, Zhao H, Kou Q, Jiang J, Guo S, Zhang H, et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS One. 2012;7:e29453.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, et al. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14:33.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ren R, Ray R, Li P, Xu J, Zghang M, et al. Construction of a high-density DArTseq SNP based map and identification for genomic regions with segregation distortion in a genetic population derived form a cross between feral and cultivated-type watermelon. Mol Genet Genomics. 2015;290:1457–70.PubMedCrossRefGoogle Scholar
  101. Robinson RW, Decker-Walters DS. Cucurbits. Wallingford, Oxon, UK/New York: CAB International; 1997.Google Scholar
  102. Rosa JT. The inheritance of flower types in Cucumis and Citrullus. Hilgardia. 1928;3:233–50.CrossRefGoogle Scholar
  103. Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, et al. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One. 2015;10(4):e0124101. doi:10.137/journal.pone.0124101.Google Scholar
  104. Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, et al. Comparative mapping in watermelon Citrullus lanatus (Thunb.) Matsum. et Nakai. Theor Appl Genet. 2012;125:1603–18.PubMedCrossRefGoogle Scholar
  105. Serquen FC, Bacher J, Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed. 1997;3:257–68.CrossRefGoogle Scholar
  106. Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, et al. Alcohol acetylamtransferease activity and aroma formation in ripening melon fruits. J Agric Food Chem. 2001;49:794–9.PubMedCrossRefGoogle Scholar
  107. Sherman A, Eshed R, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, et al. Combining bulk segregation analysis and microarrays for mapping of the pH trait in melon. Theor Appl Genet. 2013;126:349–58.PubMedCrossRefGoogle Scholar
  108. Sugiyama M, Kawazu Y, Fukino N, Yoshioka Y, Shimomura K, Sakata Y, Okuda M. Mapping of quantitative trait loci for Melon yellow spot virus resistance in cucumber (Cucumis sativus L.). Euphytica. 2015;205:615–25.CrossRefGoogle Scholar
  109. Tang Y, Zhang C, Cao S, Wang X, Qi H. The effect of CmLOXs on the production of volatile organic compounds in four aroma types of melon (Cucumis melo). PLoS One. 2015;10:0143567.Google Scholar
  110. Tian G, Yang Y, Zhang S, Miao H, Lu H, Wang Y, Xie B, Gu X. Genetic analysis and gene mapping of papaya ring spot virus resistance in cucumber. Mol Breed. 2015;35:110.CrossRefGoogle Scholar
  111. Tomason Y, Nimmakayala P, Levi A, Reddy UK. Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed. 2013;31:829–41.CrossRefGoogle Scholar
  112. Tzuri G, Zhou XJ, Chayut N, Yuan H, Portnoy V, Meir A, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015;82:267–79.PubMedCrossRefGoogle Scholar
  113. Vegas J, Garcia-Mas J, Monforte AJ. Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet. 2013;126:1531–44.PubMedCrossRefGoogle Scholar
  114. Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragments (SLAF) sequencing. BMC Genomics. 2014;15:1158.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet. 2015;128:1747–63.PubMedCrossRefGoogle Scholar
  116. Yang L, Koo D-H, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012;71:895–906.PubMedCrossRefGoogle Scholar
  117. Yoshioka Y, Sakata Y, Sugiyama M, Fukino N. Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica. 2014;198:265–76.CrossRefGoogle Scholar
  118. Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, et al. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed. 2008a;127:180–8.CrossRefGoogle Scholar
  119. Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica. 2008b;164:473–91.CrossRefGoogle Scholar
  120. Yundaeng C, Somta P, Tangphatsornruang S, Chankaew S, Srinive P. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor Appl Genet. 2015;128:1881–92.PubMedCrossRefGoogle Scholar
  121. Yuste-Lisbona FJ, Capel C, Gomez-Guillamon ML, Capel J, Lopez-Sese AI, Lozano R. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theor Appl Genet. 2011;122:747–58.PubMedCrossRefGoogle Scholar
  122. Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H. Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet. 2007;114:1185–201.PubMedCrossRefGoogle Scholar
  123. Zhang W-W, Pan J-S, He H-L, Zhang C, Li Z, Zhao J-L, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet. 2012;124:249–59.PubMedCrossRefGoogle Scholar
  124. Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Whener TC, Gu XF. Chromosomal mapping and QTL analysis of resistance to Downy Mildew in Cucumis sativus. Plant Dis. 2013a;97:245–51.CrossRefGoogle Scholar
  125. Zhang S, Miao H, Sun R, Wang X, Huang S, Wehner TC, Gu X. Localization of a new gene for bitterness in cucumber. J Hered. 2013b;104:134–9.PubMedCrossRefGoogle Scholar
  126. Zhang S-P, Miao H, Yang Y-H, Xie B-Y, Wang Y, Gu X-F. A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol Breed. 2014;34:1805–15.CrossRefGoogle Scholar
  127. Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genom. 2015;16:1101.CrossRefGoogle Scholar
  128. Zhou Q, Miao H, Li S, Zhang S, Wang Y, Weng Y, et al. A sequencing-based linkage map of cucumber. Mol Plant. 2015;8:961–3.PubMedCrossRefGoogle Scholar
  129. Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T. A consensus map for Cucurbita pepo. Mol Breed. 2007;20:375–88.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Biología Molecular y Celular de Plantas (IBMCP) UPV-CSICValenciaSpain

Personalised recommendations