The Cucumber Genome

  • Yiqun WengEmail author
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)


Cucumber, Cucumis sativus L. (2n = 2x = 14) is both an economically and biologically important vegetable crop which has been used as a model to study sex expression in plant for a long time. While the genetic and genomics resources in cucumber are limited as compared with field crops, recent advances in technology and instrumentation for sequencing of plant genomes are providing exciting opportunities to expedite cucumber genome research. Among major horticultural crops, cucumber was the first to have a publicly released draft genome. Cucumber has some advantages for genome research due to its relatively small genome size (~367 Mbp), low percentage of repetitive DNA and short life cycle. Since the release of the cucumber genome sequence, significant progress has been made in our understanding of the cucumber genome. In this chapter, I will review recent progress in cucumber draft genome assembly, genetic map development, whole genome features of characterized gene families, and the genome dynamics from evolutionary, domestication and population perspectives.


Cucumis sativus Whole genome sequencing Draft genome assembly Genomics Genome evolution Domestication 

Literature Cited

  1. Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD. Origins and recombination of the bacterial-sized multi-chromosomal mitochondrial genome of cucumber. Plant Cell. 2011;23:2499–513.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Rep. 1991;9:208.CrossRefGoogle Scholar
  3. Baloglu MC, Eldem V, Hajyzadeh M, Unver T. Genome-wide analysis of the bZIP transcription factors in cucumber. PLoS One. 2014;9:e96014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhaduri PN, Bose PC. Cytogenetic investigations in some common cucurbits, with special reference to fragmentation of chromosomes as physical basis of speciation. J Genet. 1947;48:237–56.CrossRefPubMedGoogle Scholar
  5. Bo KL, Ma Z, Chen JF, Weng Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet. 2015;128:25–39.CrossRefPubMedGoogle Scholar
  6. Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, et al. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 2010;11:569.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen JF, Staub JE, Adelberg JW, Jiang J. Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can J Bot. 1999;77:389–93.Google Scholar
  8. Chung SM, Gordon VS, Staub JE. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome. 2007;50:215–25.CrossRefPubMedGoogle Scholar
  9. Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA. Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Plant J. 1997;12:49–61.CrossRefPubMedGoogle Scholar
  10. Eschrich W, Evert RF, Heyser W. Proteins of the sieve tube exudate of Cucurbita maxima. Planta. 1971;100:208–21.CrossRefPubMedGoogle Scholar
  11. Fu R, Liu W, Li Q, Li J, Wang L, Ren Z. Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus. Genome. 2013;56:395–405.CrossRefPubMedGoogle Scholar
  12. Ganal M, Hemleben V. Insertion and amplification of a DNA sequence in satellite DNA of Cucumis sativus L. Theor Appl Genet. 1988;75:357–61.CrossRefGoogle Scholar
  13. Ganal M, Riede I, Hemleben V. Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). J Mol Evol. 1986;23:23–30.CrossRefGoogle Scholar
  14. Han YH, Zhang ZH, Liu JH, Lu JY, Huang SW, Jin WW. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization. Cytogenet Genome Res. 2008;122:80–8.CrossRefPubMedGoogle Scholar
  15. Han YH, Zhang T, Thammapichai P, Weng Y, Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Havey MJ, McCreight JD, Rhodes B, Taurick G. Differential transmission of the Cucumis organellar genomes. Theor Appl Genet. 1998;97:122–8.CrossRefGoogle Scholar
  17. He XM, Li YH, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber. Theor Appl Genet. 2013;126:2149–61.CrossRefPubMedGoogle Scholar
  18. Hoshi Y, Plader W, Malepszy S. New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breed. 1998;117:77–82.CrossRefGoogle Scholar
  19. Hu LF, Liu SQ. Genome-wide analysis of the MADS-box gene family in cucumber. Genome. 2012;55:245–56.CrossRefPubMedGoogle Scholar
  20. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41:1275–81.CrossRefPubMedGoogle Scholar
  21. Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, et al. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep. 2006;25:334–40.CrossRefPubMedGoogle Scholar
  22. Koo DH, Hur Y, Jin DC, Bang JW. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells. 2002;13:413–8.PubMedGoogle Scholar
  23. Koo DH, Choi HW, Cho J, Hur Y, Bang JW. A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome. 2005;48:534–40.CrossRefPubMedGoogle Scholar
  24. Koo DH, Nam YW, Choi D, Bang JW, de Jong H, Hur Y. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 2010;18:325–36.CrossRefPubMedGoogle Scholar
  25. Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics. 2011a;12:540.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li YH, Yang LM, Pathak M, Li DW, He XM, Weng Y. Fine genetic mapping of cp, a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet. 2011b;123:973–83.CrossRefPubMedGoogle Scholar
  27. Li DW, Cuevas H, Yang LM, Li YH, Garcia-Mas J, Zalapa J, et al. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics. 2011c;12:396.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li Q, Zhang C, Li J, Wang L, Ren Z. Genome-wide identification and characterization of R2R3MYB family in Cucumis sativus. PLoS One. 2012;7:e47576.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lilly J, Havey M. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics. 2001;159:317–28.PubMedPubMedCentralGoogle Scholar
  30. Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics. 2011;12:471.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu W, Fu R, Li Q, Li J, Wang L, Ren Z. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus. Gene. 2013;531:279–87.CrossRefPubMedGoogle Scholar
  32. Lou Q, Zhang Y, He Y, Li J, Jia L, Cheng C, et al. Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J. 2014;78:169–79.CrossRefPubMedGoogle Scholar
  33. Lv J, Qi JJ, Shi QX, Shen D, Zhang SP, Shao GJ, et al. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One. 2012;7:e46919.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Miao H, Zhang SP, Wang XW, Zhang ZH, Li M, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2012;172:167–76.Google Scholar
  35. Plader W, Yukawa Y, Sugiura M, Malepszy S. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett. 2007;12:584–94.CrossRefPubMedGoogle Scholar
  36. Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45:1510–5.CrossRefPubMedGoogle Scholar
  37. Qu SP, Pan YP, Weng Y. QTL Mapping of flowering time and fruit shape in Xishuangbana cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). In: Proceedings of the Cucurbitaceae 2014; October 12–16, Bay Harbor, Alexandria, American Society of Horticultural Sciences; 2014. p. 54–6.Google Scholar
  38. Ramachandran C, Seshadri VS. Cytological analysis of the genome of cucumber (Cucumis sativus L.) and muskmelon (Cucumis melo L.). Z Pflanzenzüchtg. 1986;96:25–38.Google Scholar
  39. Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One. 2009;4:e5795.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, et al. A ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One. 2015;10:e0124101.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schouten HJ, Krauskopf J, Visser RGF, Bai Y. Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica. 2014;200:475–86.CrossRefGoogle Scholar
  42. Sebastian P, Schaefer H, Telford IR, Renner SS. Phylogenetic relationships among domesticated and wild species of Cucumis (Cucurbitaceae): the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107:14269–73.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shang QM, Li L, Dong CJ. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L. Planta. 2012;236:1093–105.CrossRefPubMedGoogle Scholar
  44. Shen J, Zhao J, Bartoszewski G, Malepszy S, Havey MJ, Chen JF. Persistence and protection of mitochondrial DNA in the generative cell of cucumber is consistent with its paternal transmission. Plant Cell Physiol. 2015;56:2271–82.CrossRefPubMedGoogle Scholar
  45. Trivedi RN, Roy RP. Cytological studies in Cucumis and Citrullus. Cytologia. 1970;35:561–9.CrossRefGoogle Scholar
  46. Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics. 2013;14:109.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang Y, VandenLangenberg K, Wehner TC, Weng Y. QTLs for Downy mildew resistance and their association with LRR-RLK resistance gene analogs in cucumber. In: Proceedings of the Cucurbitaceae 2014; October 12–16, Bay Harbor, Alexandria, American Society of Horticultural Sciences; 2014. p. 17–20.Google Scholar
  48. Wang J, Pan C, Wang Y, Ye L, Wu J, Chen L, et al. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber. BMC Genomics. 2015;16:386.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ward B, Anderson R, Bendich A. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell. 1981;25:793–803.CrossRefPubMedGoogle Scholar
  50. Wei QZ, Wang YZ, Qin XD, Zhang YX, Zhang ZT, Wang J, et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics. 2014;15:1158.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wen CL, Cheng Q, Zhao LQ, Mao A, Yang JJ, Yu SC, et al. Identification and characterisation of Dof transcription factors in the cucumber genome. Sci Rep. 2016;6:23072.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Weng Y, Sun ZY. Major cucurbit crops. In: Wang YH, Behera TK, editors. Genetics, genomics and breeding in crop plants Cucurbits. Enfield: Science Publishers Inc; 2011. p. 1–16.Google Scholar
  53. Weng Y, Johnson S, Staub JE, Huang SW. An extended microsatellite genetic map of cucumber, Cucumis sativus L. HortSci. 2010;45:880–6.Google Scholar
  54. Wóycicki R, Witkowicz J, Gawroński P, Dąbrowska J, Lomsadze A, Pawełkowicz M, et al. The genome sequence of the North European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One. 2011;6:e22728.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wu T, Wang R, Xu X, He X, Sun B, Zhong Y, et al. Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene. 2014;549:214–22.CrossRefPubMedGoogle Scholar
  56. Xu X, Liu M, Lu L, He M, Qu W, Xu Q. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber. Mol Genet Genomics. 2015a;290:1403–14.CrossRefPubMedGoogle Scholar
  57. Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, et al. A high-density genetic map of cucumber derived from Specific Length Amplified Fragment sequencing (SLAF-seq). Front Plant Sci. 2015b;5:768.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yan S, Che G, Ding L, Chen Z, Liu X, Wang H, et al. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Sci Rep. 2016;6:20760.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012;71:895–906.CrossRefPubMedGoogle Scholar
  60. Yang LM, Li DW, Li YH, Gu XF, Huang SW, Garcia-Mas J, et al. A 1681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol. 2013;13:53.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yang LM, Koo D-H, Li DW, Zhang T, Jiang JM, Luan FS. Next-generation sequencing, FISH mapping, and synteny-based modeling reveal mechanisms of dysploid chromosome reduction in Cucumis. Plant J. 2014;77:16–30.CrossRefPubMedGoogle Scholar
  62. Yu Y, Liang Y, Lv M, Wu J, Lu G, Cao J. Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus. Plant Physiol Biochem. 2014;74:263–75.CrossRefPubMedGoogle Scholar
  63. Zhang BC, Tolstikov V, Turnbull C, Hicks LM, Fiehn O. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A. 2010;107:13532–7.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang WW, Pan J-S, He H-L, Zhang C, Li Z, Zhao JL, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet. 2012;124:249–59.CrossRefPubMedGoogle Scholar
  65. Zhang Z, Mao L, Chen H, Bu F, Li G, Sun J, et al. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell. 2015;27:1595–604.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhou Q, Miao H, Li S, Zhang S, Wang Y, Weng Y. A sequencing-based linkage map of cucumber. Mol Plant. 2015;8:961–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.USDA-ARS Vegetable Crops Research Unit, Horticulture DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations