Skip to main content

A Rapid Computational Screening of Millions of Molecules to Identify Sequence-Specific DNA Minor Groove Binders via Physicochemical Descriptors

  • Chapter
  • First Online:
Biophysical and Computational Tools in Drug Discovery

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 37))

Abstract

DNA has been an attractive target for anticancer, antitumor agents and antibiotics. While the growing number of DNA-drug complexes in structural repositories are yielding molecular insights on DNA-drug recognition principles, identification of distinct sequence-specific electrostatic potentials in the minor and major grooves of DNA has aroused keen interest in designing/identifying molecules which can bind to DNA in a sequence-specific manner. Computational protocols for examining such interactions by means of docking small molecules in the grooves of DNA are accessible. However, with the present compute-intensive docking and scoring protocols, it is nearly impossible to scan millions of molecules for DNA targeted drug discovery. This makes it necessary to develop a rapid screening protocol for scanning millions of molecules to identify potential binders to any DNA sequence of choice. RASDD (RApid Screening of DNA-Drug) is one such utility which utilizes physicochemical properties associated with DNA as well as groove binders to rapidly scan a large library of molecules. The methodology is developed using 30 DNA-drug complexes (R = 0.85) and, when tested on 18 DNA-drug complexes, yielded a correlation (R) of 0.83 between experimental and predicted binding free energies. With RASDD protocol, it is possible to scan a million compounds against a DNA sequence of interest (AT-rich) in ~18s! RASDD is freely accessible at http://www.scfbio-iitd.res.in/software/drugdesign/rasdd.jsp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BMRB:

Biological magnetic resonance bank

CSD:

Cambridge structural database

DNA:

Deoxyribonucleic acid

HADDOCK:

High ambiguity driven protein–protein docking

NDB:

Nucleic acid database

NMR:

Nuclear magnetic resonance

PDBe:

Protein data bank in Europe

PSDDF:

Pathogen specific DNA drug finder

RCSB:

Research Collaboratory for Structural Bioinformatics

RNA:

Ribonucleic acid

PreDDICTA:

Predict DNA–drug interaction strength by computing ΔTm and affinity.

QSAR:

Quantitative structure–activity relationship

NCI:

National Cancer Institute

WI:

Wiener index

LWI:

Ligand Wiener index

LMR:

Ligand molar refractivity

LHD:

Ligand H-bond donor(s)

LHA:

Ligand H-bond acceptor(s)

LP:

Ligand partition coefficient

LC:

Ligand curvature

DC:

DNA minor groove curvature

DMR:

DNA minor groove molar refractivity

DP:

DNA minor groove partition coefficient

COM:

Center of mass

MD:

Molecular dynamics

RASDD:

Rapid screening of DNA-drug

RMS:

Root mean square

GAFF:

Generalized AMBER force field

NAB:

Nucleic acid builder

References

  1. Sinden RR (2012) DNA structure and function. 1st edn. Academic Press, San Diego, pp 1–57

    Google Scholar 

  2. Egli M (2004) Nucleic acid crystallography: current progress. Curr Opin Chem Biol 8:580–591

    Article  CAS  PubMed  Google Scholar 

  3. Bloomfield VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids. Structures, properties and functions. 1st edn. University Science Books, Sausalito, pp 1–42

    Google Scholar 

  4. Calladine CR, Drew HR, Luisi B, Travers AA (2004) Understanding DNA. 3rd edn. Academic Press, London, pp 173–202

    Google Scholar 

  5. Spies M, Smith BO (2017) Protein–nucleic acids interactions: new ways of connecting structure, dynamics and function. Biophys Rev 9:289–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang W, Szostak JW, Huang Z (2016) Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom. Front Chem Sci Eng 10:196–202

    Article  Google Scholar 

  7. Schürch S (2016) Characterization of nucleic acids by tandem mass spectrometry – the second decade (2004-2013): from DNA to RNA and modified sequences. Mass Spectrom Rev 35:483–523

    Article  PubMed  CAS  Google Scholar 

  8. Narayanan BC, Westbrook J, Ghosh S, Petrov AI, Sweeney B, Zirbel CL, Leontis NB, Berman HM (2014) The nucleic acid database: new features and capabilities. Nucleic Acids Res 42:D114–D122

    Article  CAS  Google Scholar 

  9. Velankar S, Alhroub Y, Best C, Caboche S, Conroy MJ, Dana JM, Fernandez Montecelo MA, van Ginkel G, Golovin A, Gore SP, Gutmanas A, Haslam P, Hendrickx PMS, Heuson E, Hirshberg M, John M, Lagerstedt I, Mir S, Newman LE, Oldfield TJ, Patwardhan A, Rinaldi L, Sahni G, Sanz-Garcia E, Sen S, Slowley R, Suarez-Uruena A, Swaminathan GJ, Symmons MF, Vranken WF, Wainwright M, Kleywegt GJ (2012) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 40:D445–D452

    Article  CAS  PubMed  Google Scholar 

  10. Berman HM (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B 72:171–179

    Article  CAS  Google Scholar 

  12. Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H (2008) BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions. J Biomol NMR 40:153–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calladine CR (1982) Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol 161:343–352

    Article  CAS  PubMed  Google Scholar 

  14. Calladine CR, Drew HR (1984) A base-centred explanation of the B-to-A transition in DNA. J Mol Biol 178:773–782

    Article  CAS  PubMed  Google Scholar 

  15. Arnott S, Campbell-Smith PJ, Chandrasekaran R (1976) In: Fasman GP (ed) Handbook of biochemistry and molecular biology. 3rd edn. Nucleic acids-volume II, CRC Press, Cleveland, pp 411–422

    Google Scholar 

  16. Macke T, Case DA (1998) Modeling unusual nucleic acid structures. In: Leontes NB, SantaLucia Jr J (eds) Molecular modeling of nucleic acids. Washington, American Chemical Society, pp 379–393

    Google Scholar 

  17. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  18. Colasanti AV, Lu X-J, Olson WK (2013) Analyzing and building nucleic acid structures with 3DNA. J Vis Exp 74:e4401

    Google Scholar 

  19. van Dijk M, Bonvin AMJJ (2009) 3D-DART: a DNA structure modelling server. Nucleic Acids Res 37:W235–W239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Soni A, Khurana P, Singh T, Jayaram B (2017) A DNA intercalation methodology for an efficient prediction of ligand binding pose and energetics. Bioinformatics 33:1488–1496

    Article  CAS  PubMed  Google Scholar 

  21. Sheng J, Gan J, Huang Z (2013) Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 33:1119–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doan P, Pitter DRG, Kocher A, Wilson JN, Goodson III T (2016) A new design strategy and diagnostic to tailor the DNA-binding mechanism of small organic molecules and drugs. ACS Chem Biol 11:3202–3213

    Article  CAS  PubMed  Google Scholar 

  23. Sirajuddin M, Ali S, Badshah A (2013) Drug–DNA interactions and their study by UV–visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B Biol 124:1–19

    Article  CAS  Google Scholar 

  24. Lauria A, Barraja P, Dattolo G, Almerico AM (2007) DNA minor groove binders: an overview on molecular modeling and QSAR approaches. Curr Med Chem 14:2136–2160

    Article  CAS  PubMed  Google Scholar 

  25. Kreft D, Wang Y, Rattay M, Toensing K, Anselmetti D (2018) Binding mechanism of anti-cancer chemotherapeutic drug mitoxantrone to DNA characterized by magnetic tweezers. J Nanobiotechnol 16:56

    Article  CAS  Google Scholar 

  26. Rahman A, O’Sullivan P, Rozas I (2019) Recent developments in compounds acting in the DNA minor groove. Med Chem Commun 10:26–40

    Article  CAS  Google Scholar 

  27. Antonow D, Thurston DE (2010) Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem Rev 111:2815–2864

    Article  PubMed  CAS  Google Scholar 

  28. Fudickar W, Linker T (2020) Structural motives controlling the binding affinity of 9,10-bis(methylpyridinium)anthracenes towards DNA. Bioorg Med Chem 28:115432

    Article  CAS  PubMed  Google Scholar 

  29. Pant P, Afshan Shaikh S, Jayaram B (2017) Design and characterization of symmetric nucleic acids via molecular dynamics simulations. Biopolymers 107:e23002

    Article  CAS  Google Scholar 

  30. War JA, Srivastava SK (2020) Rationale design and synthesis of some novel imidazole linked thiazolidinone hybrid molecules as DNA minor groove binders. Eur J Chem 11:120–132

    Article  CAS  Google Scholar 

  31. Withers JM, Padroni G, Pauff SM, Clark AW, Mackay SP, Burley GA (2017) DNA minor groove binders as therapeutic agents. In: Comprehensive supramolecular chemistry II. Elsevier, Amsterdam, pp 149–178

    Chapter  Google Scholar 

  32. Ihmels H, Faulhaber K, Viola G, Schmuck C (2005) Evaluation of the DNA-binding properties of cationic dyes by absorption and emission spectroscopy. In: Schmuck C, Wennemers H (eds) Highlights in bioorganic chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, pp 172–190

    Google Scholar 

  33. Baraldi PG, Bovero A, Fruttarolo F, Preti D, Tabrizi MA, Pavani MG, Romagnoli R (2004) DNA minor groove binders as potential antitumor and antimicrobial agents. Med Res Rev 24:475–528

    Article  CAS  PubMed  Google Scholar 

  34. Jayaram B, Sharp KA, Honig B (1989) The electrostatic potential of B-DNA. Biopolymers 28:975–993

    Article  CAS  PubMed  Google Scholar 

  35. Goodsell DS (2001) Sequence recognition of DNA by lexitropsins. Curr Med Chem 8:509–516

    Article  CAS  PubMed  Google Scholar 

  36. Lown JW, Krowicki K, Bhat UG, Skorobogaty A, Ward B, Dabrowiak JC (1986) Molecular recognition between oligopeptides and nucleic acids: novel imidazole-containing oligopeptides related to netropsin that exhibit altered DNA sequence specificity. Biochemistry 25:7408–7416

    Article  CAS  PubMed  Google Scholar 

  37. Hamilton PL, Arya DP (2012) Natural product DNA major groove binders. Nat Prod Rep 29:134–143

    Article  CAS  PubMed  Google Scholar 

  38. Seeman NC, Rosenberg JM, Rich A (1976) Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci 73:804–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crothers DM, Shakked Z (1999) DNA bending by adenine-thymine tracts. In: Neidle S (ed) Oxford handbook of nucleic acid structures. Oxford University Press, London, pp 455–470

    Google Scholar 

  40. Qiu J, Bernhofer M, Heinzinger M, Kemper S, Norambuena T, Melo F, Rost B (2020) ProNA2020 predicts protein–DNA, protein–RNA, and protein–protein binding proteins and residues from sequence. J Mol Biol 432:2428–2443

    Article  CAS  PubMed  Google Scholar 

  41. Zeiske T, Baburajendran N, Kaczynska A, Brasch J, Palmer III AG, Shapiro L, Honig B, Mann RS (2018) Intrinsic DNA shape accounts for affinity differences between Hox-cofactor binding sites. Cell Rep 24:2221–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jayaram B, Jain T (2004) The role of water in protein-DNA recognition. Annu Rev Biophys Biomol Struct 33:343–361

    Article  CAS  PubMed  Google Scholar 

  43. Rohs R, West SM, Sosinky A, Liu P, Mann RS, Honig B (2009) The role of DNA shape in protein-DNA recognition. Nature 461:1248–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nadassy K, Wodak SJ, Janin J (1999) Structural features of protein−nucleic acid recognition sites†. Biochemistry 38:1999–2017

    Article  CAS  PubMed  Google Scholar 

  45. Hancock SP, Cascio D, Johnson RC (2019) Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 47:8874–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jayaram B, Singh T, Fenley M (2011) DNA-drug interactions: a theoretical perspective. In: Wanunu M, Tor Y (eds) Methods for studying DNA/drug interactions. CRC Press, Boca Raton. Ch-14, pp 317–338

    Google Scholar 

  47. Mishra A, Pant P, Mrinal N, Jayaram B (2017) A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens. Methods 131:4–9

    Article  CAS  PubMed  Google Scholar 

  48. Gupta A, Sharma P, Jayaram B (2007) ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Pept Lett 14:632–646

    Article  CAS  PubMed  Google Scholar 

  49. Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J Chem Inf Model 48:2371–2385

    Article  CAS  PubMed  Google Scholar 

  50. Shaikh SA, Jayaram B (2007) A swift all-atom energy-based computational protocol to predict DNA−ligand binding affinity and ΔTm. J Med Chem 50:2240–2244

    Article  CAS  PubMed  Google Scholar 

  51. Ricci CG, Netz PA (2009) Docking studies on DNA-ligand interactions: building and application of a protocol to identify the binding mode. J Chem Inf Model 49:1925–1935

    Article  CAS  PubMed  Google Scholar 

  52. Gilad Y, Senderowitz H (2013) Docking studies on DNA intercalators. J Chem Inf Model 54:96–107

    Article  PubMed  CAS  Google Scholar 

  53. Holt PA, Chaires JB, Trent JO (2008) Molecular docking of Intercalators and groove-binders to nucleic acids using autodock and surflex. J Chem Inf Model 48:1602–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mavridis L, Hudson BD, Ritchie DW (2007) Toward high throughput 3D virtual screening using spherical harmonic surface representations. J Chem Inf Model 47:1787–1796

    Article  CAS  PubMed  Google Scholar 

  56. Abagyan R, Totrov M, Kuznetsov D (1994) ICM? A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    Article  CAS  Google Scholar 

  57. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  58. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  59. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  60. Lemmen C, Lengauer T, Klebe G (1998) FlexS: a method for fast flexible ligand superposition. J Med Chem 41:4502–4520

