Skip to main content

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 21))

Abstract

Model organisms are important in providing tractable experimental systems, tools, and resources to investigate conserved biological processes. Progress in understanding such processes in model organisms can, in many cases, then be used to inform the biology of other organisms closely or distantly related, thereby illuminating the nature of conserved processes as well as taxon-specific variations. Many aspects tree biology are difficult or impossible to study in herbaceous model plants, including a perennial habit and long life span, secondary growth from a vascular cambium, phenology including winter dormancy and re-activation of growth in spring, and mechanisms of adaptation to local environment over large geoclimatic ranges. For this reason, it has long been considered desirable to develop a model tree species. Trees of the genus Populus (poplars) are prominent forest tree species in temperate regions of the northern hemisphere and have been used as experimental organisms to understand various aspects of tree biology for over three decades. Rapid advances in generating genomic, bioinformatic, and functional genomic information and tools for poplars in the last 15–20 years, as well as specific aspects of poplar biology, have led to the widespread adoption of poplars as model tree. In this chapter, I review aspects of poplar biology that are relevant to its status a model tree, including some of the advantages and challenges in working with poplars compared to other plant model systems. I then briefly review the history of poplar as model tree, and touch upon on major advances in poplar genomics that have been crucial in its widespread recognition as a model tree species. Finally, I highlight some of the recent insights into selected biological processes important for tree biology gained from use of the poplar model system, such as secondary growth and wood formation, sexual maturation and seasonality, and adaptation to local environment.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/7397_2017_3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken SN, Bemmels JB. Time to get moving: assisted gene flow of forest trees. Evol Appl. 2016;9:271–90.

    Article  PubMed  Google Scholar 

  • Allina SM, Pri-Hadash A, Theilmann DA, Ellis BE, Douglas CJ. 4-coumarate:coenzyme A ligase (4CL) in hybrid poplar (Populus trichocarpa X Populus deltoides). Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes. Plant Physiol. 1998;116:743–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allwright MR, Taylor G. Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci. 2016;21:43–54.

    Article  CAS  PubMed  Google Scholar 

  • Andersson A, Keskitalo J, Sjödin A, et al. A transcriptional timetable of autumn senescence. Genome Biol. 2004;5:R24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao H, Li E, Mansfield SD, Cronk QC, El-Kassaby YA, Douglas CJ. The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genomics. 2013;14:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol. 1996;112:1479–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berguson B, Eaton J, Stanton B, Braun R, Karlen D, Johnson D. Development of hybrid poplar for commercial production in the United States: the Pacific Northwest and Minnesota experience. In: Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six US regions. Soil and Water Conservation Society: Ankeny, IA. 2010. p. 282–99.

    Google Scholar 

  • Böhlenius H, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science. 2006;312:1040–3.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw HD, Stettler RF. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics. 1995;139:963–73.

    CAS  PubMed  Google Scholar 

  • Bradshaw HD, Ceulemans R, Davis J, Stettler R. Emerging model systems in plant biology: poplar (Populus) as a model forest tree. J Plant Growth Regul. 2000;19:306–13.

    Article  CAS  Google Scholar 

  • Bragg JG, Supple MA, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. New Phytol. 2015;207:953–67.

    Article  PubMed  Google Scholar 

  • Brunner AM, Nilsson O. Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol. 2004;164:43–51.

    Article  CAS  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci. 2004;9:49–56.

    Article  CAS  PubMed  Google Scholar 

  • Bryan AC, Jawdy S, Gunter L, Gjersing E, Sykes R, Hinchee MAW, Winkeler KA, et al. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release. Plant Biotechnol J. 2016. doi:10.1111/pbi.12560.

    PubMed  PubMed Central  Google Scholar 

  • Bugos RC, Chiang VL, Campbell WH. cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol. 1991;17:1203–15.

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Song J, Wang JP, Lin YC, Ducoste J, Shuford CM, Liu J, Li Q, Shi R, Nepomuceno A, et al. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid:coenzyme A ligase protein complex formation, regulation, and numerical modeling. Plant Cell. 2014;26:876–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christe C, Stölting KN, Bresadola L, Fussi B, Heinze B, Wegmann D, et al. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow. Mol Ecol. 2016. doi:10.1111/mec.13587.

    Google Scholar 

  • Cronk QCB. Plant eco-devo: the potential of poplar as a model organism. New Phytol. 2005;66:39–48.

    Article  Google Scholar 

  • Dharmawardhana P, Brunner AM, Strauss SH. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics. 2010;11:1–19.

    Article  CAS  Google Scholar 

  • Dickmann DI, Kuzovkina J. Poplars and willow of the world, with emphasis on silviculturally important species. In: Isebrands JG, Richardson J, editors. Poplars and willows in the world: meeting the needs of society and the environment. Rome: FAO/IPC; 2015. p. 8–91.

    Google Scholar 

  • Du J, Groover A. Transcriptional regulation of secondary growth and wood formation. J Integr Plant Biol. 2010;52:1744–7909.

    Article  CAS  Google Scholar 

  • Ellis B, Jansson S, Strauss SH, Tuskan GA. Why and how Populus became a “Model Tree”. In: Jansson S, Bhalerao R, Groover A, editors. Genetics and genomics of Populus. New York: Springer New York; 2009. p. 3–14.

    Google Scholar 

  • Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014;46:1089–96.

    Article  CAS  PubMed  Google Scholar 

  • Faivre-Rampant P, Zaina G, Jorge V, Giacomello S, Segura V, Scalabrin S, et al. New resources for genetic studies in Populus nigra: genome wide discovery and development of a 12k Infinium array. Mol Ecol Resour. 2016. doi:10.1111/1755-0998.

    Google Scholar 

  • Ferris R, Long L, Bunn SM, Robinson KM, Bradshaw HD, Rae AM, Taylor G. Leaf stomatal and epidermal cell development: identification of putative quantitative trait loci in relation to elevated carbon dioxide concentration in poplar. Tree Physiol. 2002;22:633–40.

    Article  CAS  PubMed  Google Scholar 

  • Floate KD, Godbout J, Lau MK, Isabel N, Whitham TG. Plant–herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. New Phytol. 2016;209:832–44.

    Article  CAS  PubMed  Google Scholar 

  • Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics. 2000;154:837–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geraldes A, Pang J, Thiessen N, Cezard T, Moore R, Zhao Y, Tam A, Wang S, Friedmann M, Birol I, Jones SJM, Cronk QCB, Douglas CJ. SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol Ecol Resour. 2011;11(Suppl1):81–92.

    Article  CAS  PubMed  Google Scholar 

  • Geraldes A, DiFazio SP, Slavov GT, Ranjan P, Muchero W, Hannemann J, Gunter LE, Wymore AM, Grassa CJ, et al. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species. Mol Ecol Resour. 2013;13:306–23.

    Article  CAS  PubMed  Google Scholar 

  • Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow and natural selection in shaping patterns of population structure. Evolution. 2014;68:3260–328.

    Article  PubMed  Google Scholar 

  • Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nuñez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol. 2015;24:3243–56.

    Article  CAS  PubMed  Google Scholar 

  • Gerttula S, Zinkgraf M, Muday GK, et al. Transcriptional and hormonal regulation of gravitropism of woody stems in Populus. Plant Cell. 2015;27:2800–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QCB. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol. 2006;15:1367–78.

    Article  CAS  PubMed  Google Scholar 

  • Grant MC, Mitton JB. Elevational gradients in adult sex ratios and sexual differentation in vegetative growth rates of Populus tremuloides. Michx. Evolution. 1979;33:914–8.

    PubMed  Google Scholar 

  • Groover A. Gravitropisms and reaction woods of forest trees – evolution, functions and mechanisms. New Phytol. 2016. doi:10.1111/nph.13968.

    PubMed  Google Scholar 

  • Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Mugnozza GS. Accelerating the domestication of forest trees in a changing world. Trends Plant Sci. 2012;17:64–72.

    Article  CAS  PubMed  Google Scholar 

  • Hefer CA, Mizrachi E, Myburg AA, Douglas CJ, Mansfield SD. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. New Phytol. 2015;206:1391–405.

    Article  CAS  PubMed  Google Scholar 

  • Heilman PE, Stettler RF. Genetic variation and productivity of Populus trichocarpa and its hybrids. II. Biomass production in a 4-year plantation. Can J Res. 1985;15:384–8.

    Article  Google Scholar 

  • Henry IM, Zinkgraf MS, Groover AT, Comai L. A system for dosage-based functional genomics in poplar. Plant Cell. 2015;27:2370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, et al. A transcriptional roadmap to wood formation. Proc Natl Acad Sci U S A. 2001;98:14732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW. Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytol. 2016;209:1240–51.

