Brachypodium distachyon as a Model Species to Understand Grass Cell Walls

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 18)


The utilization of Brachypodium distachyon as a model system has allowed for a synthesis of known aspects of grass cell wall biosynthesis and provided a platform to investigate new areas of the field. Compositional analysis of B. distachyon cell walls shows many similarities with the walls of major food and energy crop species. This chapter presents a summary of these comparisons, as well as a review of work done in B. distachyon characterizing genes involved with cell wall biogenesis. Aspects of lignin biosynthesis and polymerization, cellulose and hemicellulose synthesis, and transcriptional regulation of secondary walls have all been characterized in B. distachyon, with genetic, biochemical, and phenotypic data outlined herein. Finally, the use of B. distachyon in identifying saccharification and digestibility traits relatable to biofuel feedstock quality in grasses are discussed. Taken together, the reviewed material demonstrates the utility of B. distachyon as a model for grass cell wall research, highlighting known and novel facets of cell wall biosynthesis.


Brachypodium distachyon Lignin Cellulose Mixed linkage glucan Cell wall Grasses Biofuel feedstock Digestibility Saccharification 


  1. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci U S A. 2012;109(3):989–93.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Avci U, Petzold HE, Ismail IO, Beers EP, Haigler CH. Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. Plant J. 2008;56(2):303–15.CrossRefPubMedGoogle Scholar
  3. Bouvier d’Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cézard L, Legée F, et al. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J. 2013;73(3):496–508.CrossRefPubMedGoogle Scholar
  4. Bukh C, Nord-Larsen PH, Rasmussen SK. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. J Exp Bot. 2012;63(17):6223–36.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Burton RA, Fincher GB. (1,3;1,4)-beta-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant. 2009;2(5):873–82.CrossRefPubMedGoogle Scholar
  6. Burton RA, Wilson SM, Hrmova M, Harvey AJ. Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-beta-D-Glucans. Science. 2006;311(5769):1940–2.CrossRefPubMedGoogle Scholar
  7. Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, et al. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 2008;146(4):1821–33.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Burton RA, Collins HM, Kibble NA, Smith JA, Shirley NJ, Jobling SA, et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-b-D-glucans. Plant Biotechnol J. 2011;9(2):117–35.CrossRefPubMedGoogle Scholar
  9. Carpita NC. Structure and biogenesis of the grass cell wall. Annu Rev Plant Physiol Plant Mol Biol. 1996;47(1):445–76.CrossRefPubMedGoogle Scholar
  10. Cesarino I, Araújo P, Sampaio Mayer JL, Vicentini R, Berthel S, Demedts B, et al. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot. 2013;64(6):1769–81.CrossRefPubMedGoogle Scholar
  11. Chen L, Auh C, Chen F, Cheng X, Alijoe H, Dixon RA, et al. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem. 2002;50(20):5558–65.CrossRefPubMedGoogle Scholar
  12. Chen L, Auh C, Powling P, Bell J, Chen F, Hopkins A, et al. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J. 2003;1(6):437–49.CrossRefPubMedGoogle Scholar
  13. Chiniquy D, SHarma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, et al. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U S A. 2012;109(42):17117–22.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Christensen U, Harholt J, Alonso-Simon A, Willats WGT, Scheller HV. Characterization of the primary cell walls of seedlings of Brachypodium distachyon - a potential model plant for temperate grasses. Phytochemistry. 2010;71(1):62–9.CrossRefPubMedGoogle Scholar
  15. Collazo P, Montoliu L, Puigdomènech P, Rigau J. Structure and expression of the lignin O-methyltransferase gene from Zea mays. Plant Mol Biol. 1992;20(5):857–67.CrossRefPubMedGoogle Scholar
  16. Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darrac O, Bouvier d’Yvoire M, et al. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One. 2013;8(6):e65503.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, et al. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-b-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 2009;106(14):5996.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Fincher GB. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 2009;149(1):27–37.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, et al. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant. 2011;5(4):817–30.CrossRefPubMedGoogle Scholar
  20. Fry SC, Nesselrode BHWA, Miller JG, Mewburn BR. Mixed-linkage (1,3;1,4)-b-D-glucans. New Phytol. 2008;179(1):104–15.CrossRefPubMedGoogle Scholar
  21. Gomez L, McQueen-Mason S, Statham E, Bristow J. Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis. Biotechnol Biofuels. 2008;1(1):1–12.CrossRefGoogle Scholar
  22. Grabber JH, Ralph J, Lapierre C, Barrière Y. Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol. 2004;327(5):455–65.CrossRefPubMedGoogle Scholar
  23. Guo DM, Ran JH, Wang XQ. Evolution of the cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of bona fide CAD. J Mol Evol. 2010;71(3):202–18.CrossRefPubMedGoogle Scholar
  24. Handakumbura PP, Hazen SP. Transcriptional regulation of grass secondary cell wall biosynthesis: playing catch-up with Arabidopsis thaliana. Front Plant Sci. 2012;3:74.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K, Kafle K, et al. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol. 2013;13(1):131.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Harrington MJ, Mutwil M, Barriere Y, Sibout R. Molecular biology of lignification in grasses. In: Jouanin L, Lapierre C, Jacquot J, Gadal P, editors. Advances in botanical research lignins: biosynthesis, biodegradation and bioengineering, vol. 61. London: Academic Press; 2012. p. 75–105.Google Scholar
  27. Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu F, et al. Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta. 2009;229(6):1253–67.CrossRefPubMedGoogle Scholar
  28. Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M. OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep. 2012;31(1):91–101.CrossRefPubMedGoogle Scholar
  29. Kiesselbach TA. The structure and reproduction of corn. Lincoln: University of Nebraska College of Agriculture, Agricultural Experiment Station; 1949.Google Scholar
  30. Kim S-J, Zemelis S, Keegstra K, Brandizzi F. The cytoplasmic localization of the catalytic site of CSLF6 supports a channeling model for the biosynthesis of mixed-linkage glucan. Plant J. 2015;81(4):537–47.CrossRefPubMedGoogle Scholar
  31. Ko JH, Kim WC, Kim JY, Ahn SJ, Han KH. MYB46-mediated transcriptional regulation of secondary wall biosynthesis. Mol Plant. 2012;5(5):961–3.CrossRefPubMedGoogle Scholar
  32. Lee SJ, Warnick TA, Pattathil S, Alvelo-Maurosa JG, Serapiglia MJ, McCormick H, et al. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnol Biofuels. 2012;5:1–14.CrossRefGoogle Scholar
  33. Lee MB, Kim DY, Hong MJ, Lee YJ, Seo YW. Identification of gamma irradiated Brachypodium mutants with altered genes responsible for lignin biosynthesis. Genes Genomics. 2014;36(1):65–76.CrossRefGoogle Scholar
  34. Li H, Rotter D, Hartman T, Pak F, Havkin-Frenkel D, Belanger F. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Plant Mol Biol. 2006;61(3):537–52.CrossRefPubMedGoogle Scholar
  35. Ma QH. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot. 2010;61(10):2735–44.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Marriott PE, Sibout R, Lapierre C, Fangel JU, Willats WG, Hofte H, et al. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Proc Natl Acad Sci U S A. 2014;111(40):14601–6.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Matos DA, Whitney IP, Harrington MJ, Hazen SP. Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode. PLoS One. 2013;8(11):e80640.PubMedCentralCrossRefPubMedGoogle Scholar
  38. May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry. 2012;51(6):1148–59.PubMedCentralCrossRefPubMedGoogle Scholar
  39. McFarlane HE, Döring A, Persson S. The cell biology of cellulose synthesis. Annu Rev Plant Biol. 2014;65:69–94.CrossRefPubMedGoogle Scholar
  40. Meineke T, Manisseri C, Voigt CA. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. PLoS One. 2014;9(8):e103580.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell. 2005;17(11):2993–3006.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seik M, Shinozaki K, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell. 2007;19(1):270–80.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell. 2010;22(10):3461–73.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Patrick JW. Vascular system of the stem of the wheat plant. I. Mature state. Aust J Bot. 1972;20(1):49–63.CrossRefGoogle Scholar
