Skip to main content

Brachypodium Seed: A Potential Model for Studying Grain Development of Cereal Crops

  • Chapter
  • First Online:
Genetics and Genomics of Brachypodium

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

  • 949 Accesses

Abstract

Seeds of small grains are important resources for human and animal food. The understanding of seed biology is essential for crop improvement by increasing grain yields and nutritional value. In the last decade, Brachypodium distachyon has been developed as a model plant for temperate cereal grasses. Recently, several studies have been published that compare Brachypodium seed anatomy and grain development to those of wheat and barley. While seeds of these three species share many properties, distinct features were identified in Brachypodium, including relatively smaller endosperms with thick cell walls and irregularities in cell sizes in the aleurone layer. Brachypodium seeds have lower starch and higher (1,3;1,4)-β-glucan content, and lower prolamin and higher globulin protein contents, compared to its domesticated relatives. The sequences and expression of genes involved in starch biosynthesis are conserved between Brachypodium and domesticated cereals, but the expression of certain genes in Brachypodium seeds is earlier and at much lower levels, providing a possible explanation for their relatively low starch content. Proteomics analyses indicated that the predominant globulins in the storage proteins were the 11S type and that they are encoded by a multi-gene family. Less than 12 % of the storage proteins were of the prolamin class. Annotation of the Brachypodium genome revealed it contains much fewer prolamin genes than the genomes of wheat and maize, suggesting that the high levels of seed globulins in the former are at the expense of prolamins. The demonstration that expression of a wheat High-Molecular-Weight glutenin gene promoter was endosperm-specific in Brachypodium transgenic plants opens the way for analyses of other gene promoters from cereal crop species that are difficult to transform. The ease of obtaining transgenic Brachypodium plants and the relatively large size of its seeds compared to its small stature make it an ideal system for research of seed properties including dormancy, germination and maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson OD, Huo N, Gu YQ. The gene space in wheat: the complete gamma-gliadin gene family from the wheat cultivar Chinese Spring. Funct Integr Genomics. 2013;13(2):261–73.

    Article  CAS  PubMed  Google Scholar 

  • Ayliffe M, Singh D, Park R, Moscou M, Pryor T. Infection of Brachypodium distachyon with selected grass rust pathogens. Mol Plant Microbe Interact. 2013;26(8):946–57.

    Article  CAS  PubMed  Google Scholar 

  • Becraft PW, Yi G. Regulation of aleurone development in cereal grains. J Exp Bot. 2011;62(5):1669–75.

    Article  CAS  PubMed  Google Scholar 

  • Bragg JN, Wu J, Gordon SP, Guttman ME, Thilmony R, Lazo GR, et al. Generation and characterization of the Western Regional Research Center Brachypodium T-DNA insertional mutant collection. PLoS One. 2012;7(9), e41916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buckeridge MS. Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol. 2010;154(3):1017–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton RA, Fincher GB. Current challenges in cell wall biology in the cereals and grasses. Front Plant Sci. 2012;3:130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton RA, Fincher GB. Evolution and development of cell walls in cereal grains. Front Plant Sci. 2014;5:456.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen G, Zhu J, Zhou J, Subburaj S, Zhang M, Han C, et al. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina. BMC Plant Biol. 2014a;14:198.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen GX, Lv DW, Li WD, Subburaj S, Yu ZT, Wang YJ, et al. The alpha-gliadin genes from Brachypodium distachyon L. provide evidence for a significant gap in the current genome assembly. Funct Integr Genomics. 2014b;14(1):149–60.

    Article  CAS  PubMed  Google Scholar 

  • Chochois V, Vogel JP, Watt M. Application of Brachypodium to the genetic improvement of wheat roots. J Exp Bot. 2012;63(9):3467–74.

    Article  CAS  PubMed  Google Scholar 

  • Douche T, San Clemente H, Burlat V, Roujol D, Valot B, Zivy M, et al. Brachypodium distachyon as a model plant toward improved biofuel crops: search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics. 2013;13(16):2438–54.

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Zhu J, Wang G, Tang Y, Chen H, Jin W, et al. Expressional profiling study revealed unique expressional patterns and dramatic expressional divergence of maize alpha-zein super gene family. Plant Mol Biol. 2009;69(6):649–59.

    Article  CAS  PubMed  Google Scholar 

  • Fincher G, Stone B. Cell walls and their components in cereal grain technology. In: Pomeranz Y, editor. Advances in cereal science and technology, vol. 8. St. Paul: American Association of Cereal Chemists; 1986. p. 207–95.

    Google Scholar 

  • Garvin DF, Gu Y-Q, Hasterok R, Hazen SP, Jenkins G, Mockler TC, et al. Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Sci. 2008;48 Suppl 1:S-69.

    Google Scholar 

  • Gu YQ, Wanjugi H, Coleman-Derr D, Kong X, Anderson OD. Conserved globulin gene across eight grass genomes identify fundamental units of the loci encoding seed storage proteins. Funct Integr Genomics. 2010;10(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  • Guillon F, Bouchet B, Jamme F, Robert P, Quemener B, Barron C, et al. Brachypodium distachyon grain: characterization of endosperm cell walls. J Exp Bot. 2011;62(3):1001–15.

    Article  CAS  PubMed  Google Scholar 

  • Guillon F, Larre C, Petipas F, Berger A, Moussawi J, Rogniaux H, et al. A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. J Exp Bot. 2012;63(2):739–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hands P, Kourmpetli S, Sharples D, Harris RG, Drea S. Analysis of grain characters in temperate grasses reveals distinctive patterns of endosperm organization associated with grain shape. J Exp Bot. 2012;63(17):6253–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jääskeläinena A-S, Holopainen-Mantilaa U, Tamminena T, Vuorinenb T. Endosperm and aleurone cell structure in barley and wheat as studied by optical and Raman microscopy. J Cereal Sci. 2013;57(3):8.

    Google Scholar 

  • Jung HI, Gayomba SR, Yan J, Vatamaniuk OK. Brachypodium distachyon as a model system for studies of copper transport in cereal crops. Front Plant Sci. 2014;5:236.

    Article  PubMed Central  PubMed  Google Scholar 

  • Larre C, Penninck S, Bouchet B, Lollier V, Tranquet O, Denery-Papini S, et al. Brachypodium distachyon grain: identification and subcellular localization of storage proteins. J Exp Bot. 2010;61(6):1771–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laudencia-Chingcuanco DL, Vensel WH. Globulins are the main seed storage proteins in Brachypodium distachyon. Theor Appl Genet. 2008;117(4):555–63.

    Article  CAS  PubMed  Google Scholar 

  • Matos DA, Cole BJ, Whitney IP, MacKinnon KJ, Kay SA, Hazen SP. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon. PLoS One. 2014;9(6), e100072.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mur LA, Allainguillaume J, Catalan P, Hasterok R, Jenkins G, Lesniewska K, et al. Exploiting the Brachypodium Tool Box in cereal and grass research. New Phytol. 2011;191(2):334–47.

    Article  PubMed  Google Scholar 

  • Opanowicz M, Hands P, Betts D, Parker ML, Toole GA, Mills EN, et al. Endosperm development in Brachypodium distachyon. J Exp Bot. 2011;62(2):735–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Payne PI. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol. 1987;38:14.

    Article  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant. 2013;6(4):1365–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot. 2002;53(370):947–58.

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D. Genetics of wheat gluten proteins. Adv Genet. 2003;49:111–84.

    Article  CAS  PubMed  Google Scholar 

  • Subburaj S, Chen G, Han C, Lv D, Li X, Zeller FJ, et al. Molecular characterisation and evolution of HMW glutenin subunit genes in Brachypodium distachyon L. J Appl Genet. 2014;55(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  • Tanackovic V, Svensson JT, Jensen SL, Buleon A, Blennow A. The deposition and characterization of starch in Brachypodium distachyon. J Exp Bot. 2014;65(18):5179–92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thilmony R, Guttman ME, Lin JW, Blechl AE. The wheat HMW-glutenin 1Dy10 gene promoter controls endosperm expression in Brachypodium distachyon. GM Crops Food. 2014;5(1):36–43.

    Article  PubMed  Google Scholar 

  • Trafford K, Haleux P, Henderson M, Parker M, Shirley NJ, Tucker MR, et al. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. J Exp Bot. 2013;64(16):5033–47.

    Article  CAS  PubMed  Google Scholar 

  • Tyler L, Fangel JU, Fagerstrom AD, Steinwand MA, Raab TK, Willats WG, et al. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines. BMC Plant Biol. 2014;14:25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vega-Sanchez ME, Verhertbruggen Y, Scheller HV, Ronald PC. Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses. Plant Signal Behav. 2013;8(2):e23143.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang K, Han X, Dong K, Gao L, Li H, Ma W, et al. Characterization of seed proteome in Brachypodium distachyon. J Cereal Sci. 2010;52(2):177–86.

    Article  CAS  Google Scholar 

  • Wang S, Wang K, Chen G, Lv D, Han X, Yu Z, et al. Molecular characterization of LMW-GS genes in Brachypodium distachyon L. reveals highly conserved Glu-3 loci in Triticum and related species. BMC Plant Biol. 2012;12:221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weier D, Thiel J, Kohl S, Tarkowska D, Strnad M, Schaarschmidt S, et al. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains. J Exp Bot. 2014;65(18):5291–304.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu JH, Messing J. Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci U S A. 2008;105(38):14330–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong S, Ali S, Leng Y, Wang R, Garvin DF. Brachypodium distachyon-Cochliobolus sativus pathosystem is a new model for studying plant-fungal interactions in cereal crops. Phytopathology. 2014. doi:10.1094/PHYTO-08-14-0214-R.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, J., Thilmony, R., Gu, Y. (2015). Brachypodium Seed: A Potential Model for Studying Grain Development of Cereal Crops. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_12

Download citation

Publish with us

Policies and ethics