Skip to main content

Brachypodium distachyon as a Model Species to Understand Grass Cell Walls

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 18))

Abstract

The utilization of Brachypodium distachyon as a model system has allowed for a synthesis of known aspects of grass cell wall biosynthesis and provided a platform to investigate new areas of the field. Compositional analysis of B. distachyon cell walls shows many similarities with the walls of major food and energy crop species. This chapter presents a summary of these comparisons, as well as a review of work done in B. distachyon characterizing genes involved with cell wall biogenesis. Aspects of lignin biosynthesis and polymerization, cellulose and hemicellulose synthesis, and transcriptional regulation of secondary walls have all been characterized in B. distachyon, with genetic, biochemical, and phenotypic data outlined herein. Finally, the use of B. distachyon in identifying saccharification and digestibility traits relatable to biofuel feedstock quality in grasses are discussed. Taken together, the reviewed material demonstrates the utility of B. distachyon as a model for grass cell wall research, highlighting known and novel facets of cell wall biosynthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci U S A. 2012;109(3):989–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avci U, Petzold HE, Ismail IO, Beers EP, Haigler CH. Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. Plant J. 2008;56(2):303–15.

    Article  CAS  PubMed  Google Scholar 

  • Bouvier d’Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cézard L, Legée F, et al. Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J. 2013;73(3):496–508.

    Article  PubMed  Google Scholar 

  • Bukh C, Nord-Larsen PH, Rasmussen SK. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. J Exp Bot. 2012;63(17):6223–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton RA, Fincher GB. (1,3;1,4)-beta-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant. 2009;2(5):873–82.

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Wilson SM, Hrmova M, Harvey AJ. Cellulose Synthase-Like CslF Genes Mediate the Synthesis of Cell Wall (1,3;1,4)-beta-D-Glucans. Science. 2006;311(5769):1940–2.

    Article  CAS  PubMed  Google Scholar 

  • Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, et al. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 2008;146(4):1821–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton RA, Collins HM, Kibble NA, Smith JA, Shirley NJ, Jobling SA, et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-b-D-glucans. Plant Biotechnol J. 2011;9(2):117–35.

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC. Structure and biogenesis of the grass cell wall. Annu Rev Plant Physiol Plant Mol Biol. 1996;47(1):445–76.

    Article  CAS  PubMed  Google Scholar 

  • Cesarino I, Araújo P, Sampaio Mayer JL, Vicentini R, Berthel S, Demedts B, et al. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot. 2013;64(6):1769–81.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Auh C, Chen F, Cheng X, Alijoe H, Dixon RA, et al. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem. 2002;50(20):5558–65.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Auh C, Powling P, Bell J, Chen F, Hopkins A, et al. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J. 2003;1(6):437–49.

    Article  CAS  PubMed  Google Scholar 

  • Chiniquy D, SHarma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K, et al. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U S A. 2012;109(42):17117–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen U, Harholt J, Alonso-Simon A, Willats WGT, Scheller HV. Characterization of the primary cell walls of seedlings of Brachypodium distachyon - a potential model plant for temperate grasses. Phytochemistry. 2010;71(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  • Collazo P, Montoliu L, Puigdomènech P, Rigau J. Structure and expression of the lignin O-methyltransferase gene from Zea mays. Plant Mol Biol. 1992;20(5):857–67.

    Article  CAS  PubMed  Google Scholar 

  • Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darrac O, Bouvier d’Yvoire M, et al. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS One. 2013;8(6):e65503.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, et al. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-b-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 2009;106(14):5996.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fincher GB. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 2009;149(1):27–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, et al. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant. 2011;5(4):817–30.

    Article  PubMed  Google Scholar 

  • Fry SC, Nesselrode BHWA, Miller JG, Mewburn BR. Mixed-linkage (1,3;1,4)-b-D-glucans. New Phytol. 2008;179(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  • Gomez L, McQueen-Mason S, Statham E, Bristow J. Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis. Biotechnol Biofuels. 2008;1(1):1–12.

    Article  Google Scholar 

  • Grabber JH, Ralph J, Lapierre C, Barrière Y. Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C R Biol. 2004;327(5):455–65.

    Article  CAS  PubMed  Google Scholar 

  • Guo DM, Ran JH, Wang XQ. Evolution of the cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of bona fide CAD. J Mol Evol. 2010;71(3):202–18.

    Article  CAS  PubMed  Google Scholar 

  • Handakumbura PP, Hazen SP. Transcriptional regulation of grass secondary cell wall biosynthesis: playing catch-up with Arabidopsis thaliana. Front Plant Sci. 2012;3:74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Handakumbura PP, Matos DA, Osmont KS, Harrington MJ, Heo K, Kafle K, et al. Perturbation of Brachypodium distachyon CELLULOSE SYNTHASE A4 or 7 results in abnormal cell walls. BMC Plant Biol. 2013;13(1):131.

    Article  PubMed Central  PubMed  Google Scholar 

  • Harrington MJ, Mutwil M, Barriere Y, Sibout R. Molecular biology of lignification in grasses. In: Jouanin L, Lapierre C, Jacquot J, Gadal P, editors. Advances in botanical research lignins: biosynthesis, biodegradation and bioengineering, vol. 61. London: Academic Press; 2012. p. 75–105.

    Google Scholar 

  • Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu F, et al. Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta. 2009;229(6):1253–67.

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Aya K, Kondo M, Okuno A, Morinaka Y, Matsuoka M. OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep. 2012;31(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  • Kiesselbach TA. The structure and reproduction of corn. Lincoln: University of Nebraska College of Agriculture, Agricultural Experiment Station; 1949.

    Google Scholar 

  • Kim S-J, Zemelis S, Keegstra K, Brandizzi F. The cytoplasmic localization of the catalytic site of CSLF6 supports a channeling model for the biosynthesis of mixed-linkage glucan. Plant J. 2015;81(4):537–47.

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Kim WC, Kim JY, Ahn SJ, Han KH. MYB46-mediated transcriptional regulation of secondary wall biosynthesis. Mol Plant. 2012;5(5):961–3.

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Warnick TA, Pattathil S, Alvelo-Maurosa JG, Serapiglia MJ, McCormick H, et al. Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnol Biofuels. 2012;5:1–14.

    Article  Google Scholar 

  • Lee MB, Kim DY, Hong MJ, Lee YJ, Seo YW. Identification of gamma irradiated Brachypodium mutants with altered genes responsible for lignin biosynthesis. Genes Genomics. 2014;36(1):65–76.

    Article  CAS  Google Scholar 

  • Li H, Rotter D, Hartman T, Pak F, Havkin-Frenkel D, Belanger F. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Plant Mol Biol. 2006;61(3):537–52.

    Article  CAS  PubMed  Google Scholar 

  • Ma QH. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. J Exp Bot. 2010;61(10):2735–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marriott PE, Sibout R, Lapierre C, Fangel JU, Willats WG, Hofte H, et al. Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Proc Natl Acad Sci U S A. 2014;111(40):14601–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matos DA, Whitney IP, Harrington MJ, Hazen SP. Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode. PLoS One. 2013;8(11):e80640.

    Article  PubMed Central  PubMed  Google Scholar 

  • May JF, Levengood MR, Splain RA, Brown CD, Kiessling LL. A processive carbohydrate polymerase that mediates bifunctional catalysis using a single active site. Biochemistry. 2012;51(6):1148–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McFarlane HE, Döring A, Persson S. The cell biology of cellulose synthesis. Annu Rev Plant Biol. 2014;65:69–94.

    Article  CAS  PubMed  Google Scholar 

  • Meineke T, Manisseri C, Voigt CA. Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. PLoS One. 2014;9(8):e103580.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell. 2005;17(11):2993–3006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seik M, Shinozaki K, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell. 2007;19(1):270–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell. 2010;22(10):3461–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patrick JW. Vascular system of the stem of the wheat plant. I. Mature state. Aust J Bot. 1972;20(1):49–63.

    Article  Google Scholar 

  • Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, Liu S, et al. pCoumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J. 2014;77(5):713–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ralph J. Hydroxycinnamates in lignification. Phytochem Rev. 2010;9(1):65–83.

    Article  CAS  Google Scholar 

  • Rancour DM, Marita JM, Hatfield RD. Cell wall composition throughout development for the model grass Brachypodium distachyon. Front in Plant Sci. 2012;3:266.

    Article  Google Scholar 

  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in sorghum [Sorghum bicolor (L.) Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics. 2009;181(2):783–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, et al. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol. 2009;150(2):584–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Ralph J, et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 2014;166(2):798–807.

    Article  PubMed Central  PubMed  Google Scholar 

  • Somerville C. Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006;22(1):53–78.

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Teeples M, Lin L, de Lucas M, Turgo G, Toal TW, Gaudinier A, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature. 2014;517(7536):571–5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Timell TE. Compression wood in gymnosperms. Berlin: Springer-Verlag; 1986.

    Book  Google Scholar 

  • Timpano H, Sibout R, Devaux MF, Alvarado C, Looten R, Falourd X, et al. Brachypodium cell wall mutant with enhanced saccharification potential despite increased lignin content. Bioenerg Res. 2015;8(1):53–67.

    Article  CAS  Google Scholar 

  • Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, et al. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol. 2013;13:61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, et al. Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell. 2010;22(10):3357–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet. 2003;34:157–65.

    Article  CAS  PubMed  Google Scholar 

  • Urahara T, Tsuchiya K, Konishi T, Kotake T, Tohno-oka T, Komae K, et al. A beta-(1;4)-xylosyltransferase involved in the synthesis of arabinoxylans in developing barley endosperms. Physiol Plant. 2004;122(2):169–80.

    Article  CAS  Google Scholar 

  • Valdivia ER, Herrera MT, Gianzo C, Fidalgo J, Revilla G, Zarra I, et al. Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. J Exp Bot. 2013;64(5):1333–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153(3):895–905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell. 1995;7(4):407–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 2008;11(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, et al. LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol. 2015;168(1):192–204.

    Article  CAS  PubMed  Google Scholar 

  • Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol. 2002;52:1155–60.

    Article  CAS  PubMed  Google Scholar 

  • Weigel PH, DeAngelis PL. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem. 2007;282(51):36777–81.

    Article  CAS  PubMed  Google Scholar 

  • Wilson JR, Mertens DR, Hatfield RD. Isolates of cell types from sorghum stems: digestion, cell wall and anatomical characteristics. J Sci Food Agric. 1993;63(4):407–17.

    Article  Google Scholar 

  • Wu X, Wu J, Luo Y, Bragg J, Anderson O, Vogel J, et al. Phylogenetic, molecular, and biochemical characterization of caffeic acid O-methyltransferase gene family in Brachypodium distachyon. Int J Plant Genomics. 2013;2013:12.

    Article  Google Scholar 

  • Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 2011;66(4):579–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol. 2012;53(2):368–80.

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell. 2007;19(9):2776–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20(10).

    Google Scholar 

  • Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant. 2010a;3(6):1087–103.

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci. 2010b;15(11):625–32.

    Article  CAS  PubMed  Google Scholar 

  • Zubieta C, Kota P, Ferrer JL, Dixon RA, Noel JP. Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell. 2002;14(6):1265–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Hazen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coomey, J.H., Hazen, S.P. (2015). Brachypodium distachyon as a Model Species to Understand Grass Cell Walls. In: Vogel, J. (eds) Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models, vol 18. Springer, Cham. https://doi.org/10.1007/7397_2015_11

Download citation

Publish with us

Policies and ethics