  45. Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, et al. pCoumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J. 2014;77(5):713–26.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Ralph J. Hydroxycinnamates in lignification. Phytochem Rev. 2010;9(1):65–83.CrossRefGoogle Scholar
  47. Rancour DM, Marita JM, Hatfield RD. Cell wall composition throughout development for the model grass Brachypodium distachyon. Front in Plant Sci. 2012;3:266.CrossRefGoogle Scholar
  48. Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics. 2009;181(2):783–95.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, et al. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol. 2009;150(2):584–95.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 2014;166(2):798–807.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006;22(1):53–78.CrossRefPubMedGoogle Scholar
  52. Taylor-Teeples M, Lin L, de Lucas M, Turgo G, Toal TW, Gaudinier A, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. 2014;517(7536):571–5.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Timell TE. Compression wood in gymnosperms. Berlin: Springer-Verlag; 1986.CrossRefGoogle Scholar
  54. Timpano H, Sibout R, Devaux MF, Alvarado C, Looten R, Falourd X, et al. Brachypodium cell wall mutant with enhanced saccharification potential despite increased lignin content. Bioenerg Res. 2015;8(1):53–67.CrossRefGoogle Scholar
  55. Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, et al. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol. 2013;13:61.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, et al. Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell. 2010;22(10):3357–73.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet. 2003;34:157–65.CrossRefPubMedGoogle Scholar
  58. Urahara T, Tsuchiya K, Konishi T, Kotake T, Tohno-oka T, Komae K, et al. A beta-(1;4)-xylosyltransferase involved in the synthesis of arabinoxylans in developing barley endosperms. Physiol Plant. 2004;122(2):169–80.CrossRefGoogle Scholar
  59. Valdivia ER, Herrera MT, Gianzo C, Fidalgo J, Revilla G, Zarra I, et al. Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. J Exp Bot. 2013;64(5):1333–43.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153(3):895–905.PubMedCentralCrossRefPubMedGoogle Scholar
  61. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell. 1995;7(4):407–16.PubMedCentralCrossRefPubMedGoogle Scholar
  62. Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 2008;11(3):301–7.CrossRefPubMedGoogle Scholar
  63. Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, et al. LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol. 2015;168(1):192–204.CrossRefPubMedGoogle Scholar
  64. Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol. 2002;52:1155–60.CrossRefPubMedGoogle Scholar
  65. Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem. 2007;282(51):36777–81.CrossRefPubMedGoogle Scholar
  66. Wilson JR, Mertens DR, Hatfield RD. Isolates of cell types from sorghum stems: digestion, cell wall and anatomical characteristics. J Sci Food Agric. 1993;63(4):407–17.CrossRefGoogle Scholar
  67. Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, et al. Phylogenetic, molecular, and biochemical characterization of caffeic acid O-methyltransferase gene family in Brachypodium distachyon. Int J Plant Genomics. 2013;2013:12.CrossRefGoogle Scholar
  68. Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 2011;66(4):579–90.CrossRefPubMedGoogle Scholar
  69. Zhong R, Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol. 2012;53(2):368–80.CrossRefPubMedGoogle Scholar
  70. Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell. 2007;19(9):2776–92.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20(10).Google Scholar
  72. Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant. 2010a;3(6):1087–103.CrossRefPubMedGoogle Scholar
  73. Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 2010b;15(11):625–32.CrossRefPubMedGoogle Scholar
  74. Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell. 2002;14(6):1265–77.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Plant Biology Graduate Program, Biology DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations