Advertisement

Sex Determination in Cucumis

  • Natalia Yaneth Rodriguez-Granados
  • Afef Lemhemdi
  • Fadi Abou Choucha
  • David Latrasse
  • Moussa Benhamed
  • Adnane Boualem
  • Abdelhafid BendahmaneEmail author
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)

Abstract

The Cucurbitaceae family is widely recognized for their highly diverse sexual systems. Due to this variability and the agricultural importance of some of its members, cucurbits have been used as a plant model for understanding sex determination in the kingdom. Several studies in important members of this family such as melon and cucumber, have supplemented plant biologists with meaningful findings regarding the main factors influencing flower sexuality. Sex determination and the evolution of sexual systems comprise different factors, ranging from genetic components involved in ethylene biosynthesis to transcription regulators and epigenetic processes.

In this chapter, we present an integrative explanation of the mechanisms governing sex determination in different members of the Cucurbitaceae family. For this purpose, several studies on the field will be integrated in order to provide the main fundaments of flower development and sexual systems in cucurbits. Starting with the basics of floral ontogenesis, this chapter will discuss the genetic models regulating sex determination and the evidenced factors influencing flower sexuality. At last, we mention the nebulous aspects of the sexual systems present in cucurbits and the importance of considering them for future research.

Keywords

Sex determination cucurbits monoecy dioecy ethylene epigenetics TILLING 

References

  1. Angenent GC, Colombo L. Molecular control of ovule development. Trends Plant Sci. 1996;1:228–32.CrossRefGoogle Scholar
  2. Appelhagen I, Huep G, Lu GH, Strompen G, Weisshaar B, Sagasser M. Weird fingers: functional analysis of WIP domain proteins. FEBS Lett. 2010;584:3116–22.CrossRefPubMedGoogle Scholar
  3. Bai SL, Peng YB, Cui JX, Gu HT, Xu LY, Li YQ, Xu ZH, Bai SN. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta. 2004;220:230–40.CrossRefPubMedGoogle Scholar
  4. Barrett SCH. Evolution of sex: the evolution of plant sexual diversity. Nat Rev Genet. 2002;3:274–84.CrossRefPubMedGoogle Scholar
  5. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.CrossRefPubMedGoogle Scholar
  6. Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One. 2009;4:e6144.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boualem A, Fleurier S, Troadec C, Audigier P, Kumar APK, Chatterjee M, Alsadon AA, Sadder MT, Wahb-Allah MA, Al-Doss AA, Bendahmane A. Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS One. 2014;9:5.CrossRefGoogle Scholar
  8. Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015;350:688–91.CrossRefPubMedGoogle Scholar
  9. Boualem A, Lemhemdi A, Sari MA, Pignoly S, Troadec C, Abou Choucha F, Solmaz I, Sari N, Dogimont D, and Bendahmane A. The andromonoecious sex determination gene predates the separation of Cucumis and Citrullus genera. PLoS One. 2016. 11:e0155444.Google Scholar
  10. Bowman JL, Smyth DR, Meyerowitz EM. Genes directing flower development in Arabidopsis. Plant Cell. 1989;1:37–52.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bowman JL, Smyth DR, Meyerowitz EM. The ABC model of flower development: then and now. Development. 2012;139:4095–8.CrossRefPubMedGoogle Scholar
  12. Brockdorff N. Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns. Development. 2011;138:5057–65.CrossRefPubMedGoogle Scholar
  13. Byers RE, Baker LR, Sell HM, Herner RC, Dilley DR. Ethylene: a natural regulator of sex expression of Cucumis melo L. Proc Natl Acad Sci U S A. 1972;69:717–20.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353:31–7.CrossRefPubMedGoogle Scholar
  15. Dellaporta SL, Calderon-Urrea A. Sex determination in flowering plants. Plant Cell. 1993;5:1241–51.CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Visser JAGM, Elena SF. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet. 2007;8:139–49.CrossRefPubMedGoogle Scholar
  17. Frankel R, Galun E. Pollination mechanisms, reproduction, and plant breeding. Berlin/New York: Springer; 1977.CrossRefGoogle Scholar
  18. Fraser JA, Heitman J. Chromosomal sex-determining regions in animals, plants and fungi. Curr Opin Genet Dev. 2005;15:645–51.CrossRefPubMedGoogle Scholar
  19. Guo S, Sun B, Looi LS, Xu Y, Gan ES, Huang J, Ito T. Co-ordination of flower development through epigenetic regulation in two model species: rice and Arabidopsis. Plant Cell Physiol. 2015;56:830–42.CrossRefPubMedGoogle Scholar
  20. Ji G, Zhang J, Gong G, Shi J, Zhang H, Ren Y, Guo S, Gao J, Shen H, and Xu Y. Inheritance of sex forms in watermelon (Citrullus lanatus). Sci. Hortic. 2015;193:367–73.Google Scholar
  21. Manzano S, Aguado E, Martínez C, Megías Z, García A, Jamilena M. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus). PLoS One. 2016;11:e0154362.Google Scholar
  22. Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A. A transposon-induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–8.CrossRefPubMedGoogle Scholar
  23. Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, Bendahmane, A, and Jamilena M. Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta. 2014;239:1201–15.Google Scholar
  24. Ming R, Bendahmane A, Renner SS. Sex chromosomes in land plants. Annu Rev Plant Biol. 2011;62:485–514.CrossRefPubMedGoogle Scholar
  25. Otto SP, Lenormand T. Resolving the paradox of sex and recombination. Nat Rev Genet. 2002;3:252–61.CrossRefPubMedGoogle Scholar
  26. Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242:360–70.CrossRefPubMedGoogle Scholar
  27. Poole CF, Grimball PC. Inheritance of new sex forms in Cucumis melo L. J Hered. 1939;30:21–5.CrossRefGoogle Scholar
  28. Theissen G, Saedler H. Plant biology: floral quartets. Nature. 2001;409:469–71.CrossRefPubMedGoogle Scholar
  29. Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14:131–52.Google Scholar
  30. Werren JH, Beukeboom LW. Sex determination, sex ratios, and genetic conflict. Annu Rev Ecol Syst. 1998;29:233–61.CrossRefGoogle Scholar
  31. Yamasaki S, Fujii N, Takahashi H. Hormonal regulation of sex expression in plants. In: Litwack G, editor. Plant hormones, Book series: vitamins and hormones, vol. 72; 2005. p. 79–110.CrossRefGoogle Scholar
  32. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990;346:35–9.CrossRefPubMedGoogle Scholar
  33. Yin T, Quinn JA. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot. 1995;82:1537–46.CrossRefGoogle Scholar
  34. Zarsky V, Tupy J. A missed anniversary: 300 years after Rudolf Jacob Camerarius’ “De sexu plantarum epistola”. Sex Plant Reprod. 1995;8:375–6.CrossRefGoogle Scholar
  35. Zhang J, Boualem A, Bendahmane A, Ming R. Genomics of sex determination. Curr Opin Plant Biol. 2014;18:110–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Natalia Yaneth Rodriguez-Granados
    • 1
    • 2
  • Afef Lemhemdi
    • 1
    • 2
  • Fadi Abou Choucha
    • 1
    • 2
  • David Latrasse
    • 1
    • 2
  • Moussa Benhamed
    • 1
    • 2
  • Adnane Boualem
    • 1
    • 2
  • Abdelhafid Bendahmane
    • 1
    • 2
    Email author
  1. 1.Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsayFrance
  2. 2.Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-CitéOrsayFrance

Personalised recommendations