Skip to main content

Saponins as Potential Antiprotozoal Agents

  • Chapter
  • First Online:
Book cover Antiprotozoal Drug Development and Delivery

Abstract

The sphere of natural products is an abundant source for discovery of therapeutic drugs for the treatment of neglected parasitic diseases. Various classes of chemical substances displayed antiprotozoal activity, such as alkaloids, terpenoids, saponins, and flavonoids. The highly functional saponins are found predominantly in plants and are frequently consumed in foods, beverages, and medicines. This class of chemical substance has structurally one or more glycoside moieties linked to a triterpenoid or steroid. Saponins demonstrated to be very valuable therapeutic targets whose potential is still to be explored and that may be useful for the development of new antiprotozoal drugs options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moghimipour E, Handali S (2015) Saponin: properties, methods of evaluation and applications. Annu Res Rev Biol 5(3):207–220

    Article  Google Scholar 

  2. Oakenfull D, Sidhu GS (2000) Saponins. In: Cheeke PR (ed) Toxicants of plant origin. Vol. II: glycosides. CRC Press, Boca Raton, pp 98–103

    Google Scholar 

  3. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  PubMed  Google Scholar 

  4. Addisu S, Assefa A (2016) Role of plant containing saponin on livestock production; a review. Adv Biol Res 10(5):309–314

    CAS  Google Scholar 

  5. Moses T, Papadopoulou KK, Osbourn (2014) A metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49(6):439–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oketch-Rabah HA, Dossaji SF, Christensen SB, Frydenvang K, Lemmich E, Cornett C, Olsen CE, Chen M, Kharazmi A, Theander T (1997) Antiprotozoal compounds from Asparagus africanus. J Nat Prod 60:1017–1022

    Article  CAS  PubMed  Google Scholar 

  7. Bekhit AA, El-Agroudy E, Helmy A, Ibrahim TM, Shavandi A, Bekhit AEA (2018) Leishmania treatment and prevention: natural and synthesized drugs. Eur J Med Chem 160(1):229–244

    Article  CAS  PubMed  Google Scholar 

  8. Dutta A, Ghoshal A, Mandal D, Mondal NB, Banerjee S, Sahu NP, Mandal C (2007) Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani. J Med Microbiol 56:1196–1204

    Article  CAS  PubMed  Google Scholar 

  9. Cheuka PM, Mayoka G, Mutai P, Chibale K (2017) The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 22(1):e58

    Article  Google Scholar 

  10. Fuchino H, Sekita S, Mori K, Kawahara N, Satake M, Kiuchi F (2008) A new leishmanicidal saponin from Brunfelsia grandiflora. Chem Pharm Bull 56:93–96

    Article  CAS  Google Scholar 

  11. Ibrahim MA, Aliyu AB, Meduteni K, Yunusa I (2013) Saponins-rich fraction of Calotropis procera leaves elicit no antitrypanosomal activity in a rat model. Asian Pac J Trop Biomed 3(7):569–572

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ibrahim MA, Mohammed A, Isah MB, Aliyu AB (2014) Anti-trypanosomal activity of African medicinal plants: a review update. J Ethnopharmacol 154:26–54

    Article  PubMed  Google Scholar 

  13. Teles CBG, Moreira-Dill LS, Silva AA, Facundo VA, Azevedo Jr WF, Silva LHP, Motta MCM, Stábeli RG, Silva-Jardim I (2015) A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165–175

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khanna VG, Kannabiran K, Getti G (2009) Leishmanicidal activity of saponins isolated from the leaves of Eclipta prostrata and Gymnema sylvestre. Indian J Pharmacol 41:32–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panda SK, Luyten W (2018) Antiparasitic activity in Asteraceae with special attention to ethnobotanical use by the tribes of Odisha, India. Parasite 25(10):1–25

    Google Scholar 

  16. Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MC, da Slva LC, Aliança AS (2019) Asteraceae plants as sources of compounds against leishmaniasis and Chagas disease. Front Pharmacol 10:477

    Article  PubMed  PubMed Central  Google Scholar 

  17. Traore F, Faure R, Ollivier E, Gasquet M, Azas N, Debrauwer L, Keita A, Timon-David P, Balansard G (2000) Structure and antiprotozoal activity of triterpenoid saponins from Glinus oppositifolius. Planta Med 66:368–371

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee S, Mukherjee N, Gajbhiye RL, Jaisankar P, Datta S, Saha KD (2019) Intracellular anti-leishmanial effect of Spergulin-a, a triterpenoid saponin of Glinus oppositifolius. Infect Drug Resist 12:2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delmas F, Di Giorgio C, Elias R, Gasquet M, Azas N, Mshvildadze V, Dekanosidze G, Kemertelidze E, Timon-David P (2000) Antileishmanial activity of three saponins isolated from ivy, α-hederin, β-hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro. Planta Med 66:343–347

    Article  CAS  PubMed  Google Scholar 

  20. Ridoux O, Di Giorgio C, Delmas F, Elias R, Mshvildadze V, Dekanosidze G, Kemertelidze E, Balansard G, Timon-David P (2001) In vitro antileishmanial activity of three saponins isolated from ivy, alpha-hederin, beta-hederin and hederacolchiside A(1), in association with pentamidine and amphotericin B. Phytother Res 15:298–301

    Article  CAS  PubMed  Google Scholar 

  21. Sen R, Chatterjee M (2011) Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine 18:1056–1069

    Article  CAS  PubMed  Google Scholar 

  22. Lutsenko Y, Bylka W, Matławska I, Darmohray R (2010) Hedera helix as a medicinal plant. Herba Polonica 56(1):83–96

    Google Scholar 

  23. Pérez JM, Robledo S, Cardona W, Alzate F, Muñoz D, Herrera A (2016) Leishmanicidal and cytotoxic activity of extracts and saponins from Ilex laurina (Aquifoliaceae). Trop J Pharm Res 15(5):973–979

    Article  Google Scholar 

  24. Foubert K, Gorella T, Faizal A, Cos P, Maes L, Apers S, Geelen D, Pieters L (2016) Triterpenoid saponins from Maesa argentea leaves. Planta Med 82:1568–1575

    Article  CAS  PubMed  Google Scholar 

  25. Maes L, Berghe DV, Germonprez N, Ludo Quirijnen L, Paul Cos P, Norbert De Kimpe ND, Puyvelde LV (2004) In vitro and in vivo activities of a triterpenoid saponin extract (PX-6518) from the plant Maesa balansae against visceral Leishmania species. Antimicrob Agents Chemother 48(1):130–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maes L, Germonprez N, Quirijnen L, Puyvelde LV, Cos P, Berghe DV (2004) Comparative activities of the triterpene saponin maesabalide III and liposomal amphotericin B (AmBisome) against Leishmania donovani in hamsters. Antimicrob Agents Chemother 48:2056–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maes LJRM, Germonprez NAG, Van Puyvelde LEM, De Kimpe NGM, Ninh N (2004) Antiprotozoal saponins. United States patent application publication US2004/0138151A1

    Google Scholar 

  28. Germonprez N, Maes L, Van Puyvelde L, Van Tri M, Tuan DA, De Kimpe N (2005) In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 48:32–37

    Article  CAS  PubMed  Google Scholar 

  29. Mohamed SM, Bachkeet EY, Bayoumi SA, Jain S, Cutler SJ, Tekwani BL, Ross SA (2015) Potent antitrypanosomal triterpenoid saponins from Mussaenda luteola. Fitoterapia 107(1):114–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silva MLA, Pereira AC, Ferreira DS, Esperandim VR, Sımaro GV, Lima TC TC, Januario AH, Pauletti PM, Rehder VLG, Crevelin EJ, Cunha WR, Crotti AEM, Bastos JK (2017) In vitro activities of Pfaffia glomerata root extract, its hydrolyzed fractions and pfaffic acid against Trypanosoma cruzi trypomastigotes. Chem Biodivers 14:e1600175

    Article  Google Scholar 

  31. Makwali JA, Wanjala FM, Ingonga J, Anjili CO (2015) In vitro studies on the antileishmanial activity of herbicides and plant extracts against Leishmania major parasites. Res J Med Plant 9(3):90–104

    Article  CAS  Google Scholar 

  32. Yahya Y, Nurliani A, Santoso B (2017) The effect of papaya (Carica papaya L.) leaf extract to the number of Trypanosoma evansi steel in liver and kidney of mice (Mus musculus L. 1758). In: ICBS Conference Proceedings, International Conference on Biological Science KnE Life Sciences, pp 275–284

    Google Scholar 

  33. Cheeke PR (2001) Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. Rec Adv Anim Nutr Austr 13:115–126

    Google Scholar 

  34. Yu Z, Zhang T, Zhou F, Xiao X, Ding X, He H, Rang J, Quan M, Wang T, Zuo M, Xia L (2015) Anticancer activity of Saponins from Allium chinense against the B16 melanoma and 4T1 breast carcinoma cell. Evid-Based Compl Alt 2015:1–12

    Google Scholar 

  35. Kim TG, Thanh HN, Thuy DN, Duc LV, Thi TV, Manh HV, Boonsiri P, Thanh TB (2016) Anticancer effects of saponin and saponin–phospholipid complex of Panax notoginseng grown in Vietnam. Asian Pac J Trop Biomed 6(9):795–800

    Article  CAS  Google Scholar 

  36. Shi Z, Wang Y, Gong Y, Li H, Zhu Y (2019) New triterpenoid saponins with cytotoxic activities from Ligularia przewalskii. Phytochem Lett 30:215–219

    Article  CAS  Google Scholar 

  37. Zong J, Peng Y, Bao G, Hou R, Wan X (2016) Two new oleanane-type saponins with anti-proliferative activity from Camelia oleifera Abel. Seed cake. Molecules 21(188):1–8

    Google Scholar 

  38. Ahmad S, Ullah F, Ayaz M, Zeb A, Ullah F, Sadiq A (2016) Antitumor and anti-angiogenic potentials of isolated crude saponins and various fractions of Rumex hastatus D. Don. Biol Res 49:18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lan X, Deng K, Zhao J, Chen Y, Xin X, Liu Y, Khan IA, Yang S, Wang T, Xu Q (2017) New triterpenoid saponins from green vegetable soya beans and their anti-inflammatory activities. J Agric Food Chem 65:11065–11072

    Article  CAS  PubMed  Google Scholar 

  40. Xiong H, Zheng Y, Yang G, Wang H, Mei Z (2015) Triterpene saponins with anti-inflammatory activity from the stems of Entada phaseoloides. Fitoterapia 103:33–45

    Article  CAS  PubMed  Google Scholar 

  41. Xiang L, Wang Y, Yi X, Xiaomin Y, Feng J, He X (2016) Furospistanol and spirostanol saponins from the rhizome of Tupistra chinensis and their cytotoxic and anti-inflammatory activities. Tetrahedron 72:134–141

    Article  CAS  Google Scholar 

  42. Liu Q, Zhu X, Feng R, Liu Z, Wang G, Guan X, Ou G, Li Y, Wang Y, Li M, Ye W (2015) Crude triterpenoid saponins from Anemone flaccida (Di Wu) exert anti-arthritic effects on type II collagen-induced arthritis in rats. Chin Med 10(20):1–9

    Google Scholar 

  43. Yan J, Duan J, Wu X, Guo C, Yin Y, Zhu Y, Hu T, Wei G, Wen A, Xi M (2015) Total saponins from Aralia taibaiensis protect against myocardial ischemia/reperfusion injury through AMPK pathway. Int J Mol Med 36:1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rattan R, Reddy SGE, Dolma SK, Fozdar BI, Gautam V, Sharma R, Sharma U (2015) Triterpenoid saponins from Clematis graveolens and evaluation of their insecticidal activities. Nat Prod Commun 10(9):1525–1528

    PubMed  Google Scholar 

  45. Li B, Terazono Y, Hirasaki N, Tatemichi Y, Kinoshita E, Obata A, Matsui T (2018) Inhibition of glucose transport by tomatoside a, a tomato seed steroidal saponin, through the suppression of GLUT2 expression in Caco-2 cells. J Agric Food Chem 66:1428–1434

    Article  CAS  PubMed  Google Scholar 

  46. Wijaya M, Sudarmo TPB, Suarsini E (2018) Saponin isolates from cucumber (Cucumis sativus L.) fruit mesocarp ant their activity as pancreatic lipase inhibitor. AIP Conf Proc 2021(070016):1–5

    Google Scholar 

  47. Zhang Y, Wang W, He H, Song X, Yao G, Song S (2018) Triterpene saponins with neuroprotective effects from a wild vegetable Aralia elata. J Funct Foods 45:313–320