    Article  CAS  PubMed  Google Scholar 

  61. Jain AN (2004) Ligand-based structural hypotheses for virtual screening. J Med Chem 47:947–961

    Article  CAS  PubMed  Google Scholar 

  62. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  63. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  64. Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    Article  CAS  PubMed  Google Scholar 

  65. Jayaram B, McConnell KJ, Dixit SB, Beveridge DL (1999) Free energy analysis of protein–DNA binding: the EcoRI endonuclease–DNA complex. J Comput Phys 151:333–357

    Article  CAS  Google Scholar 

  66. Lane AN, Jenkins TC (2000) Thermodynamics of nucleic acids and their interactions with ligands. Q Rev Biophys 33:255–306

    Article  CAS  PubMed  Google Scholar 

  67. Ren J, Jenkins TC, Chaires JB (2000) Energetics of DNA intercalation reactions†. Biochemistry 39:8439–8447

    Article  CAS  PubMed  Google Scholar 

  68. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588

    Article  CAS  PubMed  Google Scholar 

  69. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  70. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894

    Article  CAS  PubMed  Google Scholar 

  71. Mukherjee G, Jayaram B (2013) A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Phys Chem Chem Phys 15:9107

    Article  CAS  PubMed  Google Scholar 

  72. Holderbach S, Adam L, Jayaram B, Wade RC, Mukherjee G (2020) RASPD+: fast protein-ligand binding free energy prediction using simplified physicochemical features. Front Mol Biosci 7:601065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ning J, Chen W, Li J, Peng Z, Wang J, Ni Z (2013) Structural and energetic insights into sequence-specific interaction in DNA–drug recognition: development of affinity predictor and analysis of binding selectivity. J Mol Model 19:1573–1582

    Article  CAS  PubMed  Google Scholar 

  74. Wang R, Fang X, Lu Y, Yang C-Y, Wang S (2005) The PDBbind database: methodologies and updates. J Med Chem 48:4111–4119

    Article  CAS  PubMed  Google Scholar 

  75. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  PubMed  Google Scholar 

  78. Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 39:868–873

    Article  CAS  Google Scholar 

  79. Saxena AK (1995) Physicochemical significance of topological parameters: molecular connectivity index and information content: part 2. Correlation studies with molar refractivity and Lipophylicity. Quant Struct-Act Relat 14:142–148

    Article  CAS  Google Scholar 

  80. Saxena AK (1995) Physicochemical significance of topological parameters, connectivity indices and information content. Part 1: correlation studies in the sets with aromatic and aliphatic substituents. Quant Struct-Act Relat 14:31–38

    Article  CAS  Google Scholar 

  81. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  82. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  83. Yeh CS, Chen FM, Wang JY, Cheng TL, Hwang MJ, Tzou WS (2003) Directional shape complementarity at the protein-DNA interface. J Mol Recognit 16:213–222

    Article  CAS  PubMed  Google Scholar 

  84. Shaikh SA, Ahmed SR, Jayaram B (2004) A molecular thermodynamic view of DNA–drug interactions: a case study of 25 minor-groove binders. Arch Biochem Biophys 429:81–99

    Article  CAS  PubMed  Google Scholar 

  85. Belyaev AG (1999) A note on invariant three-point curvature approximations. Surikaisekikenkyusho Kokyuroku (singularity theory and differential equations, RIMS, Kyoto), pp 157–164

    Google Scholar 

  86. Narayanaswamy N, Das S, Samanta PK, Banu K, Sharma GP, Mondal N, Dhar SK, Pati SK, Govindaraju T (2015) Sequence-specific recognition of DNA minor groove by an NIR-fluorescence switch-on probe and its potential applications. Nucleic Acids Res 43:8651–8663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Vandana Shekhar for designing the RASDD web-front. We thank Mr. Shashank Shekhar for his help in the implementation of RASDD codes. The authors are also thankful to the Department of Biotechnology, Govt of India, and MEITY & CDAC for their support to the Supercomputing Facility for Bioinformatics and Computational Biology (SCFBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jayaram .

Editor information

Editors and Affiliations

Ethics declarations

Funding: The authors gratefully acknowledge funding from the Department of Biotechnology, Govt. of India and the National Supercomputing Mission, administered by MEITY and CDAC, for support to Supercomputing Facility for Bioinformatics and Computational Biology, IIT Delhi.

Ethical Approval: This manuscript presents computational work related to DNA targeted drug discovery, as such, no animal or human studies were performed.

Informed Consent: No patients were studied in this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, P., Jayaram, B. (2021). A Rapid Computational Screening of Millions of Molecules to Identify Sequence-Specific DNA Minor Groove Binders via Physicochemical Descriptors. In: Saxena, A.K. (eds) Biophysical and Computational Tools in Drug Discovery. Topics in Medicinal Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/7355_2021_122

Download citation

Publish with us

Policies and ethics