Skip to main content

Generative AI Models for Drug Discovery

  • Chapter
  • First Online:
Biophysical and Computational Tools in Drug Discovery

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 37))

Abstract

A drug-like-molecule library can contain 1023–1060 molecules, among which only approximately 1012 molecules may be synthesized in labs. However, it is still challenging for researchers to find the most promising candidates among the vast number of synthesizable compounds in a reasonable time. Moreover, although molecules are picked for their predicted bioactivities, their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are often difficult to predict and modify. This is often a bottleneck for downstream studies and applications. It would be more productive if candidate molecules are generated, rather than screened from libraries, with suitable ADMET properties as prerequisites at the beginning of the molecule design process. Recently, artificial intelligence (AI)-based generative models have been described for designing drug candidates using prior biological and chemical knowledge. A spectacular example was the use of a combination of AI generative techniques and reinforcement learning by the biotechnology company, Insilico Medicine, to successfully create new DDR1 kinase inhibitors to treat fibrosis in only 21 days. We will describe how reinforcement learning (RL) algorithms can be applied to generative AI for better real-world effectiveness while better utilizing modern distributed hardware assets. In this chapter, we will review simple and advanced AI generative models and discuss the advantages and disadvantages of each model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3D-CNN:

3D convolutional neural networks

AAE:

Adversarial auto-encoders

ADME:

Absorption, distribution, metabolism, and excretion

ADQN-FBDD:

Advanced deep Q-learning neural network with fragment-based drug discovery

AI:

Artificial intelligence

AIDD:

Artificial intelligence drug discovery

APEX-FBDD:

The distributed version of ADQ-FBDD

CASP:

Critical assessment of protein structure prediction

COVID19:

Coronavirus disease 2019

CVAE:

Conditional variational auto-encoder

DAI:

Distributed artificial intelligence

DQN:

Deep Q-learning neural network

FCN:

Fully connected network

GAN:

Generative adversarial networks

GCN:

Graph convolutional network

GENTRL:

Generative tensorial reinforcement learning

GRU:

Gated recurrent units

KL Divergence:

Kullback-Leibler divergence

LSTM:

Long short-term memories

MDP:

Markov decision process

QED:

Quantitative estimation of drug-likeness

R&D:

Research and development

RL:

Reinforcement learning

RNN:

Recurrent neural network

SAMPN:

Self-attention message passing graph neural network

SOM:

Self-organizing map

USD:

United States dollar

VAE:

Variational auto-encoder

References

  1. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  PubMed  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214

    Article  CAS  PubMed  Google Scholar 

  3. von Ungern-Sternberg A (2018) Autonomous driving: regulatory challenges raised by artificial decision making and tragic choices. In: Research handbook on the law of artificial intelligence. Edward Elgar Publishing

    Google Scholar 

  4. Coeckelbergh M (2020) Artificial intelligence, responsibility attribution, and a relational justification of explainability. Sci Eng Ethics 26:2051–2068

    Article  PubMed  Google Scholar 

  5. Thierer AD, Castillo O'Sullivan A, Russell R (2017) Artificial intelligence and public policy. Mercatus Research Paper

    Google Scholar 

  6. Collins GS, Moons KGM (2019) Reporting of artificial intelligence prediction models. Lancet 393:1577–1579

    Article  PubMed  Google Scholar 

  7. Singh S, Okun A, Jackson A (2017) Learning to play go from scratch. Nature 550:336–337

    Article  CAS  PubMed  Google Scholar 

  8. Chao X, Kou G, Li T, Peng Y (2018) Jie Ke versus AlphaGo: a ranking approach using decision making method for large-scale data with incomplete information. Eur J Oper Res 265:239–247

    Article  Google Scholar 

  9. Service RF (2020) The game has changed. AI triumphs at protein folding. Science 370:1144–1145

    Article  CAS  PubMed  Google Scholar 

  10. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A (2016) Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm 13:2524–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 13:1445–1454

    Article  CAS  PubMed  Google Scholar 

  12. Ishida J, Konishi M, Ebner N, Springer J (2016) Repurposing of approved cardiovascular drugs. J Transl Med 14:269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, Julian B, Khan M, Wadden D, Smith IC, Lam D, Liberzon A, Toder C, Bagul M, Orzechowski M, Enache OM, Piccioni F, Johnson SA, Lyons NJ, Berger AH, Shamji AF, Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R, Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray NS, Clemons PA, Silver S, Wu X, Zhao W-N, Read-Button W, Wu X, Haggarty SJ, Ronco LV, Boehm JS, Schreiber SL, Doench JG, Bittker JA, Root DE, Wong B, Golub TR (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171:1437–1452.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li X, Xu Y, Lai L, Pei J (2018) Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network. Mol Pharm 15:4336–4345

    Article  CAS  PubMed  Google Scholar 

  15. Tang B, Kramer ST, Fang M, Qiu Y, Wu Z, Xu D (2020) A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility. J Cheminform 12:1–9

    Article  Google Scholar 

  16. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackermann Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:eaap7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merk D, Grisoni F, Friedrich L, Schneider G (2018) Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Commun Chem 1:1–9

    Article  Google Scholar 

  19. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya AV, Terentiev VA, Polykovskiy DA, Kuznetsov MD, Asadulaev A, Volkov Y, Zholus A, Shayakhmetov RR, Zhebrak A, Minaeva LI, Zagribelnyy BA, Lee LH, Soll R, Madge D, Xing L, Guo T, Aspuru-Guzik A (2019) Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 37:1038–1040

    Article  CAS  PubMed  Google Scholar 

  20. Korshunova M, Huang N, Capuzzi S, Radchenko DS, Savych O, Moroz YS, Wells CI, Willson TM, Tropsha A, Isayev O (2021) A bag of tricks for automated de novo design of molecules with the desired properties: application to EGFR inhibitor discovery. ChemRxiv 2021:14045072.v1, pp 1–19

    Google Scholar 

  21. Salakhutdinov R (2015) Learning deep generative models. Annu Rev Stat Appl 2:361–385

    Article  Google Scholar 

  22. Lavecchia A (2019) Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today 24:2017–2032

    Article  PubMed  Google Scholar 

  23. Bjerrum EJ, Threlfall R (2017) Molecular generation with recurrent neural networks (RNNs). preprint arXiv 2017:1705.04612v2, pp 1–9

  24. Chowdhary K (2020) Natural language processing. In: Fundamentals of artificial intelligence. Springer, pp 603–649

    Google Scholar 

  25. Sriram A, Jun H, Satheesh S, Coates A (2017) Cold fusion: training seq2seq models together with language models. arXiv preprint arXiv:170806426, pp 1–7

    Google Scholar 

  26. Rodríguez P, Bautista MA, Gonzalez J, Escalera S (2018) Beyond one-hot encoding: lower dimensional target embedding. Image Vis Comput 75:21–31

    Article  Google Scholar 

  27. Cardoso J-F (1997) Infomax and maximum likelihood for blind source separation. IEEE Signal Process Lett 4:112–114

    Article  Google Scholar 

  28. Toomarian NB, Barhen J (1992) Learning a trajectory using adjoint functions and teacher forcing. Neural Netw 5:473–484

    Article  Google Scholar 

  29. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: a system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp 265–283

    Google Scholar 

  30. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 675–678

    Google Scholar 

  31. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, pp 8026–8037

    Google Scholar 

  32. Bjerrum E, Sattarov B (2018) Improving chemical autoencoder latent space and molecular de novo generation diversity with heteroencoders. Biomol Ther 8:131

    Google Scholar 

  33. Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, Li X, Alston BM, Li B, Clowes R, Rankin N, Harris B, Sprick RS, Cooper AI (2020) A mobile robotic chemist. Nature 583:237–241

    Article  CAS  PubMed  Google Scholar 

  34. Doersch C (2016) Tutorial on variational autoencoders. arXiv preprint arXiv:160605908, pp 1–23

    Google Scholar 

  35. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jørgensen PB, Schmidt MN, Winther O (2018) Deep generative models for molecular science. Mol Inf 37:1700133

    Article  CAS  Google Scholar 

  37. Sattarov B, Baskin II, Horvath D, Marcou G, Bjerrum EJ, Varnek A (2019) De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping. J Chem Inf Model 59:1182–1196

    Article  CAS  PubMed  Google Scholar 

  38. Harel S, Radinsky K (2018) Prototype-based compound discovery using deep generative models. Mol Pharm 15:4406–4416

    Article  CAS  PubMed  Google Scholar 

  39. Kang S, Cho K (2018) Conditional molecular design with deep generative models. J Chem Inf Model 59:43–52

    Article  PubMed  CAS  Google Scholar 

  40. Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H (2018) Application of generative autoencoder in de novo molecular design. Mol Inf 37:1700123

    Article  CAS  Google Scholar 

  41. Samanta B, De A, Jana G, Gómez V, Chattaraj PK, Ganguly N, Gomez-Rodriguez M (2020) Nevae: a deep generative model for molecular graphs. J Mach Learn Res 21:1–33

    Google Scholar 

  42. Liu Q, Allamanis M, Brockschmidt M, Gaunt A (2018) Constrained graph variational autoencoders for molecule design. arXiv preprint arXiv:1805.09076, pp 1–13

    Google Scholar 

  43. Jin W, Barzilay R, Jaakkola T (2020) Multi-objective molecule generation using interpretable substructures. In: International conference on machine learning

    Google Scholar 

  44. Jin W, Barzilay R, Jaakkola T (2020) Hierarchical generation of molecular graphs using structural motifs. Proceedings of the 37th international conference on machine learning. PMLR 119:4839–4848

    Google Scholar 

  45. Jin W, Barzilay R, Jaakkola T (2018) Junction tree variational autoencoder for molecular graph generation. Proceedings of the 35th international conference on machine learning. PMLR 80:2323–233

    Google Scholar 

  46. Li Y, Zhang L, Liu Z (2018) Multi-objective de novo drug design with conditional graph generative model. J Cheminform 10:1–24

    Article  CAS  Google Scholar 

  47. Jin W, Barzilay R, Jaakkola T (2020) Hierarchical generation of molecular graphs using structural motifs. In: International conference on machine learning: PMLR, pp 4839–4848

    Google Scholar 

  48. Lim J, Hwang S-Y, Moon S, Kim S, Kim WY (2020) Scaffold-based molecular design with a graph generative model. Chem Sci 11:1153–1164

    Article  CAS  Google Scholar 

  49. Ji S, Xu W, Yang M, Yu K (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231

    Article  Google Scholar 

  50. Wang R, Fang X, Lu Y, Yang C-Y, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119

    Article  CAS  PubMed  Google Scholar 

  51. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Protein data bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Cryst 54:1078–1084

    Article  CAS  Google Scholar 

  52. Sunseri J, Koes DR (2020) Libmolgrid: graphics processing unit accelerated molecular gridding for deep learning applications. J Chem Inf Model 60:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gogineni T, Xu Z, Punzalan E, Jiang R, Kammeraad J, Tewari A, Zimmerman P (2020) TorsionNet: a reinforcement learning approach to sequential conformer search. arXiv preprint arXiv:200607078, pp 1–17

    Google Scholar 

  54. Simm G, Pinsler R, Hernández-Lobato JM (2020) Reinforcement learning for molecular design guided by quantum mechanics. In: International conference on machine learning: PMLR, pp 8959–8969

    Google Scholar 

  55. Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A (2017) Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv preprint arXiv:170510843, pp 1–7

    Google Scholar 

  56. Sanchez-Lengeling B, Outeiral C, Guimaraes GL, Aspuru-Guzik A (2017) Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv Preprin chemrxiv.5309668.v2, pp 1–20

    Google Scholar 

  57. De Cao N, Kipf T (2018) MolGAN: an implicit generative model for small molecular graphs. arXiv preprint arXiv:180511973, pp 1–11

    Google Scholar 

  58. Su J (2018) Variational inference: a unified framework of generative models and some revelations. arXiv preprint arXiv:180705936, pp 1–6

    Google Scholar 

  59. Yu L, Zhang W, Wang J, Yu Y (2017) Seqgan: sequence generative adversarial nets with policy gradient. In: Thirty-first AAAI conference on artificial intelligence

    Google Scholar 

  60. Weng L (2019) From GAN to WGAN. arXiv preprint arXiv:190408994, pp 1–12

    Google Scholar 

  61. Kadurin A, Aliper A, Kazennov A, Mamoshina P, Vanhaelen Q, Khrabrov K, Zhavoronkov A (2017) The cornucopia of meaningful leads: applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget 8:10883–10890

    Article  PubMed  Google Scholar 

  62. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    Article  CAS  PubMed  Google Scholar 

  63. Vázquez-Canteli JR, Nagy Z (2019) Reinforcement learning for demand response: a review of algorithms and modeling techniques. Appl Energy 235:1072–1089

    Article  Google Scholar 

  64. Zhu H, Cao Y, Wang W, Jiang T, Jin S (2018) Deep reinforcement learning for mobile edge caching: review, new features, and open issues. IEEE Netw 32:50–57

    Article  Google Scholar 

  65. Li F, Du Y (2018) From AlphaGo to power system AI: what engineers can learn from solving the most complex board game. IEEE Power Energy Mag 16:76–84

    Article  CAS  Google Scholar 

  66. Holcomb SD, Porter WK, Ault SV, Mao G, Wang J (2018) Overview on deepmind and its AlphaGo zero AI. In: Proceedings of the 2018 international conference on big data and education, pp 67–71

    Chapter  Google Scholar 

  67. Chen JX (2016) The evolution of computing: AlphaGo. Comput Sci Eng 18:4–7

    Article  Google Scholar 

  68. Olivecrona M, Blaschke T, Engkvist O, Chen H (2017) Molecular de-novo design through deep reinforcement learning. J Cheminform 9:48

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pal MK, Bhati R, Sharma A, Kaul SK, Anand S, Sujit P (2018) A reinforcement learning approach to jointly adapt vehicular communications and planning for optimized driving. In: 2018 21st international conference on intelligent transportation systems (ITSC). IEEE, pp 3287–3293

    Google Scholar 

  70. Zhou Z, Kearnes S, Li L, Zare RN, Riley P (2019) Optimization of molecules via deep reinforcement learning. Sci Rep 9:1–10

    Google Scholar 

  71. van Otterlo M, Wiering M (2012) Reinforcement learning and markov decision processes. In: Adaptation, learning, and optimization. Springer, Berlin, pp 3–42

    Google Scholar 

  72. Hester T, Vecerik M, Pietquin O, Lanctot M, Schaul T, Piot B, Horgan D, Quan J, Sendonaris A, Dulac-Arnold G, Osband I, Agapiou J, Leibo JZ, Gruslys A (2017) Deep q-learning from demonstrations. Thirty-second AAAI conference on artificial intelligence AAAI-18:3223–3230

    Google Scholar 

  73. Tang B, He F, Liu D, Fang M, Wu Z, Xu D (2020) AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. preprint BioRxiv. https://doi.org/10.1101/2020.03.03.972133

  74. Horgan D, Quan J, Budden D, Barth-Maron G, Hessel M, Van Hasselt H, Silver D (2018) Distributed prioritized experience replay. arXiv preprint arXiv:180300933, pp 1–23

    Google Scholar 

  75. Fellows M, Mahajan A, Rudner TG, Whiteson S (2019) Virel: a variational inference framework for reinforcement learning. In: Advances in neural information processing systems, pp 7122–7136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Leung Ng .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Potential Conflicts of Interest: There are no conflicts of interest for this chapter.

Funding: There is no funding related to this chapter.

Ethical Approval: No animals or humans were used in this study.

Informed Consent: No patients were used in this study.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, B., Ewalt, J., Ng, HL. (2021). Generative AI Models for Drug Discovery. In: Saxena, A.K. (eds) Biophysical and Computational Tools in Drug Discovery. Topics in Medicinal Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/7355_2021_124

Download citation

Publish with us

Policies and ethics