    Article  CAS  Google Scholar 

  48. Cibulski SP, Silveira F, Mourglia-Ettlin G, Teixeira TF, Santos HF, Yendo AC, Costa F, Fett-Neto AG, Gosmann G, Roehe PM (2016) Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice. Comp Immunol Microb 45:1–8

    Article  Google Scholar 

  49. Vieira PB, Silva NLF, Menezes C, Silva MV, Silva DB, Lopes NP, Macedo AJ, Bastida J, Tasca T (2017) Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula. PLoS One 12(11):e0188531

    Article  Google Scholar 

  50. Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM, Figueiredo LM, Takahashi JS (2018) Sleeping sickness is a circadian disorder. Nat Commun 9:ID62

    Article  Google Scholar 

  51. Brasil (2019) Ministério da Saúde. Saúde de A a Z: Doença de Chagas. http://portalms.saude.gov.br/saude-de-a-z/doenca-de-chagas. Accessed 17 Jun 2019

  52. Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, Snow RW (2010) Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med 7:e1000290

    Article  PubMed  PubMed Central  Google Scholar 

  53. David CV, Craft N (2009) Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther 22:491–502

    Article  PubMed  Google Scholar 

  54. Okwor I, Uzonna J (2016) Social and economic burden of human Leishmaniasis. Am J Trop Med Hyg 94(3):489–493

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M (2016) New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 45:152–168

    Article  PubMed  Google Scholar 

  56. Chatelain E, Loset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther 16:175–181

    Google Scholar 

  57. Raheem DJ, Tawfike AF, Abdelmohsen UR, Edrada-Ebel RA, Fitzsimmons-Thoss V (2019) Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci Rep 9:2–13

    Article  Google Scholar 

  58. Moreira AL, Scariot DB, Pelegrini BL, Pessini GL, Ueda-Nakamura T, Nakamura CV, Ferreira ICP (2017) Acyclic sesquiterpenes from the fruit pericarpo f Sapindus saponaria induce ultrastructural alternations and cell death in Leishmania amazonensis. Evid-Based Complement Altern 2017:5620693

    Google Scholar 

  59. Mandal D, Banerjee S, Mondal NB, Chakraborty AK, Sahu NP (2006) Steroidal saponins from the fruits of Asparagus racemosus. Phytochemistry 67:1316–1321

    Article  CAS  PubMed  Google Scholar 

  60. Krstin S, Peixoto HS, Wink M (2015) Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against Trypanosoma brucei brucei. Antimicrob Agents Chemother 11(59):7011–7017

    Article  Google Scholar 

  61. Barthomeuf C, Debiton E, Mshvildadze V, Kemertelidze E, Balansard G (2002) In vitro activity of hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Med 68:672–675

    Article  CAS  PubMed  Google Scholar 

  62. Bala V, Chhonker YS (2018) Recent developments in anti-Trichomonas research: an update review. Eur J Med Chem 143(1):232–243

    Article  CAS  PubMed  Google Scholar 

  63. Tzuzuki JK, Svidzinski TIE, Shinobu CS, Silva LFA, Rodrigues-Filho E, Cortez DAG, Ferreira ICP (2007) Antifungal activity of the extracts and saponins from Sapindus saponaria L. Anais Ac Bras Ciências 79:577–583

    Article  Google Scholar 

  64. Damke E, Tzuzuki JK, Chassot F, Cortez DAG, Ferreira ICP, Mesquita CSS, Da Silva VRS, Svidzinski TIE, Consolaro MEL (2013) Spermicidal and anti-trichomonas vaginalis activity of brazilian Sapindus saponaria. BMC complement Altern med 13:196

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was financially supported by PROEP-CNPq (grant number 407856/2017-0), CAPES and UFAM. J.D.C. and M.M.H.A. thank Fiocruz for their fellowships. A.C.B.M. thanks CNPq for fellowship.

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amaral, A.C.F. et al. (2021). Saponins as Potential Antiprotozoal Agents. In: Vermelho, A.B., Supuran, C.T. (eds) Antiprotozoal Drug Development and Delivery. Topics in Medicinal Chemistry, vol 39. Springer, Cham. https://doi.org/10.1007/7355_2021_141

Download citation

Publish with us

Policies and ethics