Genetic Resources of Cucumber

  • Rachel P. NaegeleEmail author
  • Todd C. Wehner
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)


The Cucurbitaceae is a monophyletic family without any close relatives. It includes important vegetables such as cucumber, melon, watermelon, squash, pumpkin, and gourd. Within Cucurbitaceae, the genus Cucumis includes cultivated species C. sativus (cucumber) and C. melo (melon), as well as wild species including C. hystrix, C. callosus, and C. sativus L. var. hardwickii. More than 50 species have been identified in Cucumis with high levels of phenotypic and genetic diversity found in centers of diversity in Africa, Asia, and India. Primary and secondary centers of diversity can serve as useful sources of variation, and have been widely used to incorporate traits such as disease resistance into cultivated materials. During domestication, cucumber and melon underwent severe bottlenecks, which resulted in low genetic variation despite high phenotypic diversity. Since its domestication, approximately 3000 years ago, cucumber has undergone significant morphological changes from its small-fruited, black spined, seedy progenitor. More than 150 single gene traits have been described in C. sativus, including powdery mildew and virus resistance, sex expression, leaf morphology, and parthenocarpy, and molecular markers continue to be rapidly developed.


Cucumber Cucumis sativus Gene Germplasm resources Plant breeding 

Literature Cited

  1. Aalders LE. ‘Yellow Cotyledon’, a new cucumber mutation. Can J Cytol. 1959;1:10–2.CrossRefGoogle Scholar
  2. Abul-Hayja Z, Williams PH. Inheritance of two seedling markers in cucumber. HortScience. 1976;11:145.Google Scholar
  3. Amano M, Machizuki A, Kawagoe Y, Iwahori K, Niwa K, Svoboda J, et al. High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor Appl Genet. 2013;126:2983–93.PubMedCrossRefGoogle Scholar
  4. Andeweg JM, DeBruyn JW. Breeding non-bitter cucumbers. Euphytica. 1959;8:13–20.CrossRefGoogle Scholar
  5. Ando K, Grumet R. Evaluation of altered cucumber plant architecture as a means to reduce Phytophthora capsici disease incidence in cucumber fruit. J Am Soc Hortic Sci. 2006;131:491–8.Google Scholar
  6. Anonymous. New vegetable varieties list IV. Proc Am Soc Hortic Sci. 1957;69:57487.Google Scholar
  7. Aydemir I. Determination of genetic diversity in cucumber (Cucumis sativus L.) germplasms. Graduate School of Engineering and Sciences of Izmir Institute of Technology. Thesis. 2009.Google Scholar
  8. Bai ZL, Yuan XJ, Cai R, Liu LZ, He HL, Zhou HF, Pan JS. QTL analysis of downy mildew resistance in cucumber. Prog Nat Sci. 2008;18:706–10.Google Scholar
  9. Behera TK, Staub JE, Delannay IY, Chen JF. Marker-assisted backcross selection in an interspecific Cucumis population broadens the genetic base of cucumber (Cucumis sativus L.). Euphytica. 2011;178:261–72.CrossRefGoogle Scholar
  10. Bhawna MZ, Abdin LA, Verma M. Transferability of cucumber microsatellite markers used for phylogenetic analysis and population structure study in bottle gourd (Lagenaria siceraria (Mol.) Standl.). Appl Biochem Biotechnol. 2015;175:2206–23.PubMedCrossRefGoogle Scholar
  11. Block C, Reitsma KR. Powdery mildew resistance in the US National Plant Germplasm system cucumber collection. HortScience. 2005;40:416–20.ADSGoogle Scholar
  12. Bo K, Song H, Shen J, Qian C, Staub JE, Simon PW, et al. Inheritance and mapping of the ore gene controlling the quantity of B-carotene in cucumber (Cucumis sativus L.) endocarp. Mol Breed. 2012;30:335–44.CrossRefGoogle Scholar
  13. Boswell VR. Our vegetable travelers. Natl Geogr. 1949;61(2):145–217.Google Scholar
  14. Burnham M, Phatak SC, Peterson CE. Graft-aided inheritance study of a chlorophyll deficient cucumber. Proc Am Soc Hortic Sci. 1966;89:386–9.Google Scholar
  15. Call AD, Criswell AD, Wehner TC, Klosinska U, Kozik EU. Screening cucumber for resistance to downy mildew caused by Pseudoperonospora cubensis (Berk. and Curt.) Rostov. Crop Sci. 2012;52:577–92.Google Scholar
  16. Carlsson G. Studies of blind top shoot and its effect on the yield of greenhouse cucumbers. Acta Agric Scand. 1961;11:160–2.CrossRefGoogle Scholar
  17. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y. Genome-wide Characterization of simple sequence repeats in cucumber(Cucumis Sativus L.) BMC Genomics. 2010;11:569.Google Scholar
  18. Chen JF, Kirkbride Jr JH. A new synthetic species (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia. 2000;52:315–19.CrossRefGoogle Scholar
  19. Chen JF, Isshiki S, Tashiro Y, Miyazaki S. Studies on a wild cucumber from China (Cucumis hystrix Chakr.). I. Genetic distance between C. hystrix and two cultivated Cucumis species (C. sativus L. and C. melo L.) based on isozyme analysis. J Jpn Soc Hortic Sci. 1995;64 suppl 2:264–5.Google Scholar
  20. Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica. 1997;96:413–19.CrossRefGoogle Scholar
  21. Chen J, Adelberg JW, Staub JE, Skorupska HT, Rhodes BB. A new synthetic amphidiploid in Cucumis from C. sativus x C. hytrix F1 interspecific hybrid. Cucurbit Genet Coop Rep. 1998;21:336–9.Google Scholar
  22. Chen J, Staub J, Qian C, Jiang J, Luo X, Zhuang F. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. x Cucumis sativus L. Theor Appl Genet. 2003;106:688–95.PubMedCrossRefGoogle Scholar
  23. Chung SM, Staub JE, Chen JF. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome. 2006;49:219–29.PubMedCrossRefGoogle Scholar
  24. Chung SM, Gordon VS, Staub JE. Sequencing of cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling tolerant and susceptible lines. Genome. 2007;50:215–25.PubMedCrossRefGoogle Scholar
  25. Cohen S, Gertman E, Kedar N. Inheritance of resistance to melon mosaic virus in cucumbers. Phytopathology. 1971;61:253–5.CrossRefGoogle Scholar
  26. Colle M, Straley EN, Makela SB, Hammar SA, Grumet R. Screening the cucumber plant introduction collection for young fruit resistance to Phytophthora capsici. HortScience. 2014;49:244–9.Google Scholar
  27. Cramer CS, Wehner TC. Little heterosis for yield and yield components in hybrids of six cucumber inbreds. Euphytica. 1999;110:99–108.CrossRefGoogle Scholar
  28. Criswell AD, Call AD, Wehner TC. Genetic control of downy mildew resistance in cucumber – a review. Cucurbit Genet Coop Rep. 2010;33–34:13–6.Google Scholar
  29. Cuevas HE, Staub JE, Simon PW, Song H. Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit. Euphytica. 2010;171:301–11.CrossRefGoogle Scholar
  30. Dane F, Denna DW, Tsuchiya T. Evolutionary studies of wild species in the genus Cucumis. Z Pflanzenzucht. 1980;85:89–109.Google Scholar
  31. de Ruiter AC, van der Knapp BJ, Robinson RW. Rosette, a spontaneous cucumber mutant arising from cucumber-muskmelon pollen. Cucurbit Genet Coop Rep. 1980;3:4.Google Scholar
  32. Delannay IY, Staub JE. Use of molecular markers aids in the development of diverse inbred backcross lines in Beit Alpha cucumber (Cucumis sativus L.). Euphytica. 2010;175:65–78.CrossRefGoogle Scholar
  33. den Nijs APM, Boukema IW. Short petiole, a useful seedling marker for genetic studies in cucumber. Cucumber Genet Coop Rep. 1985;8:7–8.Google Scholar
  34. den Nijs APM, de Ponti OMB. Umbrella leaf: a gene for sensitivity to low humidity in cucumber. Cucumber Genet Coop Rep. 1983;6:24.Google Scholar
  35. den Nijs APM, Mackiewicz HO. “Divided leaf”, a recessive seedling marker in cucumber. Cucurbit Genet Coop Rep. 1980;3:24.Google Scholar
  36. Denna DW. Expression of determinate habit in cucumbers. J Am Soc Hortic Sci. 1971;96:277–9.Google Scholar
  37. Ding GH, Qin ZW, Zhou XY, Fan JX. RAPD and SCAR markers for downy mildew resistance in cucumber. Acta Botan Boreali Occiden Sin. 2007;27:1747.Google Scholar
  38. Dong SY, Miao H, Zhang SP, et al. Genetic analysis and mapping of white fruit skin color in cucumber. Acta Botan Boreali Occiden Sin. 2012;32:2177–81.Google Scholar
  39. Fan Z, Robbins MD, Staub JE. Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativus L.). Theor Appl Genet. 2006;112:843–55.PubMedCrossRefGoogle Scholar
  40. Favrin RJ, Rahe JE, Mauza B. Pythium spp. associated with crown rot of cucumbers in British Colombia greenhouses. Plant Dis. 1988;72:683–7.CrossRefGoogle Scholar
  41. Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet. 2003;107:864–74.PubMedCrossRefGoogle Scholar
  42. Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S. Identification and validation of powdery mildew (Podosphaera xanthii)-resistance loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breed. 2013;32:267–77.CrossRefGoogle Scholar
  43. George Jr WL. Genetic and environmental modification of determinant plant habit in cucumbers. J Am Soc Hortic Sci. 1970;95:583–6.Google Scholar
  44. Gevens AJ, Ando K, Lamour KH, Grumet R, Hausbeck MK. A detached cucumber fruit method to screen for resistance to Phytophthora capsici and effect of fruit age on susceptibility to infection. Plant Dis. 2006;90:1276–82.CrossRefGoogle Scholar
  45. Goode MJ, Bowers JL, Bassi Jr A. Little-leaf, a new kind of pickling cucumber plant. Ark Farm Res. 1980;29:4.Google Scholar
  46. Gordon VS, Staub JE. Comparative analysis of chilling response in cucumber (Cucumis sativus L.) through plastidic and nuclear genetic component analysis. J Am Soc Hortic Sci. 2011;136:256–64.Google Scholar
  47. Gornitskaya IP. A spontaneous mutant of cucumber variety Nezhinskii 12. Genetika. 1967;3(11):169.Google Scholar
  48. Granado F, Olmedilla B, Blanco I. Nutritional and clinical relevance of lutein in human health. Br J Nutr. 2003;90:487–502.PubMedCrossRefGoogle Scholar
  49. Grumet R, Kabelka E, McQueen S, Wai T. Humphrey Characterization of sources of resistance to the watermelon strain of papaya ringspot virus in cucumber: allelism and co-segregation with other potyvirus resistances. Theor Appl Genet. 2000;101:463–72.CrossRefGoogle Scholar
  50. Guin-Aragones C, Monforte AJ, Saladie M, Correa RX, Garcia-Mas J, Martin-Hernandez AM. The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Mol Breed. 2014;34:351–62.CrossRefGoogle Scholar
  51. Harlan JR. Crops and man. Madison: American Society of Agronomy; 1975.Google Scholar
  52. Hausbeck MK, Lamour KH. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 2004;88:1292–303.CrossRefGoogle Scholar
  53. He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y. QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet. 2013;126:2149–61.PubMedCrossRefGoogle Scholar
  54. Hedrick UP. Sturtevant’s notes on edible plants. Albany: J. B. Lyon Co.; 1919.Google Scholar
  55. Horejsi T, Staub JE. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol. 1999;46:337–50.CrossRefGoogle Scholar
  56. Horst EK, Lower RL. Cucumis hardwickii: a source of germ-plasm for the cucumber breeder. Cucurbit Genetics Coop Rep. 1978;1:5.Google Scholar
  57. Hutchins AE. Inheritance in the cucumber. J Agric Res. 1940;60:117–28.Google Scholar
  58. Inggamer H, de Ponti OMB. The identity of genes for glabrousness in Cucumis sativus L. Cucurbit Genet Coop Rep. 1980;3:14.Google Scholar
  59. Innark P, Khanobdee C, Samipak S, Jantasuriyarat C. Evaluation of genetic diversity in cucumber (Cucumis sativus L.) germplasm using agro-economic traits and microsatellite markers. Sci Hortic. 2013;162:278–84.CrossRefGoogle Scholar
  60. Jeffrey C. A review of the Cucurbitaceae. Bot J Linnean Soc. 1980;81:233–47.CrossRefGoogle Scholar
  61. Jiang S, Yan XJ, et al. Quantitative trait locus analysis of lateral branch-related traits in cucumber using recombinant inbred lines. Sci China Ser C Life Sci. 2008;51:833–41.CrossRefGoogle Scholar
  62. John CA, Wilson JD. A “ginko leafed” mutation in the cucumber. J Hered. 1952;43:47–8.CrossRefGoogle Scholar
  63. Kacar YA, Simsek O, Solmaz I, Sari N, Mendi YY. Genetic diversity among melon accessions (Cucumis melo) from Turkey based on SSR markers. Genet Mol Res. 2012;11:4622–31.PubMedCrossRefGoogle Scholar
  64. Kauffman CS, Lower RL. Inheritance of an extreme dwarf plant type in the cucumber. J Am Soc Hortic Sci. 1976;101:150–1.Google Scholar
  65. Kerje T, Grum M. Origin of melon, Cucumis melo: a review of the literature. Acta Hortic. 2000;510:37–44.CrossRefGoogle Scholar
  66. Kozik EU, Wehner TC. A single dominant gene Ch for chilling resistance in cucumber seedlings. J Am Soc Hortic Sci. 2008;133:225–7.Google Scholar
  67. Kozik EU, Wehner TC. Inheritance of chilling resistance in cucumber seedlings. In: Holmes GJ, editor. Proceedings of the Cucurbitaceae. Universal Press, Raleigh, North Carolina; 2006. p. 121–4.Google Scholar
  68. Kubicki B. Investigations of sex determination in cucumber (Cucumis sativus L.). IV. Multiple alleles of locus Acr. Genetica Polonica. 1969;10:23–68.Google Scholar
  69. Lebeda A, Křistková E, Kubaláková M. Interspecific hybridization of Cucumis sativus × Cucumis melo as a potential way to transfer resistance to Pseudoperonospora cubensis. In: Gómez-Guillamón ML, Soria C, Cuartero J, Torès JA, Fernandez-Munoz R, editors. Cucurbits towards 2000. Proceedings of the VI Eucarpia meeting on cucurbit genetics and breeding, Málaga; 1996, p. 31–7.Google Scholar
  70. Li Y, Wen C, Weng Y. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet. 2010;126:2187–96.Google Scholar
  71. Li YH, Yang LM, et al. Fine genetic mapping of cp, a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet. 2011;123:973–83.PubMedCrossRefGoogle Scholar
  72. Lower RL, Edwards MD. Cucumber breeding. In: Basset MJ, editor. Breeding vegetables crops. Westport: AVI Publishing Co; 1986. p. 173–203.Google Scholar
  73. Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet. 2014;127:1491–9.PubMedCrossRefGoogle Scholar
  74. Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhange SP. Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breed. 2015;25:64.CrossRefGoogle Scholar
  75. Lv J, Qi J, Shi Q, Shen D, Zhang S, Shao G, et al. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One. 2012. doi: 10.1371/journal.pone.0046919.Google Scholar
  76. Maio H, Zhang S, Wang X, Zhang Z, Li M, Mu S, Cheng Z, Zhang R, Huang S, Xie B, Fang Z, Zhang Z, Weng Y, Gu X. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;182:167–76.CrossRefGoogle Scholar
  77. McCreight JD, Staub JE, Wehner TC, Dhillon NPS. Gone global: familiar and exotic cucurbits have Asian origins. HortScience. 2013;48:1078–89.Google Scholar
  78. Meeuse ADJ. The possible origin of Cucumis anguria L. Pretoria: National Herbarium; 1958.Google Scholar
  79. Meglic V, Serquen F, Staub JE. Genetic diversity in cucumber (Cucumis sativus L.): I. A reevaluation of the U.S. germplasm collection. Genet Res Crop Evol. 1996;43:533–46.CrossRefGoogle Scholar
  80. Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Fang ZY. Mapping QTLs for seedling-associated traits in cucumber. Acta Hortic Sin. 2012;39:879–87.Google Scholar
  81. Miller GA, George Jr WL. Inheritance of dwarf determinate growth habits in cucumber. J Am Soc Hortic Sci. 1979;104:114–17.Google Scholar
  82. Munshi AD, Panda B, Behera TK, Kumar R. Genetic variability in Cucumis sativus var. hardwickii R. (Alef.) germplasm. Cucurbit Genet Coop Rep. 2007;30:5–10.Google Scholar
  83. Naudin MC. Essais d’une monographie des especes et des varietes du genie Cucumis. Ann Sci Nat Ser. 1859;4(11):5–87.Google Scholar
  84. Nazavari K, Jamli F, Odland ML, Groff DW. Inheritance of crinkled-leaf cucumber. Proc Am Soc Hortic Sci. 1963;83:536–7.Google Scholar
  85. Nazavari K, Jamali F, Bayat F, Modarresi M. Evaluation of resistance to seedling damping-off caused by Phytophthora drechsleri in cucumber cultivars under greenhouse conditions. Biol Forum. 2016;8:54–60.Google Scholar
  86. Odland ML, Groff DW. Inheritance of crinkled-leaf cucumber. Proc Am Soc Hortic Sci. 1963;83:536–7.Google Scholar
  87. Olczak-Woltman H, Bartoszewski G, Madry W, Niemirowicz-Szczytt K. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. Lachrymans) in cucumber and identification of molecular markers linked to resistance. Plant Pathol. 2009;58:145–51.CrossRefGoogle Scholar
  88. Olczak-Wotman H, Marcinkowska J, Niemirowicz-Szczytt K. The genetic basis of resistance to downy mildew in Cucumis spp – latest developments and prospects. J Appl Genet. 2011;52:249–55.Google Scholar
  89. Pan Y, Bo K, Cheng Z, Weng F. The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol. 2015;15:302.Google Scholar
  90. Pandey S, Ansari WA, Mishra VK, Singh AK, Singh M. Genetic diversity in Indian cucumber based on microsatellite and morphological markers. Biochem Syst Ecol. 2013;51:19–27.CrossRefGoogle Scholar
  91. Pang X, Zhou X, Qan H, Chen J. QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol. 2013;161:536–43.CrossRefGoogle Scholar
  92. Perchepied L, Bardin M, Dogimont C, Pitrat M. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology. 2005;95:556–65.PubMedCrossRefGoogle Scholar
  93. Perry A, Rasmussen H, Johnson EJ. Xanthophyll (lutein, xeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal. 2009;22:9–15.CrossRefGoogle Scholar
  94. Peterson CE. A gynoecious inbred line of cucumber. Mich Agric Exp Sta Q Bul. 1960;43:40–2.Google Scholar
  95. Pierce LK, Wehner TC. Review of genes and linkage groups in cucumber. HortScience. 1990;25:605–15.Google Scholar
  96. Pike LM, Peterson CE. Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica. 1969;18:101–5.Google Scholar
  97. Poole CF. Genetics of cultivated cucurbits. J Hered. 1944;35:122–8.CrossRefGoogle Scholar
  98. Porter RH. Reaction of Chinese cucumbers to mosaic. Phytopathology. 1929;19:85.Google Scholar
  99. Provvidenti R. Inheritance of resistance to a strain of zucchini yellow mosaic virus in cucumber. HortScience. 1987;22:102–3.Google Scholar
  100. Qi J, Liu X, Shen D, Miao H, Xie B, Li X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45:1510–15.PubMedCrossRefGoogle Scholar
  101. Ranjan KN, Rai AB, Rai M. Export of cucumber and gherkin from India: performance, destinations, competitiveness, and determinants. Agric Econ Res Rev. 2008;21:130–8.Google Scholar
  102. Renner SS, Schaefer H, Kocyan A. Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol Biol. 2007;7:PMC2335884.Google Scholar
  103. Robbins MD, Staub JE. Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet. 2009;119:621–34.PubMedCrossRefGoogle Scholar
  104. Robinson RW. Blunt leaf apex, a cucumber mutant induced by a chemical mutagen. Cucurbit Genet Coop Rep. 1987a;10:6.Google Scholar
  105. Robinson RW. Cordate, a leaf shape gene with pleiotropic effects on flower structure and insect pollination. Cucurbit Genet Coop Rep. 1987b;10:8.Google Scholar
  106. Robinson RW. Inheritance of opposite leaf arrangement in Cucumis sativus L. Cucurbit Genet Coop Rep. 1987c;10:10.Google Scholar
  107. Robinson RW. Origin and characterization of the ‘Lemon’ cucumber. Cucurbit Genet Coop Rep. 2010;33–34:3–4.Google Scholar
  108. Robinson RW, Mishanec W. A radiation-induced seedling marker gene for cucumbers. Veg Imp Newsl. 1964;6:2.Google Scholar
  109. Robinson RW, Mishanec W. A new dwarf cucumber. Veg Imp Newsl. 1965;7:23.Google Scholar
  110. Robinson RW, Mishanec W. Male sterility in the cucumber. Veg Imp Newsl. 1967;9:2.Google Scholar
  111. Robinson RW, Shail JW. A cucumber mutant with increased hypocotyl and internode length. Cucurbit Genet Coop Rep. 1981;4:19–20.Google Scholar
  112. Rose S, Punja ZK. Greenhouse cucumber cultivars differ in susceptibility to Fusarium root and stem rot. HortTechnology. 2004;14:240–2.Google Scholar
  113. Rowe JT, Bowers JL. The inheritance and potential of an irradiation induced tendrilless character in cucumbers. Proc Am Soc Hortic Sci. 1965;86:436–41.Google Scholar
  114. Sakata Y, Kubo N, Morishita M, Kitadami E, Sugiyama M, Hirai M. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet. 2006;112:243–50.PubMedCrossRefGoogle Scholar
  115. Schultheis J. Fresh market production cucumbers. NC Coop Ext NC State Univ Hortic Info Lflt. 2000.Google Scholar
  116. Schultheis JR, Wehner TC, Walters SA. Optimum planting density and harvest stage for little-leaf and normal-leaf cucumbers for once-over harvest. Can J Plant Sci. 1998;78:333–40.CrossRefGoogle Scholar
  117. Sebastian P, Schaefer H, Telford IRH, Renner S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci U S A. 2010;107:14269–73.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  118. Shanmugasundarum S, Williams PH. A cotyledon marker gene in cucumbers. Veg Imp Newsl. 1971;13:4.Google Scholar
  119. Shanmugasundarum S, Williams PH, Peterson CE. A recessive cotyledon marker gene in cucumber with pleiotropic effects. HortScience. 1972;7:555–6.Google Scholar
  120. Shetty NV, Wehner TC. Screening the cucumber germplasm collection for fruit yield and quality. Crop Sci. 2001;42:2174–83.CrossRefGoogle Scholar
  121. Sikdar B, Bhattacharya M, Mukherjee A, Banerjee A, Ghosh E, Ghosh B, et al. Genetic diversity in important members of the Cucurbitaceae using isozyme, RAPD, and ISSR markers. Biologia Plantarum. 2010;54:135–40.CrossRefGoogle Scholar
  122. St. Amand PC, Wehner TC. Crop loss to 14 diseases in cucumber in the North Carolina for 1983 to 1988. Cucurbit Genet Coop Rep. 1991;14:15–7.Google Scholar
  123. Staub JE, Bacher J. Cucumber as a processed vegetable. In: Smith DS, Cash JN, Nip WK, Hui YH, editors. Processing vegetables: science and technology IV. Lancaster: Technomic Publishing Co., Inc.; 1997. p. 129–93.Google Scholar
  124. Staub JE, Delannay IY. USDA, ARS European long greenhouse cucumber inbred backcross line population. HortScience. 2011;46:1317–20.Google Scholar
  125. Staub JE, Kupper RS. Use of Cucumis sativus var. hardwickii germplasm in backcrosses with Cucumis sativus var. sativus. Hortscience. 1985;20:436–8.Google Scholar
  126. Staub JE, Peterson CE, Cruaugh LK, Palmer MJ. Cucumber population WI 6383 and derived inbreds WI 5098 and WI 5551. HortScience. 1992;27:1340–1.Google Scholar
  127. Staub JE, Serquen FC, McCreight JD. Genetic diversity in cucumber (Cucumis sativus L.): III. An evaluation of Indian germplasm. Genet Resour Crop Evol. 1997a;44:315–26.CrossRefGoogle Scholar
  128. Staub JE, Knerr LD, Holder DJ, May B. Phylogenetic relationships among several African Cucumis species. Can J Bot. 1997b;70:509–17.CrossRefGoogle Scholar
  129. Staub JE, Box J, Meglic V, Horejsi TF, McCreight JD. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet Res Crop Evol. 1997c;44:257–69.CrossRefGoogle Scholar
  130. Staub JE, Serquen FC, Horejsi T, Chen J. Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm. Genet Resour Crop Evol. 1999;46:297–310.CrossRefGoogle Scholar
  131. Staub JE, Robbins MD, Lopez-Sese AI. Molecular methodologies for improved genetic diversity assessment in cucumber and melon. Proc. 26th IRC, Horticulture: art and science for life advances in vegetable breeding. Acta Hortic. 2002;642:41–7.Google Scholar
  132. Staub JE, Robbins MD, Wehner TC. Cucumber. In: Prohens J, Nuez F, editors. Handbook of plant breeding; Vegetables I: asteraceae, brassicaceae, chenopodiaceae, and cucurbitaceae. New York: Springer; 2008. p. 241–82.Google Scholar
  133. Staub JE, Simon PW, Cuevas HE. USDA, ARS EOM 402–10 high beta-carotene cucumber. HortScience. 2011;46:1426–7.Google Scholar
  134. Sturtevant EL. History of garden vegetables. Am Nat. 1887;21:903–12.CrossRefGoogle Scholar
  135. Sun Z, Lower RL, Staub JE. Variance component analysis of parthenocarpy in elite U.S. processing type cucumber (Cucumis sativus L.) lines. Euphytica. 2006a;148:331–9.CrossRefGoogle Scholar
  136. Sun Z, Lower RL, Staub JE. Analysis of generation means and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant Breed. 2006b;125:277–80.CrossRefGoogle Scholar
  137. Szczechura W, Staniaskzek M, Klosinska U, Kozik EU. Molecular analysis of new sources of resistance to Pseudoperonospora cubensis (Berk. et. Curt.) Rostovzev in cucumber. Russ J Genet. 2015;51:974–9.CrossRefGoogle Scholar
  138. Tapley WT, Enzie WD, van Eseltine GP. The vegetables of New York. IV. The cucurbits. Report of the New York Agricultural Experimental Station. Albany: J. B. Lyon Co.; 1937.Google Scholar
  139. Tian G, Yang Y, Zhang S, Miao H, Lu H, Wang Y, Xie B, Gu X. Genetic analysis and gene mapping of papaya ring spot virus resistance in cucumber. Mol Breed. 2015;35:110.CrossRefGoogle Scholar
  140. Tkachenko NN. Preliminary results of a genetic investigation of the cucumber, Cucumis sativus L. Bul Appl Plant Breed Ser. 1935;2(9):311–56.Google Scholar
  141. Uchneat MS, Wehner TC. Resistance to belly rot in cucumber identified through field and detached-fruit evaluations. J Am Soc Hortic Sci. 1998;123:78–84.Google Scholar
  142. van Vliet GJA, Meysing WD. Inheritance of resistance to Pseudoperonospora cubensis Rost. in cucumber (Cucumis sativus L.). Euphytica. 1974;23:251–5.CrossRefGoogle Scholar
  143. van Vliet GJA, Meysing WD. Relation in the inheritance of resistance to Pseudoperonospora cubensis Rost. and Sphaerotheca fuliginea Poll. in cucumber (Cucumis sativus L.). Euphytica. 1977;26:793–6.CrossRefGoogle Scholar
  144. Vavilov NI. Studies on the origin of cultivated plants. Leningrad: Institute of Applied Botany and Plant Breeding; 1926.Google Scholar
  145. Vavilov NI. The origin, variation, immunity and breeding of cultivated plants. Chron Bot. 1951;13:13–54.Google Scholar
  146. Wai T, Staub JE, Kabelka E, Grumet R. Linkage analysis of potyvirus resistance alleles in cucumber. J Hered. 1997;88:454–8.CrossRefGoogle Scholar
  147. Walters SA, Wehner TC, Barker KR. NC-42 and NC-43: root-knot nematode-resistant cucumber germplasm. HortScience. 1996;31:1246–7.Google Scholar
  148. Wang YJ, Provvidenti R, Robinson RW. Inheritance of resistance in cucumber to watermelon mosaic virus. Phytopathology. 1984;51:423–8.Google Scholar
  149. Wehner TC. In: Janick J, editor. Plant breeding reviews: breeding for improved yield in cucumber. vol 6. JohnWiley & sons, Inc. Hoboken, NJ, USA; 1989, pp. 352–3.Google Scholar
  150. Wehner TC, Cramer CS. Ten cycles of recurrent selection for fruit yield, earliness, and quality in three slicing cucumber populations. J Am Soc Hortic Sci. 1996;121:362–6.Google Scholar
  151. Wehner TC, Staub JE, Peterson CE. Inheritance of littleleaf and multi-branched plant type in cucumber. Cucurbit Genet Coop Rep. 1987;10:33.Google Scholar
  152. Wehner TC, Shetty NV, Sloane JT. Field and detached-fruit screening tests for resistance to belly rot in cucumber. HortScience. 2004;38:149–52.Google Scholar
  153. Weng Y. Genetic diversity among Cucumis metuliferus populations revealed by cucumber satellites. HortScience. 2010;45:214–19.Google Scholar
  154. Weng Y. Molecular tagged genes and quantitative trait loci in cucumber. Cucurbitaceae Proc Am Soc Hortic Sci. 2014;48:53.Google Scholar
  155. Whelan EDP. Golden cotyledon: a radiation-induced mutant in cucumber. HortScience. 1971;6:343 (abstract).Google Scholar
  156. Whelan EDP. A cytogenic study of a radiation-induced male sterile mutant of cucumber. J Am Soc Hortic Sci. 1972;97:506–9.Google Scholar
  157. Whelan EDP. Inheritance and linkage relationship of two radiation-induced seedling mutants of cucumber. Can J Genet Cytol. 1973;15:597–603.CrossRefGoogle Scholar
  158. Whelan ED, Chubey BB. Chlorophyll content of new cotyledon mutants of cucumber. HortScience. 1973;10:267–9.Google Scholar
  159. Whelan EDP, Williams PH, Abul-Hayja A. The inheritance of two induced cotyledon mutants of cucumber. HortScience. 1975;10:267–9.Google Scholar
  160. Win KT, Zhang C, Song K, Lee JH, Lee S. Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Mol Breed. 2015;35:229.CrossRefGoogle Scholar
  161. Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, Xu Q, Qi X, Chen X. A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci. 2014;5:PMC4285734.Google Scholar
  162. Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X. QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep. 2015;5:15829.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  163. Yang S, Miao SP, Zhang Z, Cheng Z, Dong S, Wehner TC, Gu SF. Genetic analysis and mapping of gl-2 gene in cucumber. Acta Hortic Sin. 2011;38:1685–92.Google Scholar
  164. Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, et al. Chromosome rearrangements during domestication as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012;71:895–906.PubMedCrossRefGoogle Scholar
  165. Yang LM, et al. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol. 2013;13:553.Google Scholar
  166. Yang X, Li Y, Zhang W, He H, Pan J, Cai R. Fine mapping of the uniform immature fruit color gene u in cucumber (Cucumis sativus L.). Euphytica. 2014;196:341–8.CrossRefGoogle Scholar
  167. Zhang W, Huanle H, Guan Y, Du H, Yuan L, Li Z, et al. Identification and mapping of molecular markers linked to the tuberculate fruit gene in cucumber (Cucumis sativus L.). Theor Appl Genet. 2010;120:645–54.PubMedCrossRefGoogle Scholar
  168. Zhang C, Pratap AS, Natarajan S, Pugalenhdhi L, Kikuchi S, Sassa H, Senthil N, Koba T. Evaluation of morphological and molecular diversity among South Asian germplasms of Cucumis sativus and C. melo. ISRN Agron. 2012a;134134.Google Scholar
  169. Zhang S, Miao H, Sun R, Wang X, Huang S, Wehner TC, Gu X. Localization of a new gene for bitterness in cucumber. J Heredity. 2012b;104:134–9.CrossRefGoogle Scholar
  170. Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, et al. Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis. 2013;97:245–51.CrossRefGoogle Scholar
  171. Zhang SP, Miao H, Yang YH, Xie BY, Wang Y, Gu XF. A major quantitative trait locus conferring resistance to Fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol Breed. 2014;34:1805–15.CrossRefGoogle Scholar
  172. Zitter TA. Vegetable MD Online: Fusarium diseases of cucurbits. Fact Sheet 733. 1998.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.USDA, Agricultural Research ServiceAgricultural Sciences CenterParlierUSA
  2. 2.Department of Horticultural ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations