Skip to main content

Models of Pathologies Associated with Age-Related Macular Degeneration and Their Utilities in Drug Discovery

  • Chapter
  • First Online:
Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 35))

Abstract

Age-related macular degeneration is the leading cause of vision loss in the elderly in the developed world, with an ever-increasing prevalence in the developing world. The complexity of the disease and lack of effective therapies speak to the necessity of further understanding the pathobiology and mechanisms underlying initiation and progression of this retinal neurodegenerative disease, as well as identifying new therapeutic targets. Designing and characterizing cell culture and animal models that promulgate the human AMD condition provide preclinical avenues to address these two unmet needs. Herein we discuss strengths and weaknesses associated with current in vitro and in vivo models available that facilitate testing of potential AMD-targeting drugs and discovery of new pathways involved in disease development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A2E:

Diretinoid-pyridinium-ethanolamine

ABCA1:

ATP-binding cassette transporter A1

AhR:

Aryl hydrocarbon receptor

AMD:

Age-related macular degeneration

APOE:

Apolipoprotein E

BrM:

Bruch’s membrane

CDH5:

Cadherin 5

CEP:

Carboxyethylpyrrole

CETP:

Cholesterol ester transfer protein

CFH:

Complement factor H

ChEC:

Choroidal endothelial cells

CNV:

Choroidal neovascularization

CRALBP:

Cellular retinaldehyde-binding protein

CSE:

Cigarette smoke extract

CX3CR1:

C-X3-C motif chemokine receptor 1

DHA:

Docosahexaenoic acid

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial-mesenchymal transition

ERK:

Extracellular signal-regulated kinases

ESC-RPE:

Embryonic stem cell-derived RPE cells

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

GWAS:

Genome-wide association study

H2O2:

Hydrogen peroxide

HDL:

High-density lipoprotein

HFD:

High-fat diet

hfRPE:

Human fetal RPE cells

HMGCS2:

3-Hydroxy-3-methylglutaryl-coA synthase 2

HPV:

Human papilloma virus

INSIG1:

Insulin-induced gene-1

iPSC-RPE:

Induced pluripotent stem cell-derived RPE

KEAP1:

Kelch-like ECH-associated protein 1

LDL:

Low-density lipoproteins

LIPC:

Hepatic lipase

NRF2:

Nuclear factor 2

OCT:

Optical coherence tomography

OCT3/4:

Octamer-binding transcription factor ¾

PAX6:

Paired box 6

PECAM1:

Platelet and endothelial cell adhesion molecule 1

PLVAP:

Plasmalemma vesicle-associated protein

PPARβ/δ:

Proliferator-activated receptor beta/delta

RAL:

Retinaldehyde

RDH:

All-trans-retinol dehydrogenases

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

RPESC:

Retinal pigment epithelial stem cells

SOD:

Superoxide dismutase

SRC:

Src proto-oncogene, non-receptor tyrosine kinase

SYK:

Spleen associated tyrosine kinase

TGFBR1:

TGFβ type I receptor

TGFβ:

Transforming growth factor beta

TSPO:

Translocator protein

VEGFA:

Vascular endothelial growth factor A

Vldlr:

Very low-density lipoprotein receptor

ZO1:

Zonula occludens 1

References

  1. Al-Zamil WM, Yassin SA (2017) Recent developments in age-related macular degeneration: a review. Clin Interv Aging 12:1313–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75:26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, Burdon KP, Hebbring SJ, Wen C, Gorski M, Kim IK, Cho D, Zack D, Souied E, Scholl HP, Bala E, Lee KE, Hunter DJ, Sardell RJ, Mitchell P, Merriam JE, Cipriani V, Hoffman JD, Schick T, Lechanteur YT, Guymer RH, Johnson MP, Jiang Y, Stanton CM, Buitendijk GH, Zhan X, Kwong AM, Boleda A, Brooks M, Gieser L, Ratnapriya R, Branham KE, Foerster JR, Heckenlively JR, Othman MI, Vote BJ, Liang HH, Souzeau E, McAllister IL, Isaacs T, Hall J, Lake S, Mackey DA, Constable IJ, Craig JE, Kitchner TE, Yang Z, Su Z, Luo H, Chen D, Ouyang H, Flagg K, Lin D, Mao G, Ferreyra H, Stark K, von Strachwitz CN, Wolf A, Brandl C, Rudolph G, Olden M, Morrison MA, Morgan DJ, Schu M, Ahn J, Silvestri G, Tsironi EE, Park KH, Farrer LA, Orlin A, Brucker A, Li M, Curcio CA, Mohand-Said S, Sahel JA, Audo I, Benchaboune M, Cree AJ, Rennie CA, Goverdhan SV, Grunin M, Hagbi-Levi S, Campochiaro P, Katsanis N, Holz FG, Blond F, Blanche H, Deleuze JF, Igo RP Jr, Truitt B, Peachey NS, Meuer SM, Myers CE, Moore EL, Klein R, Hauser MA, Postel EA, Courtenay MD, Schwartz SG, Kovach JL, Scott WK, Liew G, Tan AG, Gopinath B, Merriam JC, Smith RT, Khan JC, Shahid H, Moore AT, McGrath JA, Laux R, Brantley MA Jr, Agarwal A, Ersoy L, Caramoy A, Langmann T, Saksens NT, de Jong EK, Hoyng CB, Cain MS, Richardson AJ, Martin TM, Blangero J, Weeks DE, Dhillon B, van Duijn CM, Doheny KF, Romm J, Klaver CC, Hayward C, Gorin MB, Klein ML, Baird PN, den Hollander AI, Fauser S, Yates JR, Allikmets R, Wang JJ, Schaumberg DA, Klein BE, Hagstrom SA, Chowers I, Lotery AJ, Leveillard T, Zhang K, Brilliant MH, Hewitt AW, Swaroop A, Chew EY, Pericak-Vance MA, DeAngelis M, Stambolian D, Haines JL, Iyengar SK, Weber BH, Abecasis GR, Heid IM (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48:134–143

    Article  CAS  PubMed  Google Scholar 

  5. Bonilha VL (2008) Age and disease-related structural changes in the retinal pigment epithelium. Clin Ophthalmol 2:413–424

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malek G, Lad EM (2014) Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 71:4617–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J (2011) Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci 52:1606–1612

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yannuzzi LA, Negrao S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434

    Article  CAS  PubMed  Google Scholar 

  9. Capowski EE, Samimi K, Mayerl SJ, Phillips MJ, Pinilla I, Howden SE, Saha J, Jansen AD, Edwards KL, Jager LD, Barlow K, Valiauga R, Erlichman Z, Hagstrom A, Sinha D, Sluch VM, Chamling X, Zack DJ, Skala MC, Gamm DM (2019) Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146(1)

    Google Scholar 

  10. Chen LJ, Ito S, Kai H, Nagamine K, Nagai N, Nishizawa M, Abe T, Kaji H (2017) Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 7:3538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Geisen P, McColm JR, Hartnett ME (2006) Choroidal endothelial cells transmigrate across the retinal pigment epithelium but do not proliferate in response to soluble vascular endothelial growth factor. Exp Eye Res 82:608–619

    Article  CAS  PubMed  Google Scholar 

  12. Skottman H, Muranen J, Lahdekorpi H, Pajula E, Makela K, Koivusalo L, Koistinen A, Uusitalo H, Kaarniranta K, Juuti-Uusitalo K (2017) Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells. Exp Cell Res 359:101–111

    Article  CAS  PubMed  Google Scholar 

  13. Spencer C, Abend S, McHugh KJ, Saint-Geniez M (2017) Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium. J Cell Mol Med 21:2542–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nusinowitz S, Wang Y, Kim P, Habib S, Baron R, Conley Y, Gorin M (2018) Retinal structure in pre-clinical age-related macular degeneration. Curr Eye Res 43:376–382

    Article  CAS  PubMed  Google Scholar 

  15. Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10:802–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiser PD, Palczewski K (2016) Retinoids and retinal diseases. Ann Rev Vision Sci 2:197–234

    Article  Google Scholar 

  17. Brown EE, DeWeerd AJ, Ildefonso CJ, Lewin AS, Ash JD (2019) Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors. Redox Biol 24:101201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adijanto J, Philp NJ (2014) Cultured primary human fetal retinal pigment epithelium (hfRPE) as a model for evaluating RPE metabolism. Exp Eye Res 126:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Zhang Y, Xiao H, Liang X, Sun D, Peng S (2012) A gene expression profile of the developing human retinal pigment epithelium. Mol Vis 18:2961–2975

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C, Sergeev Y, Chen W, Edwards AO, Stambolian D, Abecasis G, Swaroop A, Munson PJ, Miller SS (2010) Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet 19:2468–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liao JL, Yu J, Huang K, Hu J, Diemer T, Ma Z, Dvash T, Yang XJ, Travis GH, Williams DS, Bok D, Fan G (2010) Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet 19:4229–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ (2013) Engineering a blood-retinal barrier with human embryonic stem cell-derived retinal pigment epithelium: transcriptome and functional analysis. Stem Cells Transl Med 2:534–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shao Z, Wang H, Zhou X, Guo B, Gao X, Xiao Z, Liu M, Sha J, Jiang C, Luo Y, Liu Z, Li S (2017) Spontaneous generation of a novel foetal human retinal pigment epithelium (RPE) cell line available for investigation on phagocytosis and morphogenesis. Cell Prolif 50:e12386

    Article  PubMed Central  CAS  Google Scholar 

  24. Gorham RD Jr, Forest DL, Tamamis P, Lopez de Victoria A, Kraszni M, Kieslich CA, Banna CD, Bellows-Peterson ML, Larive CK, Floudas CA, Archontis G, Johnson LV, Morikis D (2013) Novel compstatin family peptides inhibit complement activation by drusen-like deposits in human retinal pigmented epithelial cell cultures. Exp Eye Res 116:96–108

    Article  CAS  PubMed  Google Scholar 

  25. Stewart EA, Samaranayake GJ, Browning AC, Hopkinson A, Amoaku WM (2011) Comparison of choroidal and retinal endothelial cells: characteristics and response to VEGF isoforms and anti-VEGF treatments. Exp Eye Res 93:761–766

    Article  CAS  PubMed  Google Scholar 

  26. Browning AC, Gray T, Amoaku WM (2005) Isolation, culture, and characterisation of human macular inner choroidal microvascular endothelial cells. Br J Ophthalmol 89:1343–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rawes V, Kipling D, Kill IR, Faragher RG (1997) The kinetics of senescence in retinal pigmented epithelial cells: a test for the telomere hypothesis of ageing? Biochemistry (Mosc) 62:1291–1295

    CAS  Google Scholar 

  28. Cao S, Walker GB, Wang X, Cui JZ, Matsubara JA (2013) Altered cytokine profiles of human retinal pigment epithelium: oxidant injury and replicative senescence. Mol Vis 19:718–728

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rohrer B, Bandyopadhyay M, Beeson C (2016) Reduced metabolic capacity in aged primary retinal pigment epithelium (RPE) is correlated with increased susceptibility to oxidative stress. Adv Exp Med Biol 854:793–798

    Article  CAS  PubMed  Google Scholar 

  30. Flood MT, Bridges CD, Alvarez RA, Blaner WS, Gouras P (1983) Vitamin A utilization in human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 24:1227–1235

    CAS  PubMed  Google Scholar 

  31. Bennis A, Gorgels TG, Ten Brink JB, van der Spek PJ, Bossers K, Heine VM, Bergen AA (2015) Comparison of mouse and human retinal pigment epithelium gene expression profiles: potential implications for age-related macular degeneration. PLoS One 10:e0141597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62:155–169

    Article  CAS  PubMed  Google Scholar 

  33. Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E (1997) Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc Natl Acad Sci U S A 94:12932–12937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian J, Ishibashi K, Honda S, Boylan SA, Hjelmeland LM, Handa JT (2005) The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions. Br J Ophthalmol 89:1510–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo Y, Zhuo Y, Fukuhara M, Rizzolo LJ (2006) Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line. Invest Ophthalmol Vis Sci 47:3644–3655

    Article  PubMed  Google Scholar 

  36. Ablonczy Z, Dahrouj M, Tang PH, Liu Y, Sambamurti K, Marmorstein AD, Crosson CE (2011) Human retinal pigment epithelium cells as functional models for the RPE in vivo. Invest Ophthalmol Vis Sci 52:8614–8620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Samuel W, Jaworski C, Postnikova OA, Kutty RK, Duncan T, Tan LX, Poliakov E, Lakkaraju A, Redmond TM (2017) Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis 23:60–89

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Davis AA, Bernstein PS, Bok D, Turner J, Nachtigal M, Hunt RC (1995) A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci 36:955–964

    CAS  PubMed  Google Scholar 

  39. Matsunaga H, Handa JT, Aotaki-Keen A, Sherwood SW, West MD, Hjelmeland LM (1999) Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:197–202

    CAS  PubMed  Google Scholar 

  40. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  41. Lund RD, Adamson P, Sauve Y, Keegan DJ, Girman SV, Wang S, Winton H, Kanuga N, Kwan AS, Beauchene L, Zerbib A, Hetherington L, Couraud PO, Coffey P, Greenwood J (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci U S A 98:9942–9947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanuga N, Winton HL, Beauchene L, Koman A, Zerbib A, Halford S, Couraud PO, Keegan D, Coffey P, Lund RD, Adamson P, Greenwood J (2002) Characterization of genetically modified human retinal pigment epithelial cells developed for in vitro and transplantation studies. Invest Ophthalmol Vis Sci 43:546–555

    PubMed  Google Scholar 

  43. Nabi IR, Mathews AP, Cohen-Gould L, Gundersen D, Rodriguez-Boulan E (1993) Immortalization of polarized rat retinal pigment epithelium. J Cell Sci 104(Pt 1):37–49

    Article  PubMed  Google Scholar 

  44. Catanuto P, Espinosa-Heidmann D, Pereira-Simon S, Sanchez P, Salas P, Hernandez E, Cousins SW, Elliot SJ (2009) Mouse retinal pigmented epithelial cell lines retain their phenotypic characteristics after transfection with human papilloma virus: a new tool to further the study of RPE biology. Exp Eye Res 88:99–105

    Article  CAS  PubMed  Google Scholar 

  45. Lou DA, Hu FN (1987) Specific antigen and organelle expression of a long-term rhesus endothelial cell line. In Vitro Cell Dev Biol 23:75–85

    Article  CAS  PubMed  Google Scholar 

  46. Makin RD, Apicella I, Nagasaka Y, Kaneko H, Turner SD, Kerur N, Ambati J, Gelfand BD (2018) RF/6A Chorioretinal cells do not display key endothelial phenotypes. Invest Ophthalmol Vis Sci 59:5795–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loeven MA, van Gemst JJ, Schophuizen CMS, Tilakaratna V, van den Heuvel LP, Day AJ, Klevering BJ, van der Vlag J (2018) A novel choroidal endothelial cell line has a decreased affinity for the age-related macular degeneration-associated complement factor H variant 402H. Invest Ophthalmol Vis Sci 59:722–730

    Article  CAS  PubMed  Google Scholar 

  48. Giacalone JC, Miller MJ, Workalemahu G, Reutzel AJ, Ochoa D, Whitmore SS, Stone EM, Tucker BA, Mullins RF (2019) Generation of an immortalized human choroid endothelial cell line (iChEC-1) using an endothelial cell specific promoter. Microvasc Res 123:50–57

    Article  CAS  PubMed  Google Scholar 

  49. Bharti K, Miller SS, Arnheiter H (2011) The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 24:21–34

    Article  PubMed  Google Scholar 

  50. Kokkinaki M, Sahibzada N, Golestaneh N (2011) Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29:825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M, Ahmado A, Gias C, da Cruz L, Moore H, Andrews P, Walsh J, Coffey P (2008) Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 214:347–361

    Article  CAS  PubMed  Google Scholar 

  52. Carr AJ, Vugler A, Lawrence J, Chen LL, Ahmado A, Chen FK, Semo M, Gias C, da Cruz L, Moore HD, Walsh J, Coffey PJ (2009) Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis 15:283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lane A, Philip LR, Ruban L, Fynes K, Smart M, Carr A, Mason C, Coffey P (2014) Engineering efficient retinal pigment epithelium differentiation from human pluripotent stem cells. Stem Cells Transl Med 3:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith EN, D’Antonio-Chronowska A, Greenwald WW, Borja V, Aguiar LR, Pogue R, Matsui H, Benaglio P, Borooah S, D’Antonio M, Ayyagari R, Frazer KA (2019) Human iPSC-derived retinal pigment epithelium: a model system for prioritizing and functionally characterizing causal variants at AMD risk loci. Stem Cell Rep 12:1342–1353

    Article  CAS  Google Scholar 

  55. Garcia TY, Gutierrez M, Reynolds J, Lamba DA (2015) Modeling the dynamic AMD-associated chronic oxidative stress changes in human ESC and iPSC-derived RPE cells. Invest Ophthalmol Vis Sci 56:7480–7488

    Article  CAS  PubMed  Google Scholar 

  56. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, Li Y, Stoddard J, Stankewicz C, Wan Q, Zhang C, Campos MM, Miyagishima KJ, McGaughey D, Villasmil R, Mattapallil M, Stanzel B, Qian H, Wong W, Chase L, Charles S, McGill T, Miller S, Maminishkis A, Amaral J, Bharti K (2019) Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11:eaat5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H, Mandai M, Morinaga C, Takahashi M, Kawamata S (2014) Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One 9:e85336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choudhary P, Booth H, Gutteridge A, Surmacz B, Louca I, Steer J, Kerby J, Whiting PJ (2017) Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage. Stem Cells Transl Med 6:490–501

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y, Xu HW, Wang L, Li SY, Zhao CJ, Hao J, Li QY, Zhao TT, Wu W, Wang Y, Zhou Q, Qian C, Wang L, Yin ZQ (2018) Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov 4:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Forest DL, Johnson LV, Clegg DO (2015) Cellular models and therapies for age-related macular degeneration. Dis Model Mech 8:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95

    Article  CAS  PubMed  Google Scholar 

  63. Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M, Davis J, Singh D, Rizzolo LJ, Miller S, Temple S, Stern JH (2015) Human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue. Invest Ophthalmol Vis Sci 56:7085–7099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mariotti C, Lazzarini R, Nicolai M, Saitta A, Orsini E, Orciani M, Di Primio R (2015) Comparative study between amniotic-fluid mesenchymal stem cells and retinal pigmented epithelium (RPE) stem cells ability to differentiate towards RPE cells. Cell Tissue Res 362:21–31

    Article  CAS  PubMed  Google Scholar 

  65. Liang G, Zhang Y (2013) Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 13:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6:217–245

    Article  CAS  PubMed  Google Scholar 

  67. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45:675–684

    Article  PubMed  Google Scholar 

  68. Gao XR, Huang H, Kim H (2019) Genome-wide association analyses identify 139 loci associated with macular thickness in the UK biobank cohort. Hum Mol Genet 28:1162–1172

    Article  CAS  PubMed  Google Scholar 

  69. Chao JR, Knight K, Engel AL, Jankowski C, Wang Y, Manson MA, Gu H, Djukovic D, Raftery D, Hurley JB, Du J (2017) Human retinal pigment epithelial cells prefer proline as a nutrient and transport metabolic intermediates to the retinal side. J Biol Chem 292:12895–12905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J (2019) Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 294:10278–10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu B, Calton MA, Abell NS, Benchorin G, Gloudemans MJ, Chen M, Hu J, Li X, Balliu B, Bok D, Montgomery SB, Vollrath D (2019) Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms. Commun Biol 2:186

    Article  PubMed  PubMed Central  Google Scholar 

  72. Storti F, Raphael G, Griesser V, Klee K, Drawnel F, Willburger C, Scholz R, Langmann T, von Eckardstein A, Fingerle J, Grimm C, Maugeais C (2017) Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells. Exp Eye Res 165:65–77

    Article  CAS  PubMed  Google Scholar 

  73. Terluk MR, Kapphahn RJ, Soukup LM, Gong H, Gallardo C, Montezuma SR, Ferrington DA (2015) Investigating mitochondria as a target for treating age-related macular degeneration. J Neurosci 35:7304–7311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Biswas L, Zhou X, Dhillon B, Graham A, Shu X (2017) Retinal pigment epithelium cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a potential target for treating age-related macular degeneration. Hum Mol Genet 26:4327–4339

    Article  CAS  PubMed  Google Scholar 

  75. Biswas L, Farhan F, Reilly J, Bartholomew C, Shu X (2018) TSPO ligands promote cholesterol efflux and suppress oxidative stress and inflammation in choroidal endothelial cells. Int J Mol Sci 19:3740

    Article  PubMed Central  CAS  Google Scholar 

  76. Szatmari-Toth M, Ilmarinen T, Mikhailova A, Skottman H, Kauppinen A, Kaarniranta K, Kristof E, Lytvynchuk L, Vereb Z, Fesus L, Petrovski G (2019) Human embryonic stem cell-derived retinal pigment epithelium-role in dead cell clearance and inflammation. Int J Mol Sci 20:926

    Article  PubMed Central  CAS  Google Scholar 

  77. Francisqueti-Ferron FV, Ferron AJT, Garcia JL, Silva C, Costa MR, Gregolin CS, Moreto F, Ferreira ALA, Minatel IO, Correa CR (2019) Basic concepts on the role of nuclear factor Erythroid-derived 2-like 2 (Nrf2) in age-related diseases. Int J Mol Sci 20:3208

    Article  CAS  PubMed Central  Google Scholar 

  78. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865:721–733

    Article  CAS  PubMed  Google Scholar 

  79. Fisher CR, Ferrington DA (2018) Perspective on AMD pathobiology: a bioenergetic crisis in the RPE. Invest Ophthalmol Vis Sci 59:AMD41–AMD47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gong L, Liu F, Xiong Z, Qi R, Luo Z, Gong X, Nie Q, Sun Q, Liu YF, Qing W, Wang L, Zhang L, Tang X, Huang S, Li G, Ouyang H, Xiang M, Nguyen QD, Liu Y, Li DW (2018) Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci U S A 115:E3987–E3995

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang S, Li H, Li M, Wang F (2015) Mechanisms of epithelial-mesenchymal transition in proliferative vitreoretinopathy. Discov Med 20:207–217

    PubMed  Google Scholar 

  82. Chiba C (2014) The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res 123:107–114

    Article  CAS  PubMed  Google Scholar 

  83. Huang RY, Guilford P, Thiery JP (2012) Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci 125:4417–4422

    Article  CAS  PubMed  Google Scholar 

  84. Savagner P (2015) Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol 112:273–300

    Article  CAS  PubMed  Google Scholar 

  85. Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV, Coffey PJ (2015) Restoration of mesenchymal retinal pigmented epithelial cells by TGF beta pathway inhibitors: implications for age-related macular degeneration. Genome Med 7:58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhu J, Nguyen D, Ouyang H, Zhang XH, Chen XM, Zhang K (2013) Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-beta in ARPE-19. Int J Ophthalmol 6:8–14

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    Article  CAS  PubMed  Google Scholar 

  88. Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB (1994) Maternal rescue of transforming growth factor-beta 1 null mice. Science 264:1936–1938

    Article  CAS  PubMed  Google Scholar 

  89. Ghosh S, Shang P, Terasaki H, Stepicheva N, Hose S, Yazdankhah M, Weiss J, Sakamoto T, Bhutto IA, Xia S, Zigler JS Jr, Kannan R, Qian J, Handa JT, Sinha D (2018) A role for betaA3/A1-Crystallin in type 2 EMT of RPE cells occurring in dry age-related macular degeneration. Invest Ophthalmol Vis Sci 59:AMD104–AMD113

    Article  PubMed  PubMed Central  Google Scholar 

  90. Valapala M, Wilson C, Hose S, Bhutto IA, Grebe R, Dong A, Greenbaum S, Gu L, Sengupta S, Cano M, Hackett S, Xu G, Lutty GA, Dong L, Sergeev Y, Handa JT, Campochiaro P, Wawrousek E, Zigler JS Jr, Sinha D (2014) Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/betaA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy 10:480–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Valapala M, Sergeev Y, Wawrousek E, Hose S, Zigler JS Jr, Sinha D (2016) Modulation of V-ATPase by betaA3/A1-Crystallin in retinal pigment epithelial cells. Adv Exp Med Biol 854:779–784

    Article  CAS  PubMed  Google Scholar 

  92. Valapala M, Edwards M, Hose S, Grebe R, Bhutto IA, Cano M, Berger T, Mak TW, Wawrousek E, Handa JT, Lutty GA, Samuel Zigler J Jr, Sinha D (2014) Increased Lipocalin-2 in the retinal pigment epithelium of Cryba1 cKO mice is associated with a chronic inflammatory response. Aging Cell 13:1091–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu M, Zhou C, Zheng J (2015) Cigarette smoking impairs the response of EGFR-TKIs therapy in lung adenocarcinoma patients by promoting EGFR signaling and epithelial-mesenchymal transition. Am J Transl Res 7:2026–2035

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cai H, Gong J, Abriola L, Hoyer D, Nyscf Global Stem Cell Array, Team, Noggle S, Paull D, Del Priore LV, Fields MA (2019) High-throughput screening identifies compounds that protect RPE cells from physiological stressors present in AMD. Exp Eye Res 185:107641

    Article  CAS  PubMed  Google Scholar 

  95. Artero-Castro A, Popelka S, Jendelova P, Motlik J, Ardan T, Rodriguez Jimenez FJ, Erceg S (2019) The identification of small molecules that stimulate retinal pigment epithelial cells: potential novel therapeutic options for treating retinopathies. Expert Opin Drug Discov 14:169–177

    Article  CAS  PubMed  Google Scholar 

  96. Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277:3801–3804

    Article  CAS  PubMed  Google Scholar 

  97. Song AJ, Palmiter RD (2018) Detecting and avoiding problems when using the Cre-lox system. Trends Genet 34:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ramkumar HL, Zhang J, Chan CC (2010) Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD). Prog Retin Eye Res 29:169–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luhmann UF, Robbie S, Munro PM, Barker SE, Duran Y, Luong V, Fitzke FW, Bainbridge JW, Ali RR, MacLaren RE (2009) The drusen like phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 50:5934–5943

    Article  PubMed  Google Scholar 

  100. Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chang B, Hurd R, Wang J, Nishina P (2013) Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54:4974–4981

    Article  PubMed  PubMed Central  Google Scholar 

  102. Coffey PJ, Gias C, McDermott CJ, Lundh P, Pickering MC, Sethi C, Bird A, Fitzke FW, Maass A, Chen LL, Holder GE, Luthert PJ, Salt TE, Moss SE, Greenwood J (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104:16651–16656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hoh Kam J, Lenassi E, Malik TH, Pickering MC, Jeffery G (2013) Complement component C3 plays a critical role in protecting the aging retina in a murine model of age-related macular degeneration. Am J Pathol 183:480–492

    Article  CAS  PubMed  Google Scholar 

  104. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A, Lavalette S, Houssier M, Jonet L, Picard E, Debre P, Sirinyan M, Deterre P, Ferroukhi T, Cohen SY, Chauvaud D, Jeanny JC, Chemtob S, Behar-Cohen F, Sennlaub F (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Investig 117:2920–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ, Yin C, Kowalak JA, Zhuang Z, Zhang K, Chan CC (2007) Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci 48:3827–3836

    Article  PubMed  Google Scholar 

  106. Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, Shimizu T, Mizushima Y, Shirasawa T, Tsubota K (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103:11282–11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kimura K, Isashiki Y, Sonoda S, Kakiuchi-Matsumoto T, Ohba N (2000) Genetic association of manganese superoxide dismutase with exudative age-related macular degeneration. Am J Ophthalmol 130:769–773

    Article  CAS  PubMed  Google Scholar 

  108. Malek G, Johnson LV, Mace BE, Saloupis P, Schmechel DE, Rickman DW, Toth CA, Sullivan PM, Bowes Rickman C (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A 102:11900–11905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Malek G, Mace B, Saloupis P, Schmechel D, Rickman D, Sullivan P, Rickman CB (2006) Initial observations of key features of age-related macular degeneration in APOE targeted replacement mice. Adv Exp Med Biol 572:109–117

    Article  CAS  PubMed  Google Scholar 

  110. Ong JM, Zorapapel NC, Rich KA, Wagstaff RE, Lambert RW, Rosenberg SE, Moghaddas F, Pirouzmanesh A, Aoki AM, Kenney MC (2001) Effects of cholesterol and apolipoprotein E on retinal abnormalities in ApoE-deficient mice. Invest Ophthalmol Vis Sci 42:1891–1900

    CAS  PubMed  Google Scholar 

  111. Malek G, Li CM, Guidry C, Medeiros NE, Curcio CA (2003) Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am J Pathol 162:413–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fujihara M, Bartels E, Nielsen LB, Handa JT (2009) A human apoB100 transgenic mouse expresses human apoB100 in the RPE and develops features of early AMD. Exp Eye Res 88:1115–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ban N, Lee TJ, Sene A, Choudhary M, Lekwuwa M, Dong Z, Santeford A, Lin JB, Malek G, Ory DS, Apte RS (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3(17)

    Google Scholar 

  114. Storti F, Klee K, Todorova V, Steiner R, Othman A, van der Velde-Visser S, Samardzija M, Meneau I, Barben M, Karademir D, Pauzuolyte V, Boye SL, Blaser F, Ullmer C, Dunaief JL, Hornemann T, Rohrer L, den Hollander A, von Eckardstein A, Fingerle J, Maugeais C, Grimm C (2019) Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. Elife 8:e45100

    Article  PubMed  PubMed Central  Google Scholar 

  115. Choudhary M, Ding JD, Qi X, Boulton ME, Yao PL, Peters JM, Malek G (2016) PPARbeta/delta selectively regulates phenotypic features of age-related macular degeneration. Aging (Albany NY) 8:1952–1978

    Article  CAS  Google Scholar 

  116. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Espinosa-Heidmann DG, Suner IJ, Catanuto P, Hernandez EP, Marin-Castano ME, Cousins SW (2006) Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest Ophthalmol Vis Sci 47:729–737

    Article  PubMed  Google Scholar 

  118. Cousins SW, Espinosa-Heidmann DG, Alexandridou A, Sall J, Dubovy S, Csaky K (2002) The role of aging, high fat diet and blue light exposure in an experimental mouse model for basal laminar deposit formation. Exp Eye Res 75:543–553

    Article  CAS  PubMed  Google Scholar 

  119. Cousins SW, Marin-Castano ME, Espinosa-Heidmann DG, Alexandridou A, Striker L, Elliot S (2003) Female gender, estrogen loss, and sub-RPE deposit formation in aged mice. Invest Ophthalmol Vis Sci 44:1221–1229

    Article  PubMed  Google Scholar 

  120. Ding JD, Kelly U, Landowski M, Toomey CB, Groelle M, Miller C, Smith SG, Klingeborn M, Singhapricha T, Jiang H, Frank MM, Bowes Rickman C (2015) Expression of human complement factor H prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged Cfh knockout mice. Am J Pathol 185:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Landowski M, Kelly U, Klingeborn M, Groelle M, Ding JD, Grigsby D, Bowes Rickman C (2019) Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice. Proc Natl Acad Sci U S A 116:3703–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Toomey CB, Kelly U, Saban DR, Bowes Rickman C (2015) Regulation of age-related macular degeneration-like pathology by complement factor H. Proc Natl Acad Sci U S A 112:E3040–E3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hu Z, Zhang Y, Wang J, Mao P, Lv X, Yuan S, Huang Z, Ding Y, Xie P, Liu Q (2016) Knockout of Ccr2 alleviates photoreceptor cell death in rodent retina exposed to chronic blue light. Cell Death Dis 7:e2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Priya RR, Chew EY, Swaroop A (2012) Genetic studies of age-related macular degeneration: lessons, challenges, and opportunities for disease management. Ophthalmology 119:2526–2536

    Article  PubMed  Google Scholar 

  125. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102:7227–7232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  CAS  PubMed  Google Scholar 

  127. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  CAS  PubMed  Google Scholar 

  129. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    Article  CAS  PubMed  Google Scholar 

  130. Guymer RH, Tao LW, Goh JK, Liew D, Ischenko O, Robman LD, Aung K, Cipriani T, Cain M, Richardson AJ, Baird PN, Langham R (2011) Identification of urinary biomarkers for age-related macular degeneration. Invest Ophthalmol Vis Sci 52:4639–4644

    Article  CAS  PubMed  Google Scholar 

  131. Kramer M, Hasanreisoglu M, Feldman A, Axer-Siegel R, Sonis P, Maharshak I, Monselise Y, Gurevich M, Weinberger D (2012) Monocyte chemoattractant protein-1 in the aqueous humour of patients with age-related macular degeneration. Clin Experiment Ophthalmol 40:617–625

    Article  PubMed  Google Scholar 

  132. Vessey KA, Greferath U, Jobling AI, Phipps JA, Ho T, Waugh M, Fletcher EL (2012) Ccl2/Cx3cr1 knockout mice have inner retinal dysfunction but are not an accelerated model of AMD. Invest Ophthalmol Vis Sci 53:7833–7846

    Article  PubMed  CAS  Google Scholar 

  133. Choudhary M, Kazmin D, Hu P, Thomas RS, McDonnell DP, Malek G (2015) Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways. J Pathol 235:101–112

    Article  CAS  PubMed  Google Scholar 

  134. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  CAS  PubMed  Google Scholar 

  135. Wenzel A, Grimm C, Samardzija M, Reme CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306

    Article  CAS  PubMed  Google Scholar 

  136. Cruickshanks KJ, Hamman RF, Klein R, Nondahl DM, Shetterly SM (1997) The prevalence of age-related maculopathy by geographic region and ethnicity. The Colorado-Wisconsin study of age-related Maculopathy. Arch Ophthalmol 115:242–250

    Article  CAS  PubMed  Google Scholar 

  137. Vingerling JR, Hofman A, Grobbee DE, de Jong PT (1996) Age-related macular degeneration and smoking. The Rotterdam study. Arch Ophthalmol 114:1193–1196

    Article  CAS  PubMed  Google Scholar 

  138. Behndig A, Svensson B, Marklund SL, Karlsson K (1998) Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci 39:471–475

    CAS  PubMed  Google Scholar 

  139. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682–14687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    Article  CAS  PubMed  Google Scholar 

  141. Justilien V, Pang JJ, Renganathan K, Zhan X, Crabb JW, Kim SR, Sparrow JR, Hauswirth WW, Lewin AS (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48:4407–4420

    Article  PubMed  Google Scholar 

  142. Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 3:e3119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Wang AL, Neufeld AH (2010) Smoking mice: a potential model for studying accumulation of drusen-like material on Bruch’s membrane. Vision Res 50:638–642

    Article  PubMed  Google Scholar 

  144. Hu P, Herrmann R, Bednar A, Saloupis P, Dwyer MA, Yang P, Qi X, Thomas RS, Jaffe GJ, Boulton ME, McDonnell DP, Malek G (2013) Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology. Proc Natl Acad Sci U S A 110:E4069–E4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim SY, Yang HJ, Chang YS, Kim JW, Brooks M, Chew EY, Wong WT, Fariss RN, Rachel RA, Cogliati T, Qian H, Swaroop A (2014) Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Invest Ophthalmol Vis Sci 55:6031–6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Malek G, Busik J, Grant MB, Choudhary M (2018) Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discovery 13:359–377

    Article  CAS  Google Scholar 

  147. Choudhary M, Safe S, Malek G (2018) Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochim Biophys Acta Mol Basis Dis 1864:1583–1595

    Article  CAS  PubMed  Google Scholar 

  148. Li CM, Chung BH, Presley JB, Malek G, Zhang X, Dashti N, Li L, Chen J, Bradley K, Kruth HS, Curcio CA (2005) Lipoprotein-like particles and cholesteryl esters in human Bruch’s membrane: initial characterization. Invest Ophthalmol Vis Sci 46:2576–2586

    Article  PubMed  Google Scholar 

  149. Klein R, Cruickshanks KJ, Myers CE, Sivakumaran TA, Iyengar SK, Meuer SM, Schubert CR, Gangnon RE, Klein BE (2013) The relationship of atherosclerosis to the 10-year cumulative incidence of age-related macular degeneration: the Beaver Dam studies. Ophthalmology 120:1012–1019

    Article  PubMed  Google Scholar 

  150. Klein R, Klein BE, Tomany SC, Cruickshanks KJ (2003) The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam eye study. Ophthalmology 110:1273–1280

    Article  PubMed  Google Scholar 

  151. van Leeuwen R, Ikram MK, Vingerling JR, Witteman JC, Hofman A, de Jong PT (2003) Blood pressure, atherosclerosis, and the incidence of age-related maculopathy: the Rotterdam study. Invest Ophthalmol Vis Sci 44:3771–3777

    Article  PubMed  Google Scholar 

  152. Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274

    CAS  PubMed  Google Scholar 

  153. Pauleikhoff D, Harper CA, Marshall J, Bird AC (1990) Aging changes in Bruch’s membrane. A histochemical and morphologic study. Ophthalmology 97:171–178

    Article  CAS  PubMed  Google Scholar 

  154. Sheraidah G, Steinmetz R, Maguire J, Pauleikhoff D, Marshall J, Bird AC (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100:47–51

    Article  CAS  PubMed  Google Scholar 

  155. Dithmar S, Sharara NA, Curcio CA, Le NA, Zhang Y, Brown S, Grossniklaus HE (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 119:1643–1649

    Article  CAS  PubMed  Google Scholar 

  156. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  CAS  PubMed  Google Scholar 

  157. Dithmar S, Curcio CA, Le NA, Brown S, Grossniklaus HE (2000) Ultrastructural changes in Bruch’s membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci 41:2035–2042

    CAS  PubMed  Google Scholar 

  158. Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, Quarfordt SH, Maeda N (1997) Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 272:17972–17980

    Article  CAS  PubMed  Google Scholar 

  159. Espinosa-Heidmann DG, Sall J, Hernandez EP, Cousins SW (2004) Basal laminar deposit formation in APO B100 transgenic mice: complex interactions between dietary fat, blue light, and vitamin E. Invest Ophthalmol Vis Sci 45:260–266

    Article  PubMed  Google Scholar 

  160. Sallo FB, Bereczki E, Csont T, Luthert PJ, Munro P, Ferdinandy P, Santha M, Lengyel I (2009) Bruch’s membrane changes in transgenic mice overexpressing the human biglycan and apolipoprotein b-100 genes. Exp Eye Res 89:178–186

    Article  CAS  PubMed  Google Scholar 

  161. Parish CA, Hashimoto M, Nakanishi K, Dillon J, Sparrow J (1998) Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci U S A 95:14609–14613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729

    CAS  PubMed  Google Scholar 

  163. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30:1691–1699

    CAS  PubMed  Google Scholar 

  164. Molday RS (2007) ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr 39:507–517

    Article  CAS  PubMed  Google Scholar 

  165. Allikmets R (2000) Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium. Am J Hum Genet 67:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  CAS  PubMed  Google Scholar 

  167. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  PubMed  Google Scholar 

  168. Rattner A, Smallwood PM, Nathans J (2000) Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem 275:11034–11043

    Article  CAS  PubMed  Google Scholar 

  169. Maeda A, Maeda T, Sun W, Zhang H, Baehr W, Palczewski K (2007) Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proc Natl Acad Sci U S A 104:19565–19570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283:26684–26693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Klein R, Wang Q, Klein BE, Moss SE, Meuer SM (1995) The relationship of age-related maculopathy, cataract, and glaucoma to visual acuity. Invest Ophthalmol Vis Sci 36:182–191

    CAS  PubMed  Google Scholar 

  172. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364:1897–1908

    Article  Google Scholar 

  173. Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL, Vinores SA, Basilico C, Campochiaro PA (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ryan SJ (1979) The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 77:707–745

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Campa C, Kasman I, Ye W, Lee WP, Fuh G, Ferrara N (2008) Effects of an anti-VEGF-A monoclonal antibody on laser-induced choroidal neovascularization in mice: optimizing methods to quantify vascular changes. Invest Ophthalmol Vis Sci 49:1178–1183

    Article  PubMed  Google Scholar 

  176. Semkova I, Peters S, Welsandt G, Janicki H, Jordan J, Schraermeyer U (2003) Investigation of laser-induced choroidal neovascularization in the rat. Invest Ophthalmol Vis Sci 44:5349–5354

    Article  PubMed  Google Scholar 

  177. Edelman JL, Castro MR (2000) Quantitative image analysis of laser-induced choroidal neovascularization in rat. Exp Eye Res 71:523–533

    Article  CAS  PubMed  Google Scholar 

  178. Ogata N, Matsushima M, Takada Y, Tobe T, Takahashi K, Yi X, Yamamoto C, Yamada H, Uyama M (1996) Expression of basic fibroblast growth factor mRNA in developing choroidal neovascularization. Curr Eye Res 15:1008–1018

    Article  CAS  PubMed  Google Scholar 

  179. Yamada H, Yamada E, Kwak N, Ando A, Suzuki A, Esumi N, Zack DJ, Campochiaro PA (2000) Cell injury unmasks a latent proangiogenic phenotype