Skip to main content

Bacterial Ectonucleotidases: Underexplored Antibacterial Drug Targets

  • Chapter
  • First Online:
Purinergic Receptors and their Modulators

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 41))

  • 113 Accesses

Abstract

The bacterial ecto-5′-nucleotidases (5′-NTs) are metalloenzymes that hydrolyze 5′-nucleoside-monophosphates (NMPs) to generate nucleosides and phosphate. These metallophosphoesterases are found in the periplasmic space and cytoplasm or are connected to the bacterial outer membrane. Membrane-bound and periplasmic 5′-NTs break down extracellular nucleotides for microbe feeding requirements, whereas cytosolic 5′-NTs control the bacterial ribo- and deoxyribonucleoside monophosphates and nucleotides levels. Both membrane-associated and periplasmic 5′-NTs have been linked to enhanced microbial virulence and pathogenicity for various pathogenic microorganisms, including Staphylococcus aureus, Vibrio cholerae, Streptococcus agalactiae, Pseudomonas aeruginosa, and Legionella pneumophila. Although these enzymes are considered as potential targets for developing inhibitors with pharmacological action as antibacterials, few drug design studies have been described in the literature. At the moment, only protein-based products, natural polyphenolic compounds, and 1-amino-4-ar(alk)ylamino-2-sulfoanthraquinones with low-micromolar IC50 values were described as bacterial 5′-NT inhibitors. Thus, this chapter may serve as a warning for the scientific community to find inhibitors of bacterial 5-NTs, which may represent a potential solution to the troublesome issue of antibiotic resistance to presently used anti-infective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Illes P, Xu GY, Tang Y (2020) Purinergic signaling in the central nervous system in health and disease. Neurosci Bull 36:1239–1241

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nocentini A, Capasso C, Supuran CT (2021) Small-molecule CD73 inhibitors for the immunotherapy of cancer: a patent and literature review (2017-present). Expert Opin Ther Pat 31:867–876

    Article  CAS  PubMed  Google Scholar 

  3. Camici M, Garcia-Gil M, Tozzi MG (2018) The inside story of adenosine. Int J Mol Sci 19

    Google Scholar 

  4. Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192

    Article  CAS  PubMed  Google Scholar 

  5. Knöfel T, Sträter N (1999) X-ray structure of the Escherichia coli periplasmic 5′-nucleotidase containing a dimetal catalytic site. Nat Struct Biol 6:448–453

    Article  PubMed  Google Scholar 

  6. Knofel T, Strater N (2001) Mechanism of hydrolysis of phosphate esters by the dimetal center of 5'-nucleotidase based on crystal structures. J Mol Biol 309:239–254

    Article  CAS  PubMed  Google Scholar 

  7. Santos CA, Saraiva AM, Toledo MA, Beloti LL, Crucello A, Favaro MT, Horta MA, Santiago AS, Mendes JS, Souza AA, Souza AP (2013) Initial biochemical and functional characterization of a 5′-nucleotidase from Xylella fastidiosa related to the human cytosolic 5′-nucleotidase I. Microb Pathog 59-60:1–6

    Article  CAS  PubMed  Google Scholar 

  8. Tamao Y, Noguchi K, Sakai-Tomita Y, Hama H, Shimamoto T, Kanazawa H, Tsuda M, Tsuchiya T (1991) Sequence analysis of nutA gene encoding membrane-bound Cl(−)-dependent 5′-nucleotidase of vibrio parahaemolyticus. J Biochem 109:24–29

    Article  CAS  PubMed  Google Scholar 

  9. Burns DM, Beacham IR (1986) Nucleotide sequence and transcriptional analysis of the E. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5′-nucleotidase): regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res 14:4325–4342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terakawa A, Natsume A, Okada A, Nishihata S, Kuse J, Tanaka K, Takenaka S, Ishikawa S, Yoshida K (2016) Bacillus subtilis 5'-nucleotidases with various functions and substrate specificities. BMC Microbiol 16

    Google Scholar 

  11. Zakataeva NP (2021) Microbial 5'-nucleotidases: their characteristics, roles in cellular metabolism, and possible practical applications. Appl Microbiol Biotechnol 105:7661–7681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, Savchenko A, Yakunin AF (2004) General enzymatic screens identify three new nucleotidases in Escherichia coli – biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem 279:54687–54694

    Article  CAS  PubMed  Google Scholar 

  13. Botero S, Chiaroni-Clarke R, Simon SM (2019) Escherichia coli as a platform for the study of phosphoinositide biology. Sci Adv:5

    Google Scholar 

  14. Reaves ML, Young BD, Hosios AM, Xu YF, Rabinowitz JD (2013) Pyrimidine homeostasis is accomplished by directed overflow metabolism. Nature 500:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kates M (1980) Citation classic – bacterial lipids. Life Sci 12-12

    Google Scholar 

  16. Pinchuk GE, Ammons C, Culley DE, Li SMW, McLean JS, Romine MF, Nealson KH, Fredrickson JK, Beliaev AS (2008) Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol 74:1198–1208

    Article  CAS  PubMed  Google Scholar 

  17. Kakehi M, Usuda Y, Tabira Y, Sugimoto S (2007) Complete deficiency of 5'-nucleotidase activity in Escherichia coli leads to loss of growth on purine nucleotides but not of their excretion. J Mol Microbiol Biotechnol 13:96–104

    CAS  PubMed  Google Scholar 

  18. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O (2009) Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206:2417–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Punj V, Zaborina O, Dhiman N, Falzari K, Bagdasarian M, Chakrabarty AM (2000) Phagocytic cell killing mediated by secreted cytotoxic factors of vibrio cholerae. Infect Immun 68:4930–4937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Firon A, Dinis M, Raynal B, Poyart C, Trieu-Cuot P, Kaminski PA (2014) Extracellular nucleotide catabolism by the group B streptococcus ectonucleotidase NudP increases bacterial survival in blood. J Biol Chem 289:5479–5489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaborina O, Dhiman N, Ling Chen M, Kostal J, Holder IA, Chakrabarty AM (2000) Secreted products of a nonmucoid Pseudomonas aeruginosa strain induce two modes of macrophage killing: external-ATP-dependent, P2Z-receptor-mediated necrosis and ATP-independent, caspase-mediated apoptosis. Microbiology (Reading) 146(Pt 10):2521–2530

    Article  CAS  PubMed  Google Scholar 

  22. Alves-Pereira I, Canales J, Cabezas A, Cordero PM, Costas MJ, Cameselle JC (2008) CDP-alcohol hydrolase, a very efficient activity of the 5'-nucleotidase/UDP-sugar hydrolase encoded by the ushA gene of yersinia intermedia and Escherichia coli. J Bacteriol 190:6153–6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melnikov A, Zaborina O, Dhiman N, Prabhakar BS, Chakrabarty AM, Hendrickson W (2000) Clinical and environmental isolates of Burkholderia cepacia exhibit differential cytotoxicity towards macrophages and mast cells. Mol Microbiol 36:1481–1493

    Article  CAS  PubMed  Google Scholar 

  24. Zaborina O, Misra N, Kostal J, Kamath S, Kapatral V, El-Idrissi ME, Prabhakar BS, Chakrabarty AM (1999) P2Z-independent and P2Z receptor-mediated macrophage killing by Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun 67:5231–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zheng LS, Khemlani A, Lorenz N, Loh JMS, Langley RJ, Proft T (2015) Streptococcal 5'-Nucleotidase A (S5nA), a novel streptococcus pyogenes virulence factor that facilitates immune evasion. J Biol Chem 290:31126–31137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dangel ML, Dettmann JC, Hasselbarth S, Krogull M, Schakat M, Kreikemeyer B, Fiedler T (2019) The 5'-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in streptococcus pyogenes. PloS One:14

    Google Scholar 

  28. Begun J, Sifri CD, Goldman S, Calderwood SB, Ausubel FM (2005) Staphylococcus aureus virulence factors identified by using a high-throughput Caenorhabditis elegans-killing model. Infect Immun 73:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zimmermann H (1992) 5'-Nucleotidase – molecular-structure and functional-aspects. Biochem J 285:345–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwamoto M, Matsuo T, Uchino K, Tonosaki Y, Fukuchi A (1988) New 5′-nucleotidase inhibitors, NPF-86IA, NPF-86IB, NPF-86IIA, and NPF-86IIB from Areca catechu; Part II anti-tumor effects. Planta Med 54(5):422–425

    Article  CAS  PubMed  Google Scholar 

  31. Uchino K, Matsuo T, Iwamoto M, Tonosaki Y, Fukuchi A (1988) New 5′-nucleotidase inhibitors, NPF-86IA, NPF-86IB, NPF-86IIA, and NPF-86IIB from Areca catechu; part I isolation and biological properties. Planta Med 54(5):419–422

    Article  CAS  PubMed  Google Scholar 

  32. Toukairin T, Uchino K, Iwamoto M, Murakami S, Tatebayashi T, Ogawara H, Tonosaki Y (1991) New polyphenolic 5′-nucleotidase inhibitors isolated from the wine grape “Koshu” and their biological effects. Chem Pharm Bull(Tokyo) 39(6):1480–1483

    Article  CAS  PubMed  Google Scholar 

  33. Sansom FM, Riedmaier P, Newton HJ, Dunstone MA, Müller CE, Stephan H, Byres E, Beddoe T, Rossjohn J, Cowan PJ, d'Apice AJ, Robson SC, Hartland EL (2008) Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from legionella pneumophila: substrate specificity and requirement for virulence. J Biol Chem 283(19):12909–12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fiene A, Baqi Y, Malik EM, Newton P, Li W, Lee SY, Hartland EL, Müller CE (2016) Inhibitors for the bacterial ectonucleotidase Lp1NTPDase from Legionella pneumophila. Bioorg Med Chem 24(18):4363–4371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu T. Supuran .

Editor information

Editors and Affiliations

Ethics declarations

The author declares that they have no conflict of interest.

Funding

Original research of our team is funded by the MIUR (Italian Ministry for University and Research) projects FISR2019_04819 (BacCAD) and by Ente Cassa di Risparmio di Firenze (ECRF), grant CRF2020.1395.

Ethical Approval

This chapter does not contain any studies with human participants or animals performed by the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nocentini, A., Capasso, C., Supuran, C.T. (2023). Bacterial Ectonucleotidases: Underexplored Antibacterial Drug Targets. In: Colotta, V., Supuran, C.T. (eds) Purinergic Receptors and their Modulators. Topics in Medicinal Chemistry, vol 41. Springer, Cham. https://doi.org/10.1007/7355_2023_159

Download citation

Publish with us

Policies and ethics