    Article  CAS  PubMed  Google Scholar 

  • Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH. Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus. Front Plant Sci. 2015;6:989.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu C-Y, Liu Y, Luthe DS, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell. 2006;18:1846–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu C-Y, Adams JP, Kim H, et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A. 2010;108:10756–61.

    Article  Google Scholar 

  • Hussey SG, Saïdi MN, Hefer CA, Myburg AA, Grima-Pettenati J. Structural, evolutionary and functional analysis of the NAC domain protein family in Eucalyptus. New Phytol. 2015;206:1337–50.

    Article  CAS  PubMed  Google Scholar 

  • Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol. 2007;58:435–58.

    Article  CAS  PubMed  Google Scholar 

  • Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, et al. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. Plant J. 2007;50:1063–78.

    Article  CAS  PubMed  Google Scholar 

  • Kersten B, Pakull B, Groppe K, Lueneburg J, Fladung M. The sex-linked region in Populus tremuloides Turesson 141 corresponds to a pericentromeric region of about two million base pairs on P. trichocarpa chromosome 19. Plant Biol. 2014;16:411–8.

    Article  CAS  PubMed  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L. Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep. 1992;11:137–41.

    Article  CAS  PubMed  Google Scholar 

  • Levsen ND, Tiffin P, Olson MS. Pleistocene speciation in the genus Populus (Salicaceae). Syst Biol. 2012;61:401–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF. Admixture in European Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity. 2007;98:74–84.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Filkov V, Groover A. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees. Physiol Plant. 2014;151:156–63.

    Article  CAS  PubMed  Google Scholar 

  • Luquez V, Hall D, Albrectsen BR, Karlsson J, Ingvarsson P, et al. Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet Genomes. 2008;4:279–92.

    Article  Google Scholar 

  • Ma T, Wang J, Zhou G, Yue Z, Hu Q, Chen Y, et al. Genomic insights into salt adaptation in a desert poplar. Nat Commun. 2013;4:2797.

    PubMed  Google Scholar 

  • Maheshwari P, Kovalchuk I. Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Front Plant Sci. 2016;7:296.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marroni F, Pinosio S, Di Centa E, Jurman I, Boerjan W, Felice N, Cattonaro F, Morgante M. Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: towards next-generation Ecotilling. Plant J. 2011;67:736–45.

    Article  CAS  PubMed  Google Scholar 

  • McKown AD, Guy RD, Klápště J, Geraldes A, Friedmann M, Cronk QC, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2013;20:1263–76.

    Google Scholar 

  • McKown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014;203:535–53.

    Article  CAS  PubMed  Google Scholar 

  • Menon M, Barnes WJ, Olson MS. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. New Phytol. 2015;207:710–22.

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi E, Myburg AA. Systems genetics of wood formation. Curr Opin Plant Biol. 2016;30:94–100.

    Article  PubMed  Google Scholar 

  • Moniz de Sá M, Subramaniam R, Williams F, Douglas CJ. Rapid activation of phenylpropanoid metabolism in elicitor-treated hybrid poplar (Populus trichocarpa Torr. & Gray x P. deltoides Marsh) suspension-cultured cells. Plant Physiol. 1992;98:728–37.

    Article  Google Scholar 

  • Muchero W, Sewell MM, Ranjan P, Gunter LE, Tschaplinski TJ, Yin T, Tuskan GA. Genome anchored QTLs for biomass productivity in hybrid Populus grown under contrasting environments. PLoS One. 2013;8, e54468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Guo J, DiFazio SP, Chen J-G, Ranjan P, Slavov GT, Gunter LE, Jawdy S, Bryan AC, et al. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics. 2015;16:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. The genome of Eucalyptus grandis. Nature. 2015;510:356–62.

    Google Scholar 

  • Nardmann J, Werr W. The evolution of plant regulatory networks: what Arabidopsis cannot say for itself. Curr Opin Plant Biol. 2007;10:653–9.

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth KK. At the heart of the budding yeast cell cycle. Trends Genet. 1996;12:405–12.

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15:1–3.

    Article  CAS  Google Scholar 

  • Nieminen KM, Kauppinen L, Helariutta Y. A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 2004;135:653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.

    Article  CAS  PubMed  Google Scholar 

  • Obudulu O, Bygdell J, Sundberg B, et al. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development. BMC Genomics. 2016;17:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olson MS, Robertson AL, Takebayashi N, Silim S, Schroeder WR, Tiffin P. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera). New Phytol. 2010;186:526–36.

    Article  PubMed  Google Scholar 

  • Parsons TJ, Bradshaw HD, Gordon MP. Systemic accumulation of specific mRNAs in response to wounding in poplar trees. Proc Natl Acad Sci U S A. 1989;86:7895–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plomion C, Aury JM, Amselem J, Alaeitabar T, Barbe V, Belser C, Bergès H, Bodénès C, Boudet N, Boury C, Canaguier A, et al. Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour. 2016;6:254–65.

    Article  CAS  Google Scholar 

  • Polyn S, Willems A, De Veylder L. Cell cycle entry, maintenance, and exit during plant development. Curr Opin Plant Biol. 2015;23:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Porth I, El-Kassaby YA. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J. 2015;10:510–24.

    Article  CAS  PubMed  Google Scholar 

  • Porth I, Klapšte J, Skyba O, Friedmann MC, Hannemann J, Ehlting J, El-Kassaby YA, Mansfield SD, Douglas CJ. Network analysis reveals the relationship between wood properties, gene expression levels and genotypes of natural Populus trichocarpa accessions. New Phytol. 2013a;200:727–42.

    Article  CAS  PubMed  Google Scholar 

  • Porth I, Klápště J, Skyba O, Hannemann J, McKown AD, Guy RD, DiFazio SP, Muchero W, Ranjan P, Tuskan GA, Friedmann MC, Ehlting J, Cronk QCB, El-Kassaby YA, Douglas CJ, Mansfield SD. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate SNPs. New Phytol. 2013b;200:710–26.

    Article  CAS  PubMed  Google Scholar 

  • Porth I, Klápště J, Skyba O, Lai SK, Geraldes A, Muchero W, Douglas CJ, El-Kassaby YA, Mansfield SD. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control, and genetic correlations. New Phytol. 2013c;197:777–90.

    Article  CAS  PubMed  Google Scholar 

  • Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D, Ritland C, et al. Genomics of hybrid poplar (Populus trichocarpa × deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol. 2006;15:1275–97.

    Article  PubMed  Google Scholar 

  • Ralph SG, Chun HJ, Cooper D, Kirkpatrick R, Kolosova N, Gunter L, Tuskan GA, Douglas CJ, Holt RA, Jones SJ, Marra MA, Bohlmann J. Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics. 2008;9:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson J, Isebrands JG, Ball JB. Ecology and physiology of poplars and willows. In: Isebrands JG, Richardson J, editors. Poplars and willows in the world: meeting the needs of society and the environment. FAO/IPC: Rome; 2015. p. 92.

    Google Scholar 

  • Robinson KM, Delhomme N, Mähler N, Schiffthaler B, Önskog J, Albrectsen BR, Ingvarsson PK, Hvidsten TR, Jansson S, et al. Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biol. 2014;14:276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, DiFazio SP. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res. 2012;22:95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood SB, Campbell JS, Despines T. Natural poplar hybrids from southern Alberta. I. Continuous variation for foliar characteristics. Can J Bot. 1986;64:1382–8.

    Article  Google Scholar 

  • Sarni F, Grand C, Boudet AM. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stem. (Populus x euramericana). Eur J Biochem. 1984;139:259–65.

    Google Scholar 

  • Shim D, Ko J-H, Kim W-C, Wang Q, Keathley DE, Han K-H. A molecular framework for seasonal growth-dormancy regulation in perennial plants. Hortic Res. 2014;1:14059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.

    Article  PubMed  CAS  Google Scholar 

  • Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, et al. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 2012;196:713–25.

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Gonzales-Vigil E, Karlen SD, Park JY, Lu F, Wilkerson CG, Samuels L, Ralph J, Mansfield SD. Engineering monolignol p-coumarate conjugates into poplar and Arabidopsis lignins. Plant Physiol. 2015;169:2992–3001.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. Photoperiodic flowering: Time measurement mechanisms in leaves. Annu Rev Plant Biol. 2015;29:441–64.

    Article  CAS  Google Scholar 

  • Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L). Plant Cell Environ. 2009;32:1821–32.

    Article  CAS  PubMed  Google Scholar 

  • Sterky F, Regan S, Karlsson J, et al. Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci U S A. 1998;95:13330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, et al. A Populus EST resource for plant functional genomics. Proc Natl Acad Sci U S A. 2004;101:13951–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stettler RF, Fenn RC, Heilman PE, Stanton BJ. Populus trichocarpa × Populus deltoides hybrids for short rotation culture: variation patterns and 4-year field performance. Can J For Res. 1988;18:745–53.

    Article  Google Scholar 

  • Storme V, Vanden Broeck A, Ivens B, et al. Ex-situ conservation of black poplar in Europe: genetic diversity in nine gene bank collections and their value for nature development. Theor Appl Genet. 2004;108:969–81.

    Article  CAS  PubMed  Google Scholar 

  • Strabala TJ, MacMillan CP. The Arabidopsis wood model—the case for the inflorescence stem. Plant Sci. 2013;210:193–205.

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Myburg AA. Plant scientists celebrate new woody plant genome. New Phytol. 2015;206:1185–7.

    Article  PubMed  Google Scholar 

  • Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, Douglas CJ. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Mol Ecol. 2016. doi:10.1111/mec.13539.

    PubMed  Google Scholar 

  • Subramaniam R, Reinold S, Molitor EK, Douglas CJ. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa x deltoides) phenylalanine ammonia-lyase genes. Plant Physiol. 1993;102:71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin Y-C, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR. The plant genome integrative explorer resource: plantgenie.org. New Phytol. 2015;208:1149–56.

    Article  CAS  PubMed  Google Scholar 

  • Taylor G. Populus: arabidopsis for forestry. Do we need a model Tree? Ann Bot. 2002;90:681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CJ, Ranjan P, DiFazio SP, Tuskan GA, Johnson V. Poplar genome microarrays. In: Joshi CS, DiFazio SP, Kole C, editors. Genetics, genomics and breeding of poplar. Enfield: Science Publishers; 2011. p. 112–27.

    Chapter  Google Scholar 

  • Turck F, Fornara F, George Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008;59:573–94.

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313(5793):1596–604.

    Article  CAS  PubMed  Google Scholar 

  • van Dyk MM, Kullan A, Mizrachi E, Hefer C, Jansen van Rensburg LZ, Tschaplinski T, Cushman K, Engle N, Tuskan G, Jones N, et al. Genetic dissection of transcript, metabolite, growth and wood property traits in an F2 pseudo-backcross pedigree of Eucalyptus grandis x E. urophylla. BMC Proc. 2011;5:O7.

    Google Scholar 

  • Villar M, Lefevre F, Bradshaw Jr HD, du-Cros ET. Molecular genetics of rust resistance in poplars (Melampsora larici-opulina Kleb/Populus Sp.) by bulked segregant analysis in a 2 X 2 factorial mating design. Genetics. 1996;143:531–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Mol Biol Evol. 2016;33(7):1754–1767.

    Google Scholar 

  • Weigel D, Nordborg M. Population genomics for understanding adaptation in wild plant species. Annu Rev Genet. 2015;49:315–38.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM. Genotype and time of day shape the Populus drought response. Plant J. 2009;60:703–15.

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Bradshaw H, Stettler R. Molecular genetics of growth and development in Populus (Salicaceae). V. mapping quantitative trait loci affecting leaf variation. Am J Bot. 1997;84:143–53.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger SD, Weston DJ, DiFazio SP, Tuskan GA. Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol. 2013;33:357–64.

    Article  CAS  PubMed  Google Scholar 

  • Xie C-Y, Ying CC, Yanchuk AD, Holowachuk DL. Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific Northwest coast. Can J For Res. 2009;39:519–25.

    Article  Google Scholar 

  • Ye Z-H, Zhong R. Molecular control of wood formation in trees. J Exp Bot. 2015;66:4119–31.

    Article  CAS  PubMed  Google Scholar 

  • Yordanov YS, Ma C, Strauss SH, Busov VB. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc Natl Acad Sci U S A. 2014;111:10001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Elo A, Helariutta Y. Arabidopsis as a model for wood formation. Curr Opin Biotechnol. 2011;22:293–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nieminen K, Serra JAA, Helariutta Y. The formation of wood and its control. Curr Opin Plant Biol. 2014;17:56–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Douglas, C.J. (2017). Populus as a Model Tree. In: Groover, A., Cronk, Q. (eds) Comparative and Evolutionary Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, vol 21. Springer, Cham. https://doi.org/10.1007/7397_2016_12

Download citation

Publish with us

Policies and ethics