Advertisement

Genetic Resources of Pumpkins and Squash, Cucurbita spp.

  • Harry S. ParisEmail author
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)

Abstract

Pumpkins and squash, Cucurbita species, can be found in fruit and vegetable markets almost everywhere. Cucurbita is native to the Americas and was first domesticated there approximately 10,000 years ago. Immediately subsequent to the first European contacts with the Americas, Cucurbita was dispersed by people to other continents. Five species of Cucurbita have been domesticated, the most widely cultivated of these being C. pepo, C. maxima, and C. moschata. Cucurbita plants are large and develop rapidly, and are primarily grown for consumption of their young or mature fruits, seeds, extraction of oil from the seeds, and ornament. Cucurbita contains a wealth of genetic variation in fruit size, shape, color, flavor, and nutritional value. Although many cultivar-groups and market types of Cucurbita originated in the Americas, some originated in Europe. Modern breeding and genetic enhancement of Cucurbita is focused mainly on increased yield, disease resistance, and improved immature and mature fruit quality. Cucurbita genetic resources are maintained in large collections in a dozen countries. Enhancement of fruit flavor and quality has been a long-time primary focus of breeding at publicly funded institutions but further achievements are in danger of being lost due to non-replacement of retiring personnel combined with a lack of organized conservation, description, and deposition of their enhanced-germplasm collections.

Keywords

Consumer-oriented breeding Crop diversity Disease resistance Evolution under domestication Fruit quality Future of genetic resources Genetic enhancement Genetic resource conservation Genetic resource deposition Interspecific hybridization Wild relatives 

References

  1. Abudy A, Sufrin-Ringwald T, Dayan-Glick C, Guenoune-Gelbart D, Livneh O, Zaccai M, Lapidot M. Watermelon chlorotic stunt and Squash leaf curl begomoviruses—new threats to cucurbit crops in the Middle East. Israel J Plant Sci. 2010;58:33–42.Google Scholar
  2. Adeniji AA, Coyne DP. Genetics and nature of resistance to powdery mildew in crosses of butternut with calabaza squash and ‘Seminole Pumpkin’. J Am Soc Hort Sci. 1983;108:360–8.Google Scholar
  3. Alsadon AA, Hegazi HH, Almousa IA. Evaluation of local pumpkin genotypes in the central region of Saudi Arabia. In: McCreight JD, editor. Cucurbitaceae’98. Alexandria: ASHS Press; 1998. p. 43–50.Google Scholar
  4. Andres TC. Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genet Coop Rep. 1987;10:69–71.Google Scholar
  5. Andres TC. Biosystematics, theories on the origin, and breeding potential of Cucurbita ficifolia. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Comstock; 1990. p. 102–19.Google Scholar
  6. Andres TC. Searching for Cucurbita germplasm: collecting more than seeds. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:191–98Google Scholar
  7. Andres TC. Diversity in tropical pumpkin (Cucurbita moschata): a review of infraspecific classifications. In: Lebeda A, Paris HS, editors. Progress in cucurbit genetics and breeding research, proceedings of Cucurbitaceae 2004. Olomouc: Palacky University; 2004a. p. 107–12.Google Scholar
  8. Andres TC. Diversity in tropical pumpkin (Cucurbita moschata): cultivar origin and history. In: Lebeda A, Paris HS, editors. Progress in cucurbit genetics and breeding research, proceedings of Cucurbitaceae 2004. Olomouc: Palacky University; 2004b. p. 113–8.Google Scholar
  9. Andres TC. Origin, morphological variation, and uses of Cucurbita ficifolia, the mountain squash. In: Holmes GJ, editor. Cucurbitaceae 2006 proceedings. Raleigh: Universal Press; 2006. p. 326–32.Google Scholar
  10. Andres TC, Nabhan GP. Taxonomic rank and rarity of Cucurbita okeechobeensis. FAO/IBPGR Plant Genet Resourc Crop Evol. 1998;75/76:21–2.Google Scholar
  11. Andres TC, Robinson RW. Cucurbita ecuadorensis, an ancient semi-domesticate with multiple disease resistance and tolerance to some adverse growing conditions. In: Maynard DN, editor. Cucurbitaceae 2002. Alexandria: ASHS Press; 2002. p. 95–9.Google Scholar
  12. Andrews AC. Melons and watermelons in the classical era. Osiris. 1958;12:368–75.Google Scholar
  13. Arima HK, Rodriguez-Amaya DB. Carotenoid composition and vitamin A value of commercial Brazilian squashes and pumpkins. J Micronutr Anal. 1988;4:177–91.Google Scholar
  14. Artyomenko SB, Chaban LN. Production of cucurbit seed oil by cold pressing process in the “Farmaol” company. Cucurbit Genet Coop Rep. 2000;23:120–1.Google Scholar
  15. Avila-Sakar G, Krupnick GA, Stephenson AG. Growth and resource allocation in Cucurbita pepo ssp. texana: effects of fruit removal. Intl J Plant Sci. 2001;162:1089–95.Google Scholar
  16. Azevedo-Meleiro CH, Rodriguez-Amaya DB. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. J Agric Food Chem. 2007;55:4027–33.PubMedGoogle Scholar
  17. Babadoost M. Outbreak of phytophthora foliar blight and fruit rot in processing pumpkin fields in Illinois. Plant Dis. 2000;84:1345.Google Scholar
  18. Babadoost M, Zitter TA. Fruit rots of pumpkin. Plant Dis. 2009;93:772–82.Google Scholar
  19. Baggett JR. Open growth habit in summer squash. HortScience. 1972;7:288.Google Scholar
  20. Baggett JR, Kean D. ‘Sugar Loaf’ and ‘Honey Boat’ winter squashes. HortScience. 1990;25:369–70.Google Scholar
  21. Bailey LH. Species of Cucurbita. Gentes Herbarum. 1943;6:266–322.Google Scholar
  22. Bazzaz FA, Carlson RW, Harper JL. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature. 1979;279:554–5.Google Scholar
  23. Bemis WP, Whitaker TW. The xerophytic Cucurbita of northwestern Mexico and southwestern United States. Madroño. 1969;20:33–41.Google Scholar
  24. Berenji J. Uljana tikva, Cucurbita pepo L. Institut za Ratarstvo | Povrtarstvo, Novi Sad, Serbia. 2011.Google Scholar
  25. Berenji J, Papp D. Interrelationships among fruit and seed characteristics of oil pumpkin. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:101–4.Google Scholar
  26. Bisognin DA. Origin and evolution of cultivated cucurbits. Cienc Rural. 2002;32:715–23.Google Scholar
  27. Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Pico B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.PubMedPubMedCentralGoogle Scholar
  28. Blanca J, Montero Pau J, Esteras C, Ziarsolo P, Bombarely A, Muller L, Marti C, Roig C, Monforte A, Gomez P, Jamilena M, Cañizares J, Pico B. The genome of Cucurbita pepo, a tool for breeders. In: Gomez Guillamon ML, Perez Alfocea F, editors. Cucurbits 2015, Programme and book of abstracts. Leuven: International Society for Horticultural Science; 2015. p. 20.Google Scholar
  29. Borenstein B, Bunnell RH. Carotenoids: properties, occurrence, and utilization in foods. Adv Food Res. 1966;15:195–276.PubMedGoogle Scholar
  30. Brown RN, Myers JR. A genetic map of squash (Cucurbita sp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hort Sci. 2002;127:568–75.Google Scholar
  31. Brown JK, Idris AM, Alteri C, Stenger DC. Emergence of a new cucurbit-infecting begomovirus species capable of forming viable reassortants with related viruses in the Squash leaf curl virus cluster. Phytopathology. 2002;92:734–42.PubMedGoogle Scholar
  32. Brown RN, Bolanos-Herrera A, Myers JR, Jahn MM. Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica. 2003;129:253–8.Google Scholar
  33. Burger Y, Schwartz A, Paris HS. Physiological and anatomical features of the silvering disorder of Cucurbita. J Hort Sci. 1988;63:635–40.Google Scholar
  34. Bushnell JW. Isolation of uniform types of Hubbard squash by inbreeding. Proc Am Soc Hort Sci. 1922;19:139–44.Google Scholar
  35. Carbonell ME, Wessel-Beaver L, Varela F, Luciano B. Pumpkin (Cucurbita moschata) breeding priorities based on a survey among Puerto Rican consumers. J Agric Univ Puerto Rico. 1990;74:229–36.Google Scholar
  36. Cardoza YJ, McAuslane HJ, Webb SE. Zucchini squash genotypes resistant to whitefly-induced squash silverleaf disorder. In: McCreight JD, editor. Cucurbitaceae’98. Alexandria: ASHS Press; 1998. p. 90–4.Google Scholar
  37. Carter GF. Plant geography and culture history in the American southwest. Viking Fund Publications in Anthropology no 5: New York; 1945.Google Scholar
  38. Chambliss OL, Jones CM. Cucurbitacins: specific insect attractants in Cucurbitaceae. Science. 1966;153:1392–3.PubMedGoogle Scholar
  39. Chauvet M. European and Mediterranean cucurbits before Christopher Columbus. In: Jacobsohn A, editor. L’Épopée des courges. Versailles: École nationale supérieure du paysage; 2004. p. 16–37.Google Scholar
  40. Chavez DJ, Kabelka EA, Chaparro JX. Screening of Cucurbita moschata Duchesne germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. HortScience. 2011;46:536–40.Google Scholar
  41. Chen J, McAuslane HJ, Carle RB, Webb SE. Impact of Bemisia argentifolii (Homoptera: Auchenorrhyncha: Aleyrodidae) infestation and squash silverleaf disorder on zucchini yield and quality. J Econ Entomol. 2004;97:2083–94.PubMedGoogle Scholar
  42. Cho MC, Om YH, Huh YC, Mok IG, Park HG. Two Oriental squash varieties resistant to powdery mildew bred through interspecific crosses. Cucurbit Genet Coop Rep. 2003;26:40–1.Google Scholar
  43. Clark RL, Widrlechner MP, Reitsma KR, Block CC. Cucurbit germplasm at the North Central Regional Plant Introduction Station, Ames, Iowa. HortScience. 1991;26:326, 450–1.Google Scholar
  44. Clough GH, Hamm PB. Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis. 1995;79:1107–9.Google Scholar
  45. Cohen S, Ben-Joseph R. The dynamics of viruses affecting cucurbits in Israel: 40 years since 1960. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:321–25.Google Scholar
  46. Cohen S, Duffus JE, Larsen RC, Liu HY, Flock RA. Purification, serology, and vector relationships of squash leaf curl virus, a whitefly-transmitted geminivirus. Phytopathology. 1983;73:1669–73.Google Scholar
  47. Cohen Y, van den Langenberg KM, Wehner TC, Ojiambo PS, Hausbeck M, Quesada-Ocampo LM, Lebeda A, Sierotzki H, Gisi U. Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathology. 2015;105:998–1012.PubMedGoogle Scholar
  48. Connolly BA. Viable seed production of temperate Cucurbita moschata germplasm when pollinated by C. argyrosperma. Cucurbit Genet Coop Rep. 2007;30:47–9.Google Scholar
  49. Cook JP. Styrian pumpkin oil: the marketing perspective. Cucurbit Genet Coop Rep. 2000;23:128.Google Scholar
  50. Corrigan VK, Hurst PL, Potter JF. Winter squash (Cucurbita maxima) texture: sensory, chemical, and physical measures. New Zealand J Crop Hort Sci. 2001;29:111–24.Google Scholar
  51. Costa HS, Ullman DE, Johnson MW, Tabashnik BE. Squash silverleaf symptoms induced by immature, but not adult, Bemisia tabaci. Phytopathology. 1993;83:763–6.Google Scholar
  52. Cowan CW. Evolutionary changes associated with the domestication of Cucurbita pepo. In: Gremillion KJ, editor. People, plants, and landscapes: studies in paleoethnobotany. Tuscaloosa: University of Alabama Press; 1997. p. 63–85.Google Scholar
  53. Coyne DP, Hill RM. ‘Butternut Patriot’ squash. HortScience. 1976;11:618.Google Scholar
  54. Cuevas-Marrero H, Wessel-Beaver L. Morphological and RAPD marker evidence of gene flow in open-pollinated populations of Cucurbita moschata interplanted with C. argyrosperma. In: Pitrat M, editor. Cucurbitaceae 2008. Avignon: INRA; 2008. p. 347–51.Google Scholar
  55. Culpepper CW. Composition of summer squash and its relationship to variety, stage of maturity, and use as a food product. Food Res. 1937;2:289–303.Google Scholar
  56. Culpepper CW, Moon HH. Differences in the composition of the fruits of Cucurbita varieties at different ages in relation to culinary use. J Agric Res. 1945;71:111–36.Google Scholar
  57. Curtis LC. Heterosis in summer squash (Cucurbita pepo) and the possibilities of producing F1 hybrid seed for commercial planting. Proc Am Soc Hort Sci. 1939;37:827–8.Google Scholar
  58. Cutler HC, Whitaker TW. Cucurbita mixta, Pang., its classification and relationships. Bull Torrey Bot Club. 1956;83:253–60.Google Scholar
  59. Cutler HC, Whitaker TW. History and distribution of the cultivated cucurbits in the Americas. Amer Antiq. 1961;26:469–85.Google Scholar
  60. Cutler HC, Whitaker TW. A new species of Cucurbita from Ecuador. Ann Mo Bot Gard. 1969;55:392–6.Google Scholar
  61. Danilchenko H, Paulauskiene A, Dris R, Niskanen R. Biochemical composition and processability of pumpkin cultivars. In Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:493–7.Google Scholar
  62. Decker DS. Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot. 1988;42:4–15.Google Scholar
  63. Decker-Walters DS. Evidence for multiple domestications of Cucurbita pepo. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Comstock; 1990. p. 96–101.Google Scholar
  64. Decker-Walters DS, Walters TW, Posluszny U, Kevan PG. Genealogy and gene flow among annual domesticated species of Cucurbita. Can J Bot. 1990;68:782–9.Google Scholar
  65. Decker-Walters DS, Walters TW, Cowan CW, Smith BD. Isozymic characterization of wild populations of Cucurbita pepo. J Ethnobiol. 1993;13:55–72.Google Scholar
  66. Decker-Walters DS, Staub JE, Chung SM, Nakata E, Quemada HD. Diversity in free-living populations of Cucurbita pepo (Cucurbitaceae) as assessed by random amplified polymorphic DNA. Syst Bot. 2002;27:19–28.Google Scholar
  67. Desbiez C, Lecoq H. Zucchini yellow mosaic virus. Plant Pathol. 1997;46:809–29.Google Scholar
  68. Diez MJ, Pico B, Nuez F. Cucurbit genetic resources in Europe. Ad hoc meeting 19 January 2002, Adana, Turkey. Rome: IPGRI; 2002.Google Scholar
  69. Dillehay TD, Rossen J, Andres TC, Williams DE. Preceramic adoption of peanut, squash and cotton in northern Peru. Science. 2007;316:1890–3.PubMedGoogle Scholar
  70. Duchesne AN. Essai sur l’histoire naturelle des courges. Paris: Panckoucke; 1786.Google Scholar
  71. El-Keblawy A, Lovett-Doust J. Resource re-allocation following fruit removal in cucurbits: patterns in two varieties of squash. New Phytol. 1996;133:583–93.Google Scholar
  72. Elmer WH. Fusarium fruit rot of pumpkin in Connecticut. Plant Dis. 1996;80:131–5.Google Scholar
  73. Erwin AT. Nativity of the cucurbits. Bot Gaz. 1931;91:105–8.Google Scholar
  74. Erwin AT, Haber ES. Species and varietal crosses in cucurbits. Bull Iowa Agric Expt Sta. 1929;263:341–72.Google Scholar
  75. Esquinaz-Alcazar JT, Gulick PJ. Genetic resources of Cucurbitaceae. Rome: IBPGR Secretariat; 1983.Google Scholar
  76. Esteras C, Gomez P, Monforte AJ, Blanca J, Vincente-Dolera N, Roig C, Nuez F, Pico B. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 2012a;13:80.Google Scholar
  77. Esteras C, Nuez F, Pico B. Genetic diversity studies in cucurbits using molecular tools. In: Wang Y-H, Behera TK, Kole C, editors. Genetics, genomics and breeding of cucurbits. Boca Raton: CRC Press; 2012b. p. 140–98.Google Scholar
  78. Ferriol M, Pico B. Pumpkin and winter squash. In: Prohens J, Nuez F, editors. Handbook of Plant Breeding, vegetables I. New York: Springer; 2008. p. 317–49.Google Scholar
  79. Ferriol M, Pico B, Nuez F. Genetic diversity of germplasm collections of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet. 2003a;107:271–82.PubMedGoogle Scholar
  80. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers. Genet Res Crop Evol. 2003b;50:227–38.Google Scholar
  81. Ferriol M, Pico B, Nuez F. Morphological and molecular diversity of a collection of Cucurbita maxima landraces. J Am Soc Hort Sci. 2004a;129:60–9.Google Scholar
  82. Ferriol M, Pico B, Fernandez de Cordova P, Nuez F. Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Sci. 2004b;44:653–64.Google Scholar
  83. Formisano G, Paris HS, Frusciante L, Ercolano MR. Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Res. 2010;8:198–203.Google Scholar
  84. Fowler C. The Svalbard seed vault and crop security. Bioscience. 2008;58:190.Google Scholar
  85. Francis FJ. Relationship between flesh color and pigment content in squash. Proc Am Soc Hort Sci. 1962;81:408–14.Google Scholar
  86. Fritz GJ. Precolumbian Cucurbita argyrosperma ssp. argyrosperma (Cucurbitaceae) in the eastern woodlands of North America. Econ Bot. 1994;48:280–92.Google Scholar
  87. Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol. 2007;45:173–202.PubMedGoogle Scholar
  88. Fuchs M, Tricoli DM, Carney KJ, Schesser M, McFerson JR, Gonsalves D. Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 1998;82:1350–6.Google Scholar
  89. Gaba V, Zelcer A, Gal-On A. Cucurbit biotechnology—the importance of virus resistance. In Vitro Cell Dev Biol–Plant. 2004;40:346–58.Google Scholar
  90. Gal-On A. Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol Plant Pathol. 2007;8:139–50.PubMedGoogle Scholar
  91. Gebhardt SE, Thomas RG. Nutritive value of foods. USDA, ARS home and garden bulletin. 2002. no. 72Google Scholar
  92. Gilbert-Albertini F, Lecoq H, Pitrat M, Nicolet JL. Resistance in Cucurbita moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica. 1993;69:231–7.Google Scholar
  93. Gisbert C, Pico B, Nuez F. Regeneration in selected Cucurbita spp. germplasm. Cucurbit Genet Coop Rep. 2010–2011;33–34:53–4.Google Scholar
  94. Goldman A. The compleat squash. New York: Artisan; 2004.Google Scholar
  95. Gong L, Stift G, Kofler R, Pachner M, Lelley T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet. 2008a;117:37–48.Google Scholar
  96. Gong L, Pachner M, Kalai K, Lelley T. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome. 2008b;51:878–87.PubMedGoogle Scholar
  97. Gong L, Paris HS, Nee MH, Stift G, Pachner M, Vollmann J, Lelley T. Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash gourd) as revealed by simple sequence repeat polymorphisms. Theor Appl Genet. 2012;124:875–91.PubMedGoogle Scholar
  98. Gong L, Paris HS, Stift G, Pachner M, Vollmann J, Lelley T. Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genet Resourc Crop Evol. 2013;60:1531–46.Google Scholar
  99. Goodwin TW. The biochemistry of the carotenoids, vol. 1. 2nd ed. New York: Chapman and Hall; 1980.Google Scholar
  100. Gray A, Trumbull JH. Review of DeCandolle’s origin of cultivated plants. Am J Sci. 1883;25:370–9.Google Scholar
  101. Gwanama C, Labuschagne MT, Botha AM. Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica. 2000;113:19–24.Google Scholar
  102. Haber ES, Argue CW. The chemical composition of the Des Moines (Table Queen) squash as affected by the age of the specimens. Proc Am Soc Hort Sci. 1927;23:203–7.Google Scholar
  103. Harvey WJ, Grant DG, Lammerink JP. Physical and sensory changes during the development and storage of buttercup squash. New Zealand J Crop Hort Sci. 1997;25:341–51.Google Scholar
  104. Hayes CN, Winsor JA, Stephenson AG. Environmental variation influences the magnitude of inbreeding depression in Cucurbita pepo subsp. texana (Cucurbitaceae). J Evol Biol. 2005;18:147–55.PubMedGoogle Scholar
  105. Heiser Jr CB. Of plants and people. Norman: University of Oklahoma Press; 1985.Google Scholar
  106. Herrington ME, Prytz S, Wright RM, Walker IO, Brown P, Persley DM, Greber RS. ‘Dulong QHI’ and ‘Redlands Trailblazer’ PRSV-W-, ZYMV-, and WMV-resistant winter squash cultivars. HortScience. 2001;36:811–2.Google Scholar
  107. Holmes AD, Spelman AF, Jones CP. Ascorbic acid, carotene, chlorophyll, riboflavin, and water content of summer squashes. Food Res. 1945;10:489–96.PubMedGoogle Scholar
  108. Holmes AD, Spelman AF, Wetherbee RT. Effect of storage on butternut squash and its seeds. J Am Dietet Assoc. 1954;30:138–41.Google Scholar
  109. Hopp RJ, Merrow SB, Elbert EM. Varietal differences and storage changes in beta-carotene content of six varieties of winter squashes. Proc Am Soc Hort Sci. 1960;76:568–76.Google Scholar
  110. Ibrahim AM, Al-Suliman AI, Al-Zeir KA. ‘Hamdan’ and ‘Qasim’ desert-adapted winter squashes. HortScience. 1996;31:889–90.Google Scholar
  111. Itle RA, Kabelka EA. Correlation between L*a*b* color space values and carotenoid content in pumpkins and squash. HortScience. 2009;44:633–7.Google Scholar
  112. Jahn M, Munger HM, McCreight JD. Breeding cucurbit crops for powdery mildew resistance. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW, editors. The powdery mildews, a comprehensive treatise. St. Paul: APS Press; 2002. p. 239–48.Google Scholar
  113. Janick J, Paris HS. The cucurbit images (1515–1518) of the Villa Farnesina, Rome. Ann Bot. 2006;97:165–76.PubMedPubMedCentralGoogle Scholar
  114. Jarret RL, Levy IJ, Potter TL, Cermak SC, Merrick LC. Seed oil content and fatty acid composition in a genebank collection of Cucurbita moschata Duchesne and C. argyrosperma C. Huber. Plant Genet Resourc. 2013;11:149–57.Google Scholar
  115. Jeffrey C. Cucurbitaceae. In: Hanelt P, editor. Mansfeld’s encyclopedia of agricultural and horticultural crops. Berlin: Springer; 2001. p. 1510–57.Google Scholar
  116. Karlova K. Cucurbitaceae genetic resources in the Czech gene bank, current status of the collection. In: Pitrat M, editor. Cucurbitaceae 2008. Avignon: INRA; 2008. p. 281–3.Google Scholar
  117. Kathiravan K, Vengedesan G, Singer S, Steinitz B, Paris HS, Gaba V. Adventitious regeneration in vitro occurs across a wide spectrum of squash (Cucurbita pepo) genotypes. Plant Cell Tissue Organ Cult. 2006;85:285–95.Google Scholar
  118. Katzir N, Tadmor Y, Tzuri G, Leshzeshen E, Mozes-Daube N, Danin-Poleg Y, Paris HS. Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:433–9.Google Scholar
  119. Kiss-Baba E, Panczel S, Simonyi K, Bisztray GD. Investigations on the regeneration ability of squash cultivars. Acta Agron Hung. 2010;58:159–66.Google Scholar
  120. Konrad C. “Styrian Pumpkin-Seed Oil g.g.A”. – Over one million control numbers have been assigned. Cucurbit Genet Coop Rep. 2000;23:124–5.Google Scholar
  121. Křistkova E, Lebeda A. Powdery mildew field infection on leaves and stems of Cucurbita pepo accessions. In Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000a;510:61–6.Google Scholar
  122. Křistkova E, Lebeda A. Resistance in Cucurbita pepo and Cucurbita maxima germplasm to watermelon mosaic potyvirus-2. Plant Genet Resourc Newsl. 2000b;121:47–52.Google Scholar
  123. Křistkova E, Křistkova A, Vinter V. Morphological variation of cultivated Cucurbita species. In: Lebeda A, Paris HS, editors. Progress in cucurbit genetics and breeding research, proceedings of Cucurbitaceae 2004. Olomouc: Palacky University; 2004. p. 119–28.Google Scholar
  124. Kubicki B, Walczak B. Variation and heritability of beta-carotene content in some cultivars of the Cucurbita species. Genet Polon. 1976;17:531–44.Google Scholar
  125. Kucharek T, Schenck N. Gummy stem blight of cucurbits. Gainesville: University of Florida, Plant Pathology Fact Sheet; 1983.Google Scholar
  126. Kurtar ES, Sari N, Abak K. Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica. 2002;127:335–44.Google Scholar
  127. Lebeda A, Křistkova E. Resistance in Cucurbita pepo and Cucurbita maxima germplasms to cucumber mosaic virus. Genet Res Crop Evol. 1996;43:461–9.Google Scholar
  128. Lebeda A, Křistkova E. Interactions between morphotypes of Cucurbita pepo and obligate biotrophs (Pseudoperonospora cubensis, Erysiphe cichoracearum and Sphaerotheca fuliginea). In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:219–225.Google Scholar
  129. Lebeda A, Widrlechner MP, Staub J, Ezura H, Zalapa J, Křistkova E. Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh RJ, editor. Genetic resources, chromosome engineering, and crop improvement, vol. 3. Boca Raton: CRC Press; 2007. p. 271–376.Google Scholar
  130. Lebeda A, Křistkova E, Sedlakova B, McCreight JD, Coffey MD. Cucurbit powdery mildews: methodology for objective determination and denomination of races. Eur J Plant Pathol. 2016;144:399–410.Google Scholar
  131. Lecoq H, Pitrat M, Clément M. Identification et caractérisation d’un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie. 1981;1:827–34.Google Scholar
  132. Lecoq H, Wisler G, Pitrat M. Cucurbit viruses: the classics and the emerging. In: McCreight JD, editor. Cucurbitaceae’98. Alexandria: ASHS Press; 1998. p. 126–42.Google Scholar
  133. Lelley T, Loy B, Murkovic M. Breeding oil seed pumpkins. In: Vollmann J, Rajcan I, editors. Handbook of plant breeding, vol 4: oil crops. New York: Springer; 2010. p. 469–92.Google Scholar
  134. Lewis EP, Merrow SB. Influence on the estimation of β-carotene by other carotenoids in butternut squashes at harvest and during storage. J Agric Food Chem. 1962;10:53–6.Google Scholar
  135. Lira R, Montes S. Cucurbits (Cucurbita spp.). In: Hernandez JE, Leon J, editors. Neglected crops: 1492 from a different perspective. Rome: FAO; 1994. p. 63–77.Google Scholar
  136. Lira R, Andres TC, Nee MH. Cucurbita, Sechium, Sicana y Cyclanthera. In: Lira R, editor. Estudios taxonomicos y ecogeograficos de las Cucurbitaceae Latinoamericanas de importancia economica, vol. 9. Rome: IPGRI; 1993.Google Scholar
  137. Lira R, Tellez O, Davila P. The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resourc Crop Evol. 2009;56:691–703.Google Scholar
  138. Lisa V, Boccardo G, D’Agostino G, Dellavalle G, d’Aquilio M. Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology. 1981;71:667–72.Google Scholar
  139. Lisa V, Lecoq H. Zucchini yellow mosaic virus. Descriptions of plant viruses 282 Commonwealth Mycological Institute/Association of Applied Biologists, Kew. 1984.Google Scholar
  140. Lorenz OA. Growth rates and chemical composition of fruits of four varieties of summer squash. Proc Am Soc Hort Sci. 1949;54:385–90.Google Scholar
  141. Loy JB. Improving seed yield in hull-less strains of Cucurbita pepo. Cucurbit Genet Coop Rep. 1988;11:72–3.Google Scholar
  142. Loy JB. Seed development in Cucurbita pepo: an overview with emphasis on hull-less seeded genotypes of pumpkin. Cucurbit Genet Coop Rep. 2000;23:89–95.Google Scholar
  143. Loy JB. Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Crit Rev Plant Sci. 2004;23:337–63.Google Scholar
  144. Loy JB. Improving eating quality and storage life in acorn squash. HortScience. 2006a;40:1099 (abstr).Google Scholar
  145. Loy JB. Harvest period and storage affect biomass partitioning and attributes of eating quality in acorn squash (Cucurbita pepo). In: Holmes GJ, editor. Proc Cucurbitaceae 2006. Raleigh: Universal Press; 2006b. p. 568–77.Google Scholar
  146. Loy JB. Breeding squash and pumpkins. In: Wang Y-H, Behera TK, Kole C, editors. Genetics, genomics and breeding of cucurbits. Boca Raton: CRC Press; 2012. p. 93–139.Google Scholar
  147. Loy JB, Broderick CE. Growth, assimilate partitioning, and productivity of bush and vine cultivars of Cucurbita maxima. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Comstock; 1990. p. 436–47.Google Scholar
  148. Loy JB, Clark S, Xiao Q, Loy R. Physiological changes in acorn squash during development and storage as related to eating quality. HortScience. 2004;39:460–1 (abstr).Google Scholar
  149. Lust TA, Paris HS. Italian horticultural and culinary records of summer squash (Cucurbita pepo, Cucurbitaceae) and emergence of the zucchini in nineteenth-century Milan. Ann Bot. 2016;118:53–69.Google Scholar
  150. MacGillivray JH, Hanna GC, Minges PA. Vitamin, protein, calcium, iron, and calorie yield of vegetables per acre and per acre man-hour. Proc Am Soc Hort Sci. 1942;41:293–7.Google Scholar
  151. Martinez C, Manzano S, Megias Z, Garrido D, Pico B, Jamilena M. Sources of parthenocarpy for zucchini breeding: relationship with ethylene production and sensitivity. Euphytica. 2014;200:349–62.Google Scholar
  152. Martyn RD, McLaughlin RJ. Susceptibility of summer squash to the watermelon wilt pathogen (Fusarium oxysporum f. sp. niveum). Plant Dis. 1983;67:263–6.Google Scholar
  153. Maynard D, Elmstrom GW, Talcott ST, Carle RB. ‘El Dorado’ and ‘La Estrella’: compact tropical pumpkin hybrids. HortScience. 2002;37:831–3.Google Scholar
  154. McCollum TG. Gene B, influences susceptibility to chilling injury in Cucurbita pepo. J Am Soc Hort Sci. 1990;115:618–22.Google Scholar
  155. McGrath MT. Alternatives to the protectant fungicide chlorothalonil evaluated for managing powdery mildew of cucurbits. In: Maynard DN, editor. Cucurbitaceae 2002. Alexandria: ASHS Press; 2002a. p. 213–21.Google Scholar
  156. McGrath MT. Attractiveness to cucumber beetles and susceptibility to bacterial wilt varies among cucurbit crop types and cultivars. In: Maynard DN, editor. Cucurbitaceae 2002. Alexandria: ASHS Press; 2002b. p. 222–7.Google Scholar
  157. McGrath MT, Staniszewska H. Management of powdery mildew in summer squash with host resistance, disease threshold-based fungicide programs, or an integrated program. Plant Dis. 1996;80:1044–52.Google Scholar
  158. Mencarelli F, Anelli G, Tesi R. Idoneità alla conservazione di alcune cultivars di carciofo e di zucca da zucchini. Frutticoltura. 1982;44(8):47–50.Google Scholar
  159. Merrick LC. Wild and cultivated cucurbits from the Sierra Madre Occidental of northwest Mexico and the Rio Balsas Valley of southeast Mexico. Final Report, IBPGR Project #85-79. 1986.Google Scholar
  160. Merrick LC. Systematics and evolution of a domesticated squash, Cucurbita argyrosperma, and its wild and weedy relatives. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Comstock; 1990. p. 77–95.Google Scholar
  161. Merrick LC. Squashes, pumpkins and gourds. In: Smartt J, Simmonds NW, editors. Evolution of crop plants. 2nd ed. London: Longman Scientific and Technical; 1995. p. 97–105.Google Scholar
  162. Merrick LC, Bates DM. Classification and nomenclature of Cucurbita argyrosperma. Baileya. 1989;23:94–102.Google Scholar
  163. Merrow SB, Hopp RJ. Associations between the sugar and starch content of and the degree of preference for winter squashes. J Agri Food Chem. 1961;9:321–6.Google Scholar
  164. Miké V. Theories of quasi-linkage and “affinity”: some implications for population structure. Proc Natl Acad Sci U S A. 1977;74:3513–7.PubMedPubMedCentralGoogle Scholar
  165. Monaghan GW, Lovis WA, Egan-Bruhy KC. Earliest Cucurbita from the Great Lakes, northern USA. Quaternary Res. 2006;65:216–22.Google Scholar
  166. Mookann M. Direct organogenesis from cotyledonary node explants of Cucurbita pepo (L.)—an important zucchini type vegetable crop. Am J Plant Sci. 2015;6:157–62.Google Scholar
  167. Munger HM. Transfer of bush habit from Cucurbita pepo to Cucurbita moschata. Veg Impr Newsl. 1959;1:3.Google Scholar
  168. Munger HM. Availability and use of interspecific populations involving Cucurbita moschata and C. pepo. Cucurbit Genet Coop Rep. 1990;13:49.Google Scholar
  169. Munger HM, Provvidenti R. Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata. Cucurbit Genet Coop Rep. 1987;10:80–1.Google Scholar
  170. Murkovic M, Mülleder U, Neuteufl H. Carotenoid content in different varieties of pumpkins. J Food Comp Anal. 2002;15:633–8.Google Scholar
  171. Murphy EF, Hepler PR, True RH. An evaluation of the sensory quality of inbred lines of squash (Cucurbita maxima). Proc Am Soc Hort Sci. 1966;89:483–90.Google Scholar
  172. Nameth ST, Dodds JA, Paulus AO, Laemmlen FF. Cucurbit viruses of California: an ever-changing problem. Plant Dis. 1986;70:8–12.Google Scholar
  173. Naudin C. Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Ann Sci Nat Bot, ser 4. 1856;6:5–73.Google Scholar
  174. Nee M. The domestication of Cucurbita (Cucurbitaceae). Econ Bot. 1990;44(3, suppl.):56–68.Google Scholar
  175. Nerson H. Yield, quality and shelf-life of winter squash harvested at different ages. Adv Hort Sci. 1995;9:106–11.Google Scholar
  176. Nerson H. Effects of fruit shape and plant density on seed yield and quality of squash. Sci Hort. 2005;105:293–304.Google Scholar
  177. Nerson H, Paris HS, Paris EP. Fruit shape, size and seed yield in Cucurbita pepo. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:227–30.Google Scholar
  178. Norrman R, Haarberg J. Nature and language. A semiotic study of cucurbits in literature. London: Routledge & Kegan Paul; 1980.Google Scholar
  179. Noseworthy J, Loy JB. Improving eating quality and carotenoid content of squash. In: Pitrat M, editor. Cucurbitaceae 2008. Avignon: INRA; 2008. p. 521–8.Google Scholar
  180. Nuez F. Fernandez de Cordoba P, Ferriol M, Valcarcel JV, Pico B, Diez MJ. Cucurbita spp. and Lagenaria siceraria collection at the center for conservation and breeding of agricultural biodiversity (CCMAV), Polytechnical University of Valencia. Cucurbit Genet Coop Rep. 2000;23:60–1.Google Scholar
  181. Ortiz-Alamillo O, Garza-Ortega S, Sanchez-Estrada A, Troncoso-Rojas R. Yield and quality of the interspecific cross Cucurbita argyrosperma × C. moschata. Cucurbit Genet Coop Rep. 2007;30:56–9.Google Scholar
  182. Pachner M, Paris HS, Lelley T. Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J Hered. 2009;102:330–5.Google Scholar
  183. Pachner M, Paris HS, Winkler J, Lelley T. Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breed. 2015;134:121–8.Google Scholar
  184. Padley Jr LD, Kabelka EA, Roberts PD, French R. Evaluation of Cucurbita pepo accessions for crown rot resistance to isolates of Phytophthora capsici. HortScience. 2008;43:1996–9.Google Scholar
  185. Padley Jr LD, Kabelka EA, Roberts PD. Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita. HortScience. 2009;44:211–3.Google Scholar
  186. Pangalo KI. A new species of cultivated pumpkin (Russian, English abstr). Trudy Prikl Bot Genet Selek. 1930;23:253–65.Google Scholar
  187. Paris HS. A proposed subspecific classification for Cucurbita pepo. Phytologia. 1986;61:133–8.Google Scholar
  188. Paris HS. Complementary genes for orange fruit flesh color in Cucurbita pepo. HortScience. 1988;23:601–3.Google Scholar
  189. Paris HS. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Bot. 1989;43:423–43.Google Scholar
  190. Paris HS. Genetic analysis and breeding of pumpkins and squash for high carotene content. In: Linskens HF, Jackson JF, editors. Modern methods of plant analysis, vol. 16. Berlin: Vegetables and vegetable products. Springer Verlag; 1994. p. 93–115.Google Scholar
  191. Paris HS. Summer squash: history, diversity, and distribution. HortTechnology. 1996;6:6–13.Google Scholar
  192. Paris HS. History of the cultivar-groups of Cucurbita pepo. Hort Revs. 2000;25:71–170.Google Scholar
  193. Paris HS. Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet Resourc Crop Evol. 2001;126: Cover, 41–5.Google Scholar
  194. Paris HS. The drawings of Antoine Nicolas Duchesne for his natural history of the gourds. In: Érard C, editor. Les planches et les mots. Paris: Muséum National d’Histoire Naturelle; 2007.Google Scholar
  195. Paris HS. Summer squash. In: Prohens J, Nuez F, editors. Handbook of Plant Breeding, vegetables I. New York: Springer; 2008. p. 351–79.Google Scholar
  196. Paris HS. Multiple flowering as an adaptation of summer squash for growing in protected culture. In: Thies JA, Kousik S, Levi A, editors. Cucurbitaceae 2010 proceedings. Alexandria: American Society for Horticultural Science; 2010. p. 88–90.Google Scholar
  197. Paris HS. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann Bot. 2015;116:133–48.PubMedPubMedCentralGoogle Scholar
  198. Paris HS, Brown RN. The genes of pumpkin and squash. HortScience. 2005;40:1620–30.Google Scholar
  199. Paris HS, Cohen S. Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann Appl Biol. 2000;136:209–14.Google Scholar
  200. Paris HS, Cohen R. Powdery mildew-resistant summer squash hybrids having higher yields than their susceptible, commercial counterparts. Euphytica. 2002;124:121–8.Google Scholar
  201. Paris HS, Edelstein M. Same gene for bush growth habit in Cucurbita pepo subsp. pepo as in C. pepo subsp. ovifera. Cucurbit Genet Coop Rep. 2001;24:80–1.Google Scholar
  202. Paris HS, Hanan A. Single recessive gene for multiple flowering in summer squash. HortScience. 2010;45:1643–4.Google Scholar
  203. Paris HS, Janick J. Reflections on linguistics as an aid to taxonomical identification of ancient Mediterranean cucurbits: the piqqus of the faqqous. In: Pitrat M, editor. Cucurbitaceae 2008. Avignon: INRA; 2008. p. 43–51.Google Scholar
  204. Paris HS, Nerson H. Genes for intense pigmentation of squash. J Hered. 1986;77:403–9.Google Scholar
  205. Paris HS, Nerson H. Seed dimensions in the subspecies and cultivar-groups of Cucurbita pepo. Genet Resourc Crop Evol. 2003;50:615–25.Google Scholar
  206. Paris HS, Nerson H, Karchi Z. Yield and yield quality of courgette as affected by plant density. J Hort Sci. 1986a;61:295–301.Google Scholar
  207. Paris HS, Nerson H, Karchi Z. Effect of fruit color on harvest speed of zucchini. Can J Plant Sci. 1986b;66:811–5.Google Scholar
  208. Paris HS, Nerson H, Burger Y. Leaf silvering of Cucurbita. Can J Plant Sci. 1987;67:593–8.Google Scholar
  209. Paris HS, Cohen S, Burger Y, Yoseph R. Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica. 1988;37:27–9.Google Scholar
  210. Paris HS, Stoffella PJ, Powell CA. Sweetpotato whitefly, drought stress, and leaf silvering of squash. HortScience. 1993a;28:157–8.Google Scholar
  211. Paris HS, Stoffella PJ, Powell CA. Susceptibility to leaf silvering in the cultivar groups of summer squash. Euphytica. 1993b;69:69–72.Google Scholar
  212. Paris HS, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet. 2003;106:971–8.PubMedGoogle Scholar
  213. Paris HS, Daunay MC, Pitrat M, Janick J. First known image of Cucurbita in Europe, 1503–1508. Ann Bot. 2006;98:41–7.Google Scholar
  214. Paris HS, Strachan J, Frobish M, Johnson WC, Gusmini G. New plant variety protection (PVP) forms for pumpkin/squash/gourd. Cucurbit Genet Coop Rep. 2007;30:33–4, 71–93.Google Scholar
