Skip to main content

Phase Change and Phenology in Trees

  • Chapter
  • First Online:
Comparative and Evolutionary Genomics of Angiosperm Trees

Abstract

A long life span and large size are central characteristics of the tree growth habit. This growth habit requires a prolonged management of meristems as well as the long-term maintenance of above-ground tissues that are exposed to a variety of abiotic and biotic conditions, both seasonally recurring as well as episodic. Phase change and phenology, the timing of life cycle events, are key adaptive traits that alter meristem activity and identity as well as other aspects of growth and physiology. We review these processes and illustrate some of the diversity among taxa. The increasing genomic resources for trees and technological innovations are enabling the elucidation of the complex regulatory networks underpinning these processes as well as the variation within and between tree taxa. We address the current state of knowledge of environmental signals, genes and pathways regulating the multiple component processes of vegetative and reproductive phase change and phenology in trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tylewicz et al. (2015) and Parmentier-Line and Coleman (2016) named different Populus genes FDL1 and FD1, respectively; to avoid confusion we have renamed FD1 to FD2.

References

  • Aitken SN, Bemmels JB. Time to get moving: assisted gene flow of forest trees. Evol Appl. 2016;9(1):271–90.

    Article  PubMed  Google Scholar 

  • Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 2008;49:767–90.

    Article  CAS  PubMed  Google Scholar 

  • Alberto F, Bouffier L, Louvet JM, Lamy JB, Delzon S, Kremer A. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J Evol Biol. 2011;24(7):1442–54.

    Article  CAS  PubMed  Google Scholar 

  • Alburquerque N, García-Montiel F, Carrillo A, Burgos L. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot. 2008;64(2):162–70.

    Article  Google Scholar 

  • Aldwinckle H. Flowering of apple seedlings 16–20 months after germination. HortScience. 1975;10(2):124–6.

    Google Scholar 

  • Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61(6):1001–13.

    Article  CAS  PubMed  Google Scholar 

  • Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P. A transcriptional timetable of autumn senescence. Genome Biol. 2004;5(4).

    Google Scholar 

  • Avia K, Karkkainen K, Lagercrantz U, Savolainen O. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris). New Phytol. 2014;204(1):159–70.

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. Trends Plant Sci. 2008;13(7):343–9. doi:10.1016/j.tplants.2008.03.009.

    Article  CAS  PubMed  Google Scholar 

  • Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP. A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth. Curr Biol. 2014;24(7):717–24.

    Article  CAS  PubMed  Google Scholar 

  • Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR, Bako L, Bhalerao RP. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci USA. 2011;108(8):3418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P-grandidentata). Ann Bot (London). 2007;100(3):439–47.

    Article  Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant. 2013;147(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang YJ, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 2006;29(7):1259–72.

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y. Symplastic intercellular transport from a developmental perspective. J Exp Bot. 2014;65(7):1857–63.

    Article  CAS  PubMed  Google Scholar 

  • Bernier G, Perilleux C. A physiological overview of the genetics of flowering time control. Plant Biotechnol J. 2005;3(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes. 2008;4(3):495–507.

    Article  Google Scholar 

  • Bobinac M, Batos B, Miljkovic D, Radulovic S. Polycyclism and Phenological Variability in the Common Oak (Quercus robur L.). Arch Biol Sci. 2012;64(1):97–105.

    Article  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science. 2006;312(5776):1040–3.

    Article  PubMed  CAS  Google Scholar 

  • Bolotin M. Photoperiodic induction of precocious flowering in a woody species Eucalyptus occidentalis Endl. Bot Gaz. 1975;136(4):358–65.

    Article  Google Scholar 

  • Bond BJ. Age-related changes in photosynthesis of woody plants. Trends Plant Sci. 2000;5(8):349–53.

    Article  CAS  PubMed  Google Scholar 

  • Borchert R, Rivera G. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol. 2001;21(4):213–21.

    Article  CAS  PubMed  Google Scholar 

  • Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead JS, Kamau J, Njoroge J, Muthuri C. Insolation and photoperiodic control of tree development near the equator. New Phytol. 2015;205(1):7–13.

    Article  PubMed  Google Scholar 

  • Boss PK, Thomas MR. Tendrils, inflorescences and fruitfulness: a molecular perspective. Aust J Grape Wine Res. 2000;6(2):168–74.

    Article  Google Scholar 

  • Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature. 2002;416(6883):847–50.

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80–3.

    Article  CAS  PubMed  Google Scholar 

  • Bratzel F, Turck F. Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biol. 2015;16.

    Google Scholar 

  • Brodribb T, Hill RS. A physiological comparison of leaves and phyllodes in Acacia melanoxylon. Aust J Bot. 1993;41(3):293–305.

    Article  Google Scholar 

  • Brooker MIH, Kleinig DA. Field guide to eucalypts. Volume 1. South-eastern Australia. 3rd ed. Hawthorn, VIC: Bloomings Books; 2006.

    Google Scholar 

  • Brunner AM, Li JY, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH. Genetic containment of forest plantations. Tree Genet Genomes. 2007;3(2):75–100.

    Article  Google Scholar 

  • Brunner AM, Evans LM, Hsu CY, Sheng XY. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation? Front Plant Sci. 2014;5:732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Busov V, Carneros E, Yakovlev I. EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant Signal Behav. 2016;11(2):e1073873.

    Article  PubMed  CAS  Google Scholar 

  • Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R. Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees (Struct Funct). 2010;24(5):865–77.

    Article  Google Scholar 

  • Cao K, Cui LR, Zhou XT, Ye L, Zou ZR, Deng SL. Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front Plant Sci. 2016;6.

    Google Scholar 

  • Cardoso S, Sousa VB, Quilho T, Pereira H. Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J Wood Sci. 2015;61(3):326–33.

    Article  CAS  Google Scholar 

  • Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR. A molecular genetic perspective of reproductive development in grapevine. J Exp Bot. 2008;59(10):2579–96.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho SD, Folta KM. Environmentally modified organisms – expanding genetic potential with light. Crit Rev Plant Sci. 2014;33(6):486–508.

    Article  CAS  Google Scholar 

  • Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen THH, Thomashow MF. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot. 2011;62(11):3807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castède S, Campoy JA, Le Dantec L, Quero-García J, Barreneche T, Wenden B, Dirlewanger E. Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). PLoS One. 2015;10(11):e0143250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaikiattiyos S, Menzel CM, Rasmussen TS. Floral induction in tropical fruit-trees – effects of temperature and water-supply. J Hortic Sci. 1994;69(3):397–415.

    Article  Google Scholar 

  • Chen PM, Li PH. Induction of frost hardiness in stem cortical tissues of Cornus stolonifera Michx by water stress. 2. Biochemical changes. Plant Physiol. 1977;59(2):240–3.

    Google Scholar 

  • Chen YT, Shen CH, Lin WD, Chu HA, Huang BL, Kuo CI, Yeh KW, Huang LC, Chang IF. Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biol. 2013;15(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Yang X, Su XX, Rao P, Gao K, Lei BQ, An XM. Identification and expression analysis of APETALA1 homologues in poplar. Acta Physiol Plant. 2015;37(3).

    Google Scholar 

  • Chuine I. Why does phenology drive species distribution? Philos Trans R Soc Lond B Biol Sci. 2010;365(1555):3149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chutinanthakun T, Sekozawa Y, Sugaya S, Gemma H. Effect of bending and the joint tree training system on the expression levels of GA3- and GA2-oxidases during flower bud development in ‘Kiyo’ Japanese plum. Sci Hortic (Amsterdam). 2015;193:308–15.

    Article  CAS  Google Scholar 

  • Clapham DH, Dormling I, Ekberg I, Eriksson G, Qamaruddin M, Vince-Prue D. Latitudinal cline of requirement for far-red light for the photoperiodic control of budset and extension growth in Picea abies (Norway spruce). Physiol Plant. 1998;102(1):71–8.

    Article  CAS  Google Scholar 

  • Clune J, Mouret JB, Lipson H. The evolutionary origins of modularity. Proc Biol Sci. 2013;280(1755):20122863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockayne L. Observations concerning evolution, derived from ecological studies in New Zealand. Trans Proc R Soc New Zealand. 1911;44:1–50.

    Google Scholar 

  • Coleman GD, Chen THH, Fuchigami LH. Complementary-DNA cloning of poplar bark storage protein and control of its expression by photoperiod. Plant Physiol. 1992;98(2):687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 2012;35(10):1707–28.

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11.

    Google Scholar 

  • Critchfield WB. Leaf dimorphism in Populus trichocarpa. Am J Bot. 1960;47(8):699–711.

    Article  Google Scholar 

  • Davenport TL, Ying Z, Kulkarni V, White TL. Evidence for a translocatable florigenic promoter in mango. Sci Hortic. 2006;110(2):150–9.

    Article  CAS  Google Scholar 

  • Day ME, Greenwood MS, Diaz-Sala C. Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol. 2002;22(8):507–13.

    Article  CAS  PubMed  Google Scholar 

  • Demotes-Mainard S, Peron T, Corot A, Bertheloot J, Le Gourrierec J, Pelleschi-Travier S, Crespel L, Morel P, Huche-Thelier L, Boumaza R, Vian A, Guerin V, Leduc N, Sakr S. Plant responses to red and far-red lights, applications in horticulture. Environ Exp Bot. 2016;121:4–21.

    Article  CAS  Google Scholar 

  • Dicenta F, Garcia JE, Carbonell EA. Heritability of flowering, productivity and maturity in almond. J Hortic Sci. 1993;68(1):113–20.

    Article  Google Scholar 

  • Ding JH, Nilsson O. Molecular regulation of phenology in trees – because the seasons they are a-changin. Curr Opin Plant Biol. 2016;29:73–9.

    Article  CAS  PubMed  Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP. Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J. 2007;50(4):557–73.

    Article  CAS  PubMed  Google Scholar 

  • Egea J, Ortega E, Martinez-Gómez P, Dicenta F. Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot. 2003;50(1):79–85.

    Google Scholar 

  • Elliott S, Baker PJ, Borchert R. Leaf flushing during the dry season: the paradox of Asian monsoon forests. Glob Ecol Biogeogr. 2006;15(3):248–57.

    Article  Google Scholar 

  • Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant. 2007;131(1):149–58.

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res. 2005;14(5):703–12.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson ME, Hoffman D, Kaduk M, Mauriat M, Moritz T. Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation. New Phytol. 2015;205(3):1288–95.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P, Bako L, Bhalerao RP. Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J. 2004;38(4):603–15.

    Article  CAS  PubMed  Google Scholar 

  • Evans MMS, Poethig RS. Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiol. 1995;108(2):475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, Tuskan GA, DiFazio SP. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014;46(10):1089–96.

    Article  CAS  PubMed  Google Scholar 

  • Fabbri A, Alerci L. Reproductive and vegetative bud differentiation in Olea europaea L. J Hortic Sci Biotech. 1999;74(4):522–7.

    Article  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol. 2010;185(4):917–30.

    Article  PubMed  Google Scholar 

  • Farmer RE. Growth and assimilation rate of juvenile northern red oak – effects of light and temperature. Forest Sci. 1975;21(4):373–87.

    Google Scholar 

  • Fenner M. The phenology of growth and reproduction in plants. Perspect Plant Ecol Evol Syst. 1998;1(1):78–91.

    Article  Google Scholar 

  • Fernando DD, Zhang SL. Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana. Dev Genes Evol. 2006;216(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R. Abscisic Acid synthesis and response. Arabidopsis Book. 2013;11:e0166. doi:10.1199/tab.0166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed. 2007;126(2):137–45.

    Article  CAS  Google Scholar 

  • Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H, Eckstein D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010;185(1):42–53.

    Article  PubMed  Google Scholar 

  • Foster T, Johnston R, Seleznyova A. A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann Bot (London). 2003;92(2):199–206.

    Article  Google Scholar 

  • Foster TM, Watson AE, van Hooijdonk BM, Schaffer RJ. Key flowering genes including FT-like genes are upregulated in the vasculature of apple dwarfing rootstocks. Tree Genet Genomes. 2014;10(1):189–202.

    Article  Google Scholar 

  • Foster TM, Celton JM, Chagne D, Tustin DS, Gardiner SE Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic Res. 2015. 2:15001. doi:ARTN15001.10.1038/hortres.2015.1

  • Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S. The control of autumn senescence in European aspen. Plant Physiol. 2009;149(4):1982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF, Canal MJ, Rodriguez R. Phase-change related epigenetic and physiological changes in Pinus radiata D. Don Planta. 2002;215(4):672–8.

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ. Interaction of light and temperature signalling. J Exp Bot. 2014;65(11):2859–71.

    Article  CAS  PubMed  Google Scholar 

  • Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux PM, Patocchi A, Flaishman MA. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta. 2012;235(6):1239–51.