  215. Paris HS, Lebeda A, Křistkova E, Andres TC, Nee MH. Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Econ Bot. 2012;66: Cover, 71–90.Google Scholar
  216. Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 2000;10:1509–31.PubMedPubMedCentralGoogle Scholar
  217. Petersen JB, Sidell NA. Mid-Holocene evidence of Cucurbita sp. from central Maine. Am Antiq. 1996;61:685–98.Google Scholar
  218. Phillips TG. Changes in the composition of squash during storage. Plant Physiol. 1946;21:533–41.PubMedPubMedCentralGoogle Scholar
  219. Piperno DR, Stothert KE. Phytolith evidence for early Holocene Cucurbita domestication in Southwest Ecuador. Science. 2003;299:1054–7.PubMedGoogle Scholar
  220. Provvidenti R. Sources of resistance and tolerance to viruses in accessions of Cucurbita maxima. Cucurbit Genet Coop Rep. 1982;5:46–7.Google Scholar
  221. Provvidenti R. Viral diseases and genetic sources of resistance in Cucurbita species. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the Cucurbitaceae. Ithaca: Comstock; 1990. p. 427–35.Google Scholar
  222. Provvidenti R. New American summer squash cultivars possessing a high level of resistance to a strain of zucchini yellow mosaic virus from China. Cucurbit Genet Coop Rep. 1997;20:57–8.Google Scholar
  223. Provvidenti R, Robinson RW, Munger H. Resistance in feral species to six viruses infecting Cucurbita. Plant Dis Rptr. 1978;62:326–9.Google Scholar
  224. Ratnayake RMS, Hurst PL, Melton LD. Influence of cultivar, storage and cooking on the mechanical properties of winter squash (Cucurbita maxima). J Sci Food Agric. 2004;84:433–40.Google Scholar
  225. Rehm S, Enslin PR, Meeuse ADJ, Wessels JH. Bitter principles of the Cucurbitaceae, VII—the distribution of bitter principles in this plant family. J Sci Food Agric. 1957;8:679–86.Google Scholar
  226. Rhodes AM. Species hybridization and interspecific gene transfer in the genus Cucurbita. Proc Am Soc Hort Sci. 1959;74:546–51.Google Scholar
  227. Robinson RW, Decker-Walters DS. Cucurbits. Wallingford: CAB International; 1997.Google Scholar
  228. Robinson RW, Provvidenti R. Differential response of Cucurbita pepo cultivars to strains of zucchini yellow mosaic virus. Cucurbit Genet Coop Rep. 1997;20:58–9.Google Scholar
  229. Robinson RW, Puchalski JT. Synonymy of Cucurbita martinezii and C. okeechobeensis. Cucurbit Genet Coop Rep. 1980;3:45–6.Google Scholar
  230. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci U S A. 2002;99:535–40.PubMedPubMedCentralGoogle Scholar
  231. Schaefer H, Renner SS. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon. 2011a;60:122–38.Google Scholar
  232. Schaefer H, Renner SS. Cucurbitaceae. In: Kubitzki K, editor. The families and genera of vascular plants, vol. 10, eudicots. New York: Eudicots. Springer; 2011b. p. 112–74.Google Scholar
  233. Schaefer H, Heibl C, Renner SS. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc B. 2009;276:843–51.PubMedGoogle Scholar
  234. Schaffer AA, Boyer CD, Paris HS. Inheritance of rind lignification and warts in Cucurbita pepo L. and a role for phenylalanine ammonia lyase in their control. Z Pflanzenzücht. 1986a;96:147–53.Google Scholar
  235. Schaffer AA, Paris HS, Ascarelli IM. Carotenoid and starch conent of near-isogenic B + B+ and BB genotypes of Cucurbita. J Am Soc Hort Sci. 1986b;111:780–3.Google Scholar
  236. Schales FD, Isenberg FM. The effect of curing and storage on chemical composition and taste acceptability of winter squash. Proc Am Soc Hort Sci. 1963;83:667–74.Google Scholar
  237. Scott GW. Observations on some inbred lines of bush types of C. pepo. Proc Am Soc Hort Sci. 1934;32:480.Google Scholar
  238. Shalaby TA. Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Scientia Hort. 2007;115:1–6.Google Scholar
  239. Sherman M, Elmstron GW, Allen JJ. Storage characteristics of three cultivars of yellow summer squash (Cucurbita pepo L.). Proc Fla State Hort Soc. 1985;98:216–8.Google Scholar
  240. Sherman M, Paris HS, Allen JJ. Storability of summer squash as affected by gene B and genetic background. HortScience. 1987;22:920–2.Google Scholar
  241. Simons JN, Stoffella PJ, Shuler KD, Raid RN. Silver-leaf of squash in south Florida. Proc Fla State Hort Soc. 1988;101:397–9.Google Scholar
  242. Sinnott EW, Durham GB. Development history of the fruit in lines of Cucurbita pepo differing in fruit shape. Bot Gaz. 1929;87:411–21.Google Scholar
  243. Smith BD. The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science. 1997;276:932–4.Google Scholar
  244. Sowell Jr G, Corley WL. Resistance of Cucurbita plant introductions to powdery mildew. HortScience. 1973;8:492–3.Google Scholar
  245. Stephenson AG, Devlin B, Horton JB. The effects of seed number and prior fruit dominance on the pattern of fruit production in Cucurbita pepo (zucchini squash). Ann Bot. 1988;62:653–61.Google Scholar
  246. Tapley WT, Enzie WD, van Eseltine GP. The vegetables of New York, vol 1, part IV. Albany: J B Lyon; 1937.Google Scholar
  247. Teppner H. Cucurbita pepo (Cucurbitaceae)—history, seed coat types, thin coated seeds and their genetics. Phyton. 2000;40:1–42.Google Scholar
  248. Teppner H. Notes on Lagenaria and Cucurbita (Cucurbitaceae)—review and new contributions. Phyton. 2004;44:245–308.Google Scholar
  249. Tricoli DM, Carney KJ, Russell PF, Quemada HD, McMaster RJ, Reynolds JF, Deng RZ. Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. US Patent. 2002;6:337,431.Google Scholar
  250. Trumbull JH. Vegetables cultivated by the American Indians. Bull Torrey Bot Club. 1876;6:69–71.Google Scholar
  251. Umiel N, Friedman H, Tragerman M, Mattan E, Paris HS. Comparison of some flower characteristics of Cucurbita pepo accessions. Cucurbit Genet Coop Rep. 2007;27:35–7.Google Scholar
  252. Vining KJ, Loy JB. Seed development and seed fill in hull-less seeded cultigens of pumpkin (Cucurbita pepo L.). In: McCreight JD, editor. Cucurbitaceae’98. Alexandria: ASHS Press; 1998. p. 64–9.Google Scholar
  253. Vinter V, Křistkova A, Lebeda A, Křistkova E. Descriptor lists for genetic resources of the genus Cucumis and cultivated species of the genus Cucurbita. In: Lebeda A, Paris HS, editors. Progress in cucubit genetics and breeding research, proceedings of Cucurbitaceae 2004. Olomouc: Palacky University; 2004. p. 95–9.Google Scholar
  254. Walkey DGA, Pink DAC. Resistance in vegetable marrow and other Cucurbita spp. to two British stains of cucumber mosaic virus. J Agric Sci, Cambridge 1984;102:197–205.Google Scholar
  255. Wall JR, York TL. Gametic diversity as an aid to interspecific hybridization in Phaseolus and in Cucurbita. Proc Am Soc Hort Sci. 1960;75:419–28.Google Scholar
  256. Walters TW, Decker-Walters DS. Systematics of the endangered Okeechobee gourd (Cucurbita okeechobeensis: Cucurbitaceae). Syst Bot. 1993;18:175–87.Google Scholar
  257. Weiling F. Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter. 1959;29:161–79.Google Scholar
  258. Wessel-Beaver L. Sources of whitefly-induced silvering resistance in Cucurbita. In: McCreight JD, editor. Cucurbitaceae’98. Alexandria: ASHS; 1998. p. 118–22.Google Scholar
  259. Wessel-Beaver L. Inheritance of silverleaf resistance in Cucurbita moschata. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000a;510:289–95.Google Scholar
  260. Wessel-Beaver L. Evidence for the center of diversity of Cucurbita moschata in Colombia. Cucurbit Genet Coop Rep. 2000b;23:54–5.Google Scholar
  261. Wessel-Beaver L. Cucurbita argyrosperma sets fruits in fields where C. moschata is the only pollen source. Cucurbit Genet Coop Rep. 2000c;23:62–3.Google Scholar
  262. Wessel-Beaver L. Cultivar and germplasm release—release of ‘Soler’ tropical pumpkin. J Agric U Puerto Rico. 2005;89:263–6.Google Scholar
  263. Wessel-Beaver L, Cuevas HE, Andres TC, Piperno DR. Genetic compatibility between Cucurbita moschata and C. argyrosperma. In: Lebeda A, Paris HS, editors. Proceedings of Cucurbitaceae 2004. Olomouc: Palacky University; 2004. p. 393–400.Google Scholar
  264. Wessel-Beaver L, Roman-Hernandez O, Flores-Lopez LE. Performance of new tropical pumpkin genotypes under varying cultural practices. J Agric U Puerto Rico. 2006;90:193–206.Google Scholar
  265. Whitaker TW. American origin of the cultivated cucurbits. Ann Mo Bot Gard. 1947;34:101–11.Google Scholar
  266. Whitaker TW. The origin of the cultivated Cucurbita. Am Naturalist. 1956;90:171–6.Google Scholar
  267. Whitaker TW. Breeding squash and pumpkins. In: Kappert H, Rudorf W, editors. Handbuch Pflanzenzuchtung. Berlin: Paul Parey; vol. 6. 1962. p 331–50.Google Scholar
  268. Whitaker TW. Cucurbita. In: King RC, editor. Handbook of genetics. New York: Plenum; 1974. p. 135–44.Google Scholar
  269. Whitaker TW, Bemis WP. Evolution in the genus Cucurbita. Evolution. 1964;18:553–9.Google Scholar
  270. Whitaker TW, Bemis WP. Origin and evolution of the cultivated Cucurbita. Bull Torrey Bot Club. 1975;102:362–8.Google Scholar
  271. Whitaker TW, Bohn GW. The taxonomy, genetics, production and uses of the cultivated species of Cucurbita. Econ Bot. 1950;4:52–81.Google Scholar
  272. Whitaker TW, Carter GF. Critical notes on the origin and domestication of the cultivated species of Cucurbita. Am J Bot. 1946;33:10–5.Google Scholar
  273. Whitaker TW, Cutler HC. Cucurbits and cultures in the Americas. Econ Bot. 1965;19:344–9.Google Scholar
  274. Whitaker TW, Cutler HC. Prehistoric cucurbits from the Valley of Oaxaca. Econ Bot. 1971;25:123–7.Google Scholar
  275. Whitaker TW, Davis GN. Cucurbits. New York: Interscience; 1962.Google Scholar
  276. Whitaker TW, Robinson RW. Squash breeding. In: Bassett MJ, editor. Breeding vegetable crops. Westport: AVI Publishing; 1986. p. 209–42.Google Scholar
  277. Wien HC. The physiology of vegetable crops. Wallingford: CABI; 1997.Google Scholar
  278. Wien HC, Stapleton SC, Maynard DN, McClurg C, Nyankanga R, Riggs D. Regulation of female flower development in pumpkin (Cucurbita spp.) by temperature and light. In: Maynard DN, editor. Cucurbitaceae 2002. Alexandria: ASHS Press; 2002. p. 307–15.Google Scholar
  279. Wilson HD, Doebley J, Duvall M. Chloroplast DNA diversity among wild and cultivated members of Cucurbita. Theor Appl Genet. 1992;84:859–65.PubMedGoogle Scholar
  280. Wilson HD, Lira R, Rodriguez I. Crop/weed gene flow: Cucurbita argyrosperma Huber and C. fraterna L. H. Bailey (Cucurbitaceae). Econ Bot. 1994;48:293–300.Google Scholar
  281. Winkler J. Breeding of hull-less seeded pumpkins (Cucurbita pepo) for the use of the oil. In: Katzir N, Paris HS, editors. Proceedings of Cucurbitaceae 2000. Acta Hort. 2000;510:123–8.Google Scholar
  282. Wu J, Chang Z, Wu Q, Zhan H, Xie S. Molecular diversity of Chinese Cucurbita moschata germplasm collections detected by AFLP markers. Sci Hort. 2011;128:7–13.Google Scholar
  283. Yeager AF, Latzke E. Buttercup squash, its origin and use. North Dakota Agric Expt Sta Bull 258. 1932.Google Scholar
  284. Yokomi RK, Hoelmer KA, Osborne LS. Relationships between the sweetpotato whitefly and the squash silverleaf disorder. Phytopathology. 1990;80:895–900.Google Scholar
  285. Zack CD, Loy JB. Effect of fruit development on vegetative growth of squash. Can J Plant Sci. 1981;61:673–6.Google Scholar
  286. Zhang GY, Ren Y, Sun H, Guo S, Zhang F, Zhang J, Zhang H, Jia Z, Fei Z, Xu Y, Li H. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genom. 2015;16:1101.Google Scholar
  287. Zheng YH, Alverson AJ, Wang QF, Palmer JD. Chloroplast phylogeny of Cucurbita: Evolution of the domesticated and wild species. J Systemat Evol. 2013;51:326–34.Google Scholar
  288. Zhiteneva NE. The world’s assortment of pumpkins (Russian, English abstr). Trudy Prikl Bot Genet Selek. 1930;23:157–207.Google Scholar
  289. Zitter TA, Kyle MM. Impact of powdery mildew and gummy stem blight on collapse of pumpkins (Cucurbita pepo L.). Cucurbit Genet Coop Rep. 1992;15:93–5.Google Scholar
  290. Zitter TA, Hopkins DL, Thomas CE. Compendium of cucurbit diseases. St. Paul: American Phytopathological Society; 1996.Google Scholar
  291. Zraidi A, Lelley T. Genetic map for pumpkin Cucurbita pepo using random amplified polymorphic DNA markers. In: Lebeda A, Paris HS, editors. Progress in cucurbit genetics and breeding research, proceedings of Cucurbitaceae 2004. Olomouc: Palacky University; 2004. p. 507–14.Google Scholar
  292. Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T. A consensus map for Cucurbita pepo. Mol Breeding. 2007;20:375–88.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Agricultural Research OrganizationNewe Ya‘ar Research CenterRamat YishayIsrael

Personalised recommendations