    Article  CAS  PubMed  Google Scholar 

  • Freiman A, Golobovitch S, Yablovitz Z, Belausov E, Dahan Y, Peer R, Avraham L, Freiman Z, Evenor D, Reuveni M, Sobolev V, Edelman M, Shahak Y, Samach A, Flaishman MA. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus × domestica Borkh, and causes early flowering in tobacco. Plant Sci. 2015;241:164–76.

    Article  CAS  PubMed  Google Scholar 

  • Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics. 2000;154(2):837–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Lopez MC, Vidoy I, Jimenez-Ruiz J, Munoz-Merida A, Fernandez-Ocana A, de la Rosa R, Bautista Barroso J, Navarro F, Trelles O, Beuzon CR, Barcelo A, Valpuesta V, Luque F. Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genet Genomes. 2014;10(3):585–603.

    Google Scholar 

  • Gardner S, Drinnan A, Newbigin E, Ladiges P. Leaf ontogeny and morphology in Acacia Mill. (Mimosaceae). Muelleria. 2008;26(1):43–50.

    Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J. Towards the proteome of Brassica napus phloem sap. Proteomics. 2006;6:896–909.

    Article  CAS  PubMed  Google Scholar 

  • Goodger JQD, Choo TYS, Woodrow IE. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt. Oecologia. 2007;153(4):799–808. doi:10.1007/s00442-007-0787-y.

    Article  PubMed  Google Scholar 

  • Grainger J. Studies upon the time of flowering of plants: anatomical, floristic and phenological aspects OP the problem. Ann Appl Biol. 1939;26(4):684–704.

    Article  Google Scholar 

  • Gramzow L, Theissen G. Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. J Exp Zool Part B. 2015;324(4):353–62.

    Article  CAS  Google Scholar 

  • Greathouse DC, Laetsch WM, Phinney BO. Shoot-growth rhythm of a tropical tree, Theobroma cacao. Am J Bot. 1971;58(4):281–6.

    Google Scholar 

  • Greenham K, McClung CR. Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet. 2015;16(10):598–610.

    Article  CAS  PubMed  Google Scholar 

  • Groover AT. What genes make a tree a tree? Trends Plant Sci. 2005;10(5):210–4.

    Article  CAS  PubMed  Google Scholar 

  • Guak S, Neilsen D. Chill unit models for predicting dormancy completion of floral buds in apple and sweet cherry. Hortic Environ Biotechnol. 2013;54(1):29–36.

    Article  CAS  Google Scholar 

  • Guitton B, Kelner JJ, Velasco R, Gardiner SE, Chagne D, Costes E. Genetic control of biennial bearing in apple. J Exp Bot. 2012;63(1):131–49.

    Article  CAS  PubMed  Google Scholar 

  • Guitton B, Kelner JJ, Celton JM, Sabau X, Renou JP, Chagne D, Costes E. Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biol. 2016;16:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Dai J, Ranjitkar S, Yu H, Xu J, Luedeling E. Chilling and heat requirements for flowering in temperate fruit trees. Int J Biometeorol. 2014;58(6):1195–206.

    Article  PubMed  Google Scholar 

  • Hackett WP. Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev. 1985;7:109–55.

    Google Scholar 

  • Hansche P. Heritability of juvenility in peach. HortScience. 1986;21(5):1197–8.

    Google Scholar 

  • Hasan O, Reid JB. Reduction of generation time in Eucalyptus globulus. Plant Growth Regul. 1995;17(1):53–60.

    CAS  Google Scholar 

  • Heide OM. Growth and dormancy in Norway spruce ecotypes (Picea abies). 1. Interaction of photoperiod and temperature. Physiol Plant. 1974;30(1):1–12.

    Google Scholar 

  • Heide OM. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol. 2003;23(13):931–6.

    Article  CAS  PubMed  Google Scholar 

  • Heide OM. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hortic (Amsterdam). 2008;115(3):309–14.

    Article  Google Scholar 

  • Heide OM. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. J Exp Bot. 2011;62(15):5397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heide OM, Prestrud AK. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 2005;25(1):109–14.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann S, Recht S, Boenn M, Feldhahn L, Angay O, Fleischmann F, Tarkka MT, Grams EE, Buscot F. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. J Exp Bot. 2015;66(22):7113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta. 2008;227(5):1001–11.

    Article  CAS  PubMed  Google Scholar 

  • Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol. 2016;36(5):667–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holeski LM, Hillstrom ML, Whitham TG, Lindroth RL. Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia. 2012;170(3):695–707.

    Article  PubMed  Google Scholar 

  • Horstman A, Willemsen V, Boutilier K, Heidstra R. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci. 2014;19(3):146–57.

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Gardner G, Hackett WP, Furnier GR. Phytochrome control of short-day-induced bud set in black cottonwood. Physiol Plant. 1996;97(1):95–103.

    Article  CAS  Google Scholar 

  • Howe GT, Davis J, Jeknic Z, Chen THH, Frewen B, Bradshaw HD, Saruul P. Physiological and genetic approaches to studying endodormancy-related traits in Populus. HortScience. 1999;34(7):1174–84.

    Google Scholar 

  • Hsu CY, Liu YX, Luthe DS, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell. 2006;18(8):1846–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CY, Adams JP, Kim HJ, No K, Ma CP, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA. 2011;108(26):10756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CY, Adams JP, No K, Liang HY, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C. Overexpression of CONSTANS and CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One. 2012;7(9):e45448.

    Google Scholar 

  • Huang HJ, Wang S, Jiang J, Liu GF, Li HY, Chen S, Xu HW. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiol Plant. 2014;151(4):495–506.

    Article  CAS  PubMed  Google Scholar 

  • Hudson CJ, Freeman JS, Jones RC, Potts BM, Wong MML, Weller JL, Hecht VFG, Poethig RS, Vaillancourt RE. Genetic control of heterochrony in Eucalyptus globulus. G3 (Genes Genomes Genetics). 2014;4(7):1235–45.

    CAS  PubMed Central  Google Scholar 

  • Huijser P, Schmid M. The control of developmental phase transitions in plants. Development. 2011;138(19):4117–29.

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Niu Q, Yang F, Hussain N, Teng Y. The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biol Plant. 2015;59(4):726–34.

    Article  CAS  Google Scholar 

  • Ibanez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME. Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol. 2010;153(4):1823–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami H, Nogata H, Inoue Y, Himeno S, Yakushiji H, Hirata C, Hirashima K, Mori M, Awamura M, Nakahara T. Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.). BMC Plant Biol. 2013;13(1):1–12.

    Article  CAS  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S. Nucleotide polymoirphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics. 2008;178(4):2217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 2012;69(4):601–12.

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD. Proteomics of nitrogen remobilization in poplar bark. J Proteome Res. 2015;14(2):1112–26.

    Article  CAS  PubMed  Google Scholar 

  • Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects of gibberellin homeostasis and development. Plant Physiol. 2004;135(1):221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell. 2013;25(3):820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp globulus (Myrtaceae). Aust J Bot. 2001;49(2):259–69.

    Article  Google Scholar 

  • Jameson PE, Clemens J. Phase change and flowering in woody plants of the New Zealand flora. J Exp Bot. 2015. doi:10.1093/jxb/erv472.

    PubMed Central  Google Scholar 

  • Jaya E, Kubien DS, Jameson PE, Clemens J. Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiol. 2010;30(3):393–403.

    Article  PubMed  Google Scholar 

  • Jimenez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol. 2009;9:81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez S, Reighard GL, Bielenberg DG. Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol. 2010;73(1–2):157–67.

    Article  CAS  PubMed  Google Scholar 

  • Jones RC, Hecht VFG, Potts BM, Vaillancourt RE, Weller JL. Expression of a FLOWERING LOCUS T homologue is temporally associated with annual flower bud initiation in Eucalyptus globulus subsp. globulus (Myrtaceae). Aust J Bot. 2011;59:756–69.

    Article  CAS  Google Scholar 

  • Jordan GJ, Potts BM, Wiltshire RJE. Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian Blue Gum). Heredity. 1999;83:179–87.

    Article  PubMed  Google Scholar 

  • Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE. Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Aust J Bot. 2000;48(5):561–7.

    Article  Google Scholar 

  • Junttila O. Apical growth cessation and shoot tip abscission in Salix. Physiol Plant. 1976;38(4):278–86.

    Article  CAS  Google Scholar 

  • Junttila O. Effect of photoperiod and temperature on apical growth cessation in 2 ecotypes of Salix and Betula. Physiol Plant. 1980;48(3):347–52.

    Article  Google Scholar 

  • Junttila O. The cessation of apical growth in latitudinal ecotypes and ecotype crosses of Salix pentandra L. J Exp Bot. 1982;33(136):1021–9.

    Google Scholar 

  • Junttila O, Hanninen H. The minimum temperature for budburst in Betula depends on the state of dormancy. Tree Physiol. 2012;32(3):337–45.

    Article  PubMed  Google Scholar 

  • Junttila O, Kaurin A. Climatic control of apical growth cessation in latitudinal ecotypes of Salix pentandra L. In: Kaurin A, Junttila O, Nilsen J, editors. Plant production in the north. Oslo: Norwegian University Press; 1985. p. 83–91.

    Google Scholar 

  • Kaiserli E, Paldi K, O’Donnell L, Batalov O, Pedmale UV, Nusinow DA, Kay SA, Chory J. Integration of light and photoperiodic signaling in transcriptional nuclear foci. Dev Cell. 2015;35(3):311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalberer SR, Wisniewski M, Arora R. Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci. 2006;171(1):3–16.

    Article  CAS  Google Scholar 

  • Kalcsits LA, Silim S, Tanino K. Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus × spp.). Trees (Struct Funct). 2009;23(5):971–9.

    Article  Google Scholar 

  • Kaplan DR. Heteroblastic leaf development in Acacia: morphological and morphogenic implications. Cellule. 1980;73(2):135–203.

    Google Scholar 

  • Karlberg A, Bako L, Bhalerao RP. Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen. PLoS Genet. 2011;7(11).

    Google Scholar 

  • Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce. Plant Physiol. 2013;163(2):792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearsley MJC, Whitham TG. The developmental stream of cottonwoods affects ramet growth and resistance to galling aphids. Ecology. 1998;79(1):178–91.

    Article  Google Scholar 

  • Keller SR, Soolanayakanahally RY, Guy RD, Silim SN, Olson MS, Tiffin P. Climate-driven local adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). Am J Bot. 2011;98(1):99–108.

    Article  PubMed  Google Scholar 

  • Keskitalo J, Bergquist G, Gardestrom P, Jansson S. A cellular timetable of autumn senescence. Plant Physiol. 2005;139(4):1635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klintenas M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol. 2012;196(4):1260–73.

    Article  PubMed  CAS  Google Scholar 

  • Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss SH. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J. 2016a;14(2):808–19.

    Article  CAS  PubMed  Google Scholar 

  • Klocko AL, Brunner AB, Huang J, Meilan R, Lu H, Ma C, Morel A, Zhao D, Ault K, Dow M, Howe G, Schevchenko O, Strauss SH. Containment of transgenic trees by suppression of LEAFY. Nat Biotechnol. 2016b;34(9):918–22.

    Google Scholar 

  • Knabel M, Friend AP, Palmer JW, Diack R, Wiedow C, Alspach P, Deng C, Gardiner SE, Tustin DS, Schaffer R, Foster T, Chagne D. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol. 2015;15:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci. 2006;131(1):74–81.

    CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, S-i K, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol. 2010;51(4):561–75.

    Article  CAS  PubMed  Google Scholar 

  • Kozarewa I, Ibanez C, Johansson M, Ogren E, Mozley D, Nylander E, Chono M, Moritz T, Eriksson ME. Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Mol Biol. 2010;73(1–2):143–56.

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski J. Optimal allocation of resources to growth and reproduction – implications for age and size at maturity. Trends Ecol Evol. 1992;7(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  • Kubien DS, Jaya E, Clemens J. Differences in the structure and gas exchange physiology of juvenile and adult leaves in Metrosideros excelsa. Int J Plant Sci. 2007;168(5):563–70.

    Article  Google Scholar 

  • Kumar M, Saranpaa P, Barnett JR, Wilkinson MJ. Juvenile-mature wood transition in pine: correlation between wood properties and candidate gene expression profiles. Euphytica. 2009;166(3):341–55.

    Article  CAS  Google Scholar 

  • Kuster TM, Dobbertin M, Gunthardt-Goerg MS, Schaub M, Arend M. A phenological timetable of oak growth under experimental drought and air warming. PLoS One. 2014;9(2):e89724.

    Google Scholar 

  • Lang GA. Dormancy – a new universal terminology. HortScience. 1987;22(5):817–20.

    Google Scholar 

  • Leida C, Conesa A, Llacer G, Badenes ML, Rios G. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol. 2012;193(1):67–80.

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Reighard GL, Abbott AG, Bielenberg DG. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot. 2009;60(12):3521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby WJ, Hood JV. Juvenility in hedged radiata pine. Acta Hortic. 1976;56:91–8.

    Google Scholar 

  • Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci. 2014;5:465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell. 2007;19(5):1488–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linkosalo T, Lechowicz MJ. Twilight far-red treatment advances leaf bud burst of silver birch (Betula penduld). Tree Physiol. 2006;26(10):1249–56.

    Article  PubMed  Google Scholar 

  • Luttge U, Hertel B. Diurnal and annual rhythms in trees. Trees (Struct Funct). 2009;23(4):683–700.

    Article  Google Scholar 

  • Maiden JH. A critical revision of the genus Eucalyptus, vol. 2. Government Printer: Sydney; 1913.

    Google Scholar 

  • Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J. Natural variation in light sensitivity of Arabidopsis. Nat Genet. 2001;29(4):441–6.

    Article  CAS  PubMed  Google Scholar 

  • Mankessi F, Saya AR, Favreau B, Doulbeau S, Conejero G, Lartaud M, Verdeil JL, Monteuuis O. Variations of DNA methylation in Eucalyptus urophylla × Eucalyptus grandis shoot tips and apical meristems of different physiological ages. Physiol Plant. 2011;143(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  • Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fomara F, Schneeberger K, Krajewski P, Coupland G. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 2015;16:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattick JS, Taft RJ, Faulkner GJ. A global view of genomic information–moving beyond the gene and the master regulator. Trends Genet. 2010;26(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  • McKown AD, Guy RD, Klapste J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014;201(4):1263–76.

    Article  CAS  PubMed  Google Scholar 

  • Meilan R. Floral induction in woody angiosperms. New For. 1997;14(3):179–202.

    Article  Google Scholar 

  • Meir M, Ransbotyn V, Raveh E, Barak S, Tel-Zur N, Zaccai M. Dormancy release and flowering time in Ziziphus jujuba Mill., a “direct flowering” fruit tree, has a facultative requirement for chilling. J Plant Physiol. 2016;192:118–27.

    Article  CAS  PubMed  Google Scholar 

  • Millard P, Grelet GA. Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol. 2010;30(9):1083–95.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng XY, Meilan R, Strauss SH, Brunner AM. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. 2010;62(4):674–88.

    Article  CAS  PubMed  Google Scholar 

  • Molmann JA, Junttila O, Johnsen O, Olsen JE. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies). Plant Cell Environ. 2006;29(2):166–72.

    Article  PubMed  Google Scholar 

  • Moncur MW. Effect of low temperature on floral induction of Eucalyptus lansdowneana F. Muell and J Brown ssp. lansdowneana. Aust J Bot. 1992;40(2):157–67.

    Article  Google Scholar 

  • Moncur MW, Hasan O. Floral induction in Eucalyptus nitens. Tree Physiol. 1994;14(11):1303–12.

    Article  CAS  PubMed  Google Scholar 

  • Monteuuis O, Doulbeau S, Verdeil JL. DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees (Struct Funct). 2008;22(6):779–84.

    Article  CAS  Google Scholar 

  • Morel H, Mangenet T, Beauchene J, Ruelle J, Nicolini E, Heuret P, Thibaut B. Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest. Trees (Struct Funct). 2015;29(4):973–84.

    Article  Google Scholar 

  • Moreno-Alias I, Leon L, de la Rosa R, Rapoport HF. Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees (Struct Funct). 2009;23(1):181–7.

    Article  Google Scholar 

  • Munoz-Fambuena N, Mesejo C, Gonzalez-Mas MC, Iglesias DJ, Primo-Millo E, Agusti M. Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression. J Plant Growth Regul. 2012;31(4):529–36.

    Article  CAS  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, Van der Merwe K, Singh P, Van Jaarsveld I, Silva OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang XH, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Lheim CK, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Peer YV, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature. 2014;510(7505):356–62.

    CAS  PubMed  Google Scholar 

  • Myking T, Heide OM. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol. 1995;15(11):697–704.

    Google Scholar 

  • Nakagawa M, Honsho C, Kanzaki S, Shimizu K, Utsunomiya N. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees. Sci Hortic (Amsterdam). 2012;139:108–17.

    Article  CAS  Google Scholar 

  • Nave N, Katz E, Chayut N, Gazit S, Samach A. Flower development in the passion fruit Passiflora edulis requires a photoperiod-induced systemic graft-transmissible signal. Plant Cell Environ. 2010;33(12):2065–83.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y. Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot. 2007;58:3915–27.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M. Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiol. 2009;29(7):921–6.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa F, Iwasaki M, Fukamachi H, Nonaka K, Imai A, Endo T. Seasonal changes of citrus FLOWERING LOCUS T gene expression in kumquat. Bull Natl Inst Fruit Tree Sci. 2011;12:27–32.

    Google Scholar 

  • Nitsch JP. Photoperiodism in woody plants. Proc Amer Soc Hort Sci. 1957;70:526–44.

    CAS  Google Scholar 

  • Núñez-Elisea R, Davenport TL. Flowering of mango trees in containers as influenced by seasonal temperature and water stress. Sci Hortic (Amsterdam). 1994;58(1):57–66.

    Article  Google Scholar 

  • Núñez-Elisea R, Davenport TL. Effect of leaf age, duration of cool temperature treatment, and photoperiod on bud dormancy release and floral initiation in mango. Sci Hortic (Amsterdam). 1995;62(1):63–73.

    Article  Google Scholar 

  • O’Reilly-Wapstra JM, Humphreys JR, Potts BM. Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J Chem Ecol. 2007;33:1876–84.

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol. 2010;73(1–2):37–47.

    Article  CAS  PubMed  Google Scholar 

  • Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J. 1997;12(6):1339–50.

    Article  CAS  Google Scholar 

  • Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol Ecol. 2013;22(5):1214–30.

    Article  CAS  PubMed  Google Scholar 

  • Pallardy SG, Kozlowski TT. Physiology of woody plants. 3rd ed. Amsterdam/Boston: Elsevier; 2008.

    Google Scholar 

  • Parmentier-Line CM, Coleman GD. Constitutive expression of the Poplar FD-like basic leucine zipper transcription factor alters growth and bud development. Plant Biotechnol J. 2016;14(1):260–70.

    Article  CAS  PubMed  Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol. 2001;19(3):263–7.

    Article  CAS  PubMed  Google Scholar 

  • Petterle A, Karlberg A, Bhalerao RP. Daylength mediated control of seasonal growth patterns in perennial trees. Curr Opin Plant Biol. 2013;16(3):301–6.

    Article  PubMed  Google Scholar 

  • Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 2012;35(10):1742–55.

    Article  CAS  PubMed  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science. 2010;330(6009):1397–400.

    Article  CAS  PubMed  Google Scholar 

  • Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol. 2001;127(4):1513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS. Phase change and the regulation of shoot morphogenesis in plants. Science. 1990;250(4983):923–30.

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS. Small RNAs and developmental timing in plants. Curr Opin Genet Dev. 2009;19(4):374–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS. The past, present, and future of vegetative phase change. Plant Physiol. 2010;154(2):541–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS. Vegetative phase change and shoot maturation in plants. Develop Timing. 2013;105:125–52.

    Article  CAS  Google Scholar 

  • Polgar CA, Primack RB. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol. 2011;191(4):926–41.

    Article  PubMed  Google Scholar 

  • Potts BM, Wiltshire RJE. Eucalypt genetics and genecology. In: Williams J, Woinarski J, editors. Eucalypt ecology: individuals to ecosystems. Cambridge, UK: Cambridge University Press; 1997. p. 56–91.

    Google Scholar 

  • Preston JC, Hileman LC. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci. 2013;4.

    Google Scholar 

  • Preston JC, Sandve SR. Adaptation to seasonality and the winter freeze. Front Plant Sci. 2013;4.

    Google Scholar 

  • Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I. Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci USA. 2005;102(19):7037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ. A common mechanism controls the life cycle and architecture of plants. Development. 1998;125(9):1609–15.

    CAS  PubMed  Google Scholar 

  • Ream TS, Woods DP, Amasino RM. The molecular basis of vernalization in different plant groups. Cold Spring Harb Symp Quant Biol. 2012;77:105–15.

    Article  CAS  PubMed  Google Scholar 

  • Rehill BJ, Whitham TG, Martinsen GD, Schweitzer JA, Bailey JK, Lindroth RL. Developmental trajectories in cottonwood phytochemistry. J Chem Ecol. 2006;32(10):2269–85.

    Article  CAS  PubMed  Google Scholar 

  • Resman L, Howe G, Jonsen D, Englund M, Druart N, Schrader J, Antti H, Skinner J, Sjodin A, Chen T, Bhalerao RP. Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. Plant Physiol. 2010;154(3):1294–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne P, Tuominen H, Junttila O. Seasonal-changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic-acid concentration in adult trees of Betula pubescens. Tree Physiol. 1994;14(6):549–61.

    Google Scholar 

  • Rinne PL, Kaikuranta PM, van der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J. 2001;26(3):249–64.

    Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in populus. Plant Cell. 2011;23(1):130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios G, Leida C, Conejero A, Badenes ML. Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci. 2014;5:247.

    PubMed  PubMed Central  Google Scholar 

  • Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR. Evergreen peach, its inheritance and dormant behavior. J Am Soc Hortic Sci. 1994;119(4):789–92.

    Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W. PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell. 2002;14(8):1885–901.

    Google Scholar 

  • Rohde A, Bhalerao RP. Plant dormancy in the perennial context. Trends Plant Sci. 2007;12(5):217–23.

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Bastien C, Boerjan W. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol. 2011;31(5):472–82.

    Article  PubMed  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma CP, Cheng SP, Jouanin L, Pilate G, Strauss SH. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J. 2000;22(3):235–45.

    Article  CAS  PubMed  Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjarvi J. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J. 2006;46(4):628–40.

    Article  CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell. 2007;19(8):2370–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, Martínez-Gómez P. Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Genomes. 2016;12(4):1–14.

    Article  Google Scholar 

  • Samach A, Smith HM. Constraints to obtaining consistent annual yields in perennials. II: environment and fruit load affect induction of flowering. Plant Sci. 2013;207:168–76.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Pérez R, Del Cueto J, Dicenta F, Martínez-Gómez P. Recent advancements to study flowering time in almond and other Prunus species. Front Plant Sci. 2014;5:334.

    PubMed  PubMed Central  Google Scholar 

  • Sasaki S, Yamagishi N, Yoshikawa N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods. 2011a;7:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol. 2011b;157(1):485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffalitzky De Muckadell M. Juvenile stages in woody plants. Physiol Plant. 1954;7(4):782–96.

    Article  Google Scholar 

  • Schmidt S, Stewart GR. Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiol. 1998;18(6):403–10.

    Article  CAS  PubMed  Google Scholar 

  • Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M, Ophir R, Blumwald E, Sadka A. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON- versus OFF-crop trees. PLoS One. 2012;7(10).

    Google Scholar 

  • Simmons D, Parsons RF. Seasonal-variation in the volatile leaf oils of two Eucalyptus species. Biochem Syst Ecol. 1987;15(2):209–15.

    Google Scholar 

  • Snowball A. Seasonal cycle of shoot development in selected Actinidia species. New Zeal J Crop Hort. 1997;25:221–31.

    Article  Google Scholar 

  • Solar A, Colaric M, Usenik V, Stampar F. Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci. 2006;170(3):453–61.

    Article  CAS  Google Scholar 

  • Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol. 2016;30:159–65.

    Article  PubMed  Google Scholar 

  • Song GQ, Walworth A, Zhao DY, Jiang N, Hancock JF. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep. 2013;32(11):1759–69.

    Article  CAS  PubMed  Google Scholar 

  • Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu XM, Llewellyn DJ, Peacock WJ, Dennis ES. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol. 1998;37(6):897–910.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Dardick C, Callahan A, Scorza R. Plum (Prunus domestica) Trees Transformed with Poplar FT1 Result in Altered Architecture, Dormancy Requirement, and Continuous Flowering. PLoS One. 2012;7(7):e40715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strimbeck GR, Schaberg PG, Fossdal CG, Schroder WP, Kjellsen TD. Extreme low temperature tolerance in woody plants. Front Plant Sci. 2015;6:884.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21(9):R338–45.

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhao Q, Liu D-D, You C-X, Hao Y-J. Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis. Plant Cell Tiss Org. 2013;112(3):343–51.

    Article  CAS  Google Scholar 

  • Suzuki M, McCarty DR. Functional symmetry of the B3 network controlling seed development. Curr Opin Plant Biol. 2008;11(5):548–53.

    Google Scholar 

  • Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol. 2010;73(1–2):49–65.

    Article  CAS  PubMed  Google Scholar 

  • Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K. Structure and function of florigen and the receptor complex. Trends Plant Sci. 2013;18(5):287–94.

    Article  CAS  PubMed  Google Scholar 

  • Telfer A, Bollman KM, Poethig RS. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997;124(3):645–54.

    CAS  PubMed  Google Scholar 

  • Tian WM, Wu JL, Hao BZ, Hu ZH. Vegetative storage proteins in the tropical tree Swietenia macrophylia: seasonal fluctuation in relation to a fundamental role in the regulation of tree growth. Can J Bot. 2003;81(5):492–500.

    Article  CAS  Google Scholar 

  • Turner C, Wiltshire RJE, Potts BM, Vaillancourt RE. Allozyme variation and conservation of the Tasmanian endemics, Eucalyptus risdonii, E. tenuiramis and E. coccifera. Conserv Genet. 2000;1:209–16.

    Article  CAS  Google Scholar 

  • Tylewicz S, Tsuji H, Miskolczi P, Petterle A, Azeez A, Jonsson K, Shimamoto K, Bhalerao RP. Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways. Proc Natl Acad Sci USA. 2015;112(10):3140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno S, Klopp C, Leple JC, Derory J, Noirot C, Leger V, Prince E, Kremer A, Plomion C, Le Provost G. Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing. BMC Genomics. 2013;14:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valledor L, Meijon M, Hasbun R, Canal MJ, Rodriguez R. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. J Plant Physiol. 2010;167(5):351–7.

    Article  CAS  PubMed  Google Scholar 

  • van Cleve B, Apel K. Induction by nitrogen and low-temperature of storage-protein synthesis in poplar trees exposed to long days. Planta. 1993;189(1):157–60.

    Article  Google Scholar 

  • van der Schoot C, Paul LK, Rinne PLH. The embryonic shoot: a lifeline through winter. J Exp Bot. 2014;65(7):1699–712.

    Article  PubMed  CAS  Google Scholar 

  • Van Houdt H, Bleys A, Depicker A. RNA target sequences promote spreading of RNA silencing. Plant Physiol. 2003;131(1):245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Mijnsbrugge K, Turcsan A, Maes J, Duchene N, Meeus S, Steppe K, Steenackers M. Repeated summer drought and re-watering during the first growing year of Oak (Quercus petraea) delay autumn senescence and bud burst in the following spring. Front Plant Sci. 2016:7.

    Google Scholar 

  • Varkonyi-Gasic E, Moss SMA, Voogd C, Wang TC, Putterill J, Hellens RP. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytol. 2013;198(3):732–46.

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos MC, Greven M, Winefield CS, Trought MCT, Raw V. The flowering process of Vitis vinifera: a review. Am J Enol Vitic. 2009;60(4):411–34.

    CAS  Google Scholar 

  • Venugopal N, Liangkuwang MG. Cambial activity and annual rhythm of xylem production of elephant apple tree (Dillenia indica Linn.) in relation to phenology and climatic factor growing in sub-tropical wet forest of northeast India. Trees (Struct Funct). 2007;21(1):101–10.

    Article  Google Scholar 

  • Vico G, Thompson SE, Manzoni S, Molini A, Albertson JD, Almeida-Cortez JS, Fay PA, Feng X, Guswa AJ, Liu H, Wilson TG, Porporato A. Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology. 2015;8(4):660–81.

    Article  Google Scholar 

  • Vining KJ, Romanel E, Jones RC, Klocko A, Alves-Ferreira M, Hefer CA, Amarasinghe V, Dharmawardhana P, Naithani S, Ranik M, Wesley-Smith J, Solomon L, Jaiswal P, Myburg AA, Strauss SH The floral transcriptome of Eucalyptus grandis. New Phytol. 2015;206(4)1406–22.

    Google Scholar 

  • Visser T. On the inheritance of the juvenile period in apple. Euphytica. 1965;14(2):125–34.

    Article  Google Scholar 

  • Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science. 2013;339(6120):704–7.

    Article  CAS  PubMed  Google Scholar 

  • Wall C, Dozier W, Ebel RC, Wilkins B, Woods F, Foshee W. Vegetative and floral chilling requirements of Four New Kiwi cultivars of Actinidia chinensis and A. deliciosa. HortScience. 2008;43(3):644–7.

    Google Scholar 

  • Walton E, Fowke P, Weis K, McLeay P. Shoot axillary bud morphogenesis in kiwifruit (Actinidia deliciosa). Ann Bot (London). 1997;80:13–21.

    Article  Google Scholar 

  • Walton EF, Podivinsky E, Wu RM. Bimodal patterns of floral gene expression over the two seasons that kiwifruit flowers develop. Physiol Plant. 2001;111(3):396–404.

    Article  CAS  PubMed  Google Scholar 

  • Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song GQ. Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breeding. 2012;30(3):1313–23.

    Article  CAS  Google Scholar 

  • Wang JW. Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot. 2014;65(17):4723–30.

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Park MY, Wang LJ, Koo YJ, Chen XY, Weigel D, Poethig RS. MiRNA control of vegetative phase change in trees. PLoS Genet. 2011;7(2):8.

    Article  CAS  Google Scholar 

  • Wareing PF. Problems of juvenility and flowering in trees. J Linn Soc Lond Bot. 1959;56(366):282–9.

    Article  Google Scholar 

  • Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016;21(5):418–37.

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995;377(6549):495–500.

    Article  CAS  PubMed  Google Scholar 

  • Weigl K, Wenzel S, Flachowsky H, Peil A, Hanke MV. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnol J. 2015;13(2):246–58.

    Article  CAS  PubMed  Google Scholar 

  • Welling A, Palva ET. Molecular control of cold acclimation in trees. Physiol Plant. 2006;127(2):167–81.

    Article  CAS  Google Scholar 

  • Welling A, Palva ET. Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol. 2008;147(3):1199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welling A, Moritz T, Palva ET, Junttila O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 2002;129(4):1633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendling I, Trueman SJ, Xavier A. Maturation and related aspects in clonal forestry-Part I: concepts, regulation and consequences of phase change. New For. 2014;45(4):449–71.

    Article  Google Scholar 

  • Wenzel S, Flachowsky H, Hanke M-V. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tissue Organ Cult. 2013;115:127–37.

    Article  CAS  Google Scholar 

  • Wilkie JD, Sedgley M, Olesen T. Regulation of floral initiation in horticultural trees. J Exp Bot. 2008;59(12):3215–28.

    Article  CAS  PubMed  Google Scholar 

  • Williams BJ, Pellett NE, Klein RM. Phytochrome control of growth cessation and initiation of cold-acclimation in selected woody plants. Plant Physiol. 1972;50(2):262–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RJ, Myers BA, Eamus D, Duff GA. Reproductive phenology of woody species in a north Australian tropical savanna. Biotropica. 1999;31(4):626–36.

    Article  Google Scholar 

  • Wiltshire RJE, Reid JB. The pattern of juvenility within Eucalyptus tenuiramis Miq. saplings. Paper presented at the Mass production technology for genetically improved fast growing forest tree species. AFOCEL-IUFRO symposium, Bordeaux, Association Foret Cellulose, Nangis-Paris; 1992.

    Google Scholar 

  • Wiltshire RJE, Potts BM, Reid JB. A paedomorphocline in Eucalyptus – natural variation in the E. risdonii / E. tenuiramis complex. Aust J Bot. 1991;39(6):545–66.

    Article  Google Scholar 

  • Wiltshire RJE, Potts BM, Reid JB. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii - E. tenuiramis complex. Aust J Bot. 1998;46(1):45–63.

    Article  Google Scholar 

  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestica) results in short-day induced dormancy and increased cold hardiness. Planta. 2011;233(5):971–83.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski M, Nassuth A, Teulieres C, Marque C, Rowland J, Cao PB, Brown A. Genomics of cold hardiness in woody plants. Crit Rev Plant Sci. 2014;33(2–3):92–124.

    Article  CAS  Google Scholar 

  • Wright SJ, Van Schaik CP. Light and the phenology of tropical trees. Am Nat. 1994;143(1):192–9.

    Article  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138(4):750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot. 2012;63(2):797–807.

    Article  CAS  PubMed  Google Scholar 

  • Wu RM, Wang TC, McGie T, Voogd C, Allan AC, Hellens RP, Varkonyi-Gasic E. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. J Exp Bot. 2014;65(17):4985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing LB, Zhang D, Li YM, Zhao CP, Zhang SW, Shen YW, An N, Han MY. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics. 2014;15:1125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xing LB, Zhang D, Zhao CP, Li YM, Ma JJ, An N, Han MY. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.). Plant Biotechnol J. 2016;14(2):749–70.

    Article  CAS  PubMed  Google Scholar 

  • Xu ML, Hu TQ, Smith MR, Poethig RS. Epigenetic regulation of vegetative phase change in Arabidopsis. Plant Cell. 2016;28(1):28–41.

    CAS  PubMed  Google Scholar 

  • Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol Biol. 2011;75(1–2):193–204.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Kishigami R, Yoshikawa N. Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J. 2014;12(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi N, Li C, Yoshikawa N. Promotion of flowering by Apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front Plant Sci. 2016;7:171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. elife. 2013;2:e00260.

    Google Scholar 

  • Ye J, Geng Y, Zhang B, Mao H, Qu J, Chua N-H. The Jatropha FT ortholog is a systemic signal regulating growth and flowering time. Biotechnol Biofuels. 2014;7(1):1–11. doi:10.1186/1754-6834-7-91.

  • Yeang HY. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol. 2007;175(2):283–9.

    Article  PubMed  Google Scholar 

  • Yeom M, Kim H, Lim J, Shin AY, Hong S, Kim JI, Nam HG. How do phytochromes transmit the light quality information to the circadian clock in Arabidopsis? Mol Plant. 2014;7(11):1701–4.

    Article  CAS  PubMed  Google Scholar 

  • Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H. Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. Plant Cell Rep. 2009;28(11):1709–15.

    Article  CAS  PubMed  Google Scholar 

  • Yordanov YS, Ma C, Strauss SH, Busov VB. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc Natl Acad Sci USA. 2014;111(27):10001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu JQ, Huang JR, Wang GD, Wang JW. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife. 2013;2. doi:10.7554/eLife.00269.

  • Yu S, Lian H, Wang JW. Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol. 2015;27:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Yuceer C, Kubiske ME, Harkess RL, Land SB. Effects of induction treatments on flowering in Populus deltoides. Tree Physiol. 2003a;23(7):489–95.

    Article  PubMed  Google Scholar 

  • Yuceer C, Land SB, Kubiske ME, Harkess RL. Shoot morphogenesis associated with flowering in Populus deltoides (Salicaceae). Am J Bot. 2003b;90(2):196–206.

    Article  PubMed  Google Scholar 

  • Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One. 2014;9(1):e86217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta. 2011;234(6):1285–98.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SH. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot. 2010;61(10):2549–60.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Mei L, Liu R, Khan MRG, Hu CG. Possible involvement of locus-specific methylation on expression regulation of LEAFY homologous gene (CiLFY) during precocious trifoliate orange phase change process. PLoS One. 2014;9(2):e88558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou XH, Jacobs TB, Xue LJ, Harding SA, Tsai CJ. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol. 2015;208(2):298–301.

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011;62(2):487–95. doi:10.1093/jxb/erq295.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang W, Cai B, Gao Z, Zhang Z. Determination of chilling and heat requirements of 69 Japanese apricot cultivars. Eur J Agron. 2016;74:68–74.

    Article  Google Scholar 

  • Ziv D, Zviran T, Zezak O, Samach A, Irihimovitch V. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing ‘Hass’ avocado trees suggests a role for PaFT in Avocado Flower Induction. PLoS One. 2014;9(10):e110613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zohner CM, Renner SS. Perception of photoperiod in individual buds of mature trees regulates leaf-out. New Phytol. 2015;208(4):1023–30.

    Article  PubMed  Google Scholar 

  • Zotz G, Wilhelm K, Becker A. Heteroblasty – a review. Bot Rev. 2011;77(2):109–51.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following support for their work on phase change and phenology: Office of Science (BER), U.S. Department of Energy, grant no DE-SC0012574 (AMB) and Australian Research Council grants DP130104220 and DP160101650 (RJ). New Zealand Ministry of Business, Innovation and Employment grant C10X0816 (EV-G)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Brunner, A.M., Varkonyi-Gasic, E., Jones, R.C. (2017). Phase Change and Phenology in Trees. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_30

Download citation

Publish with us

Policies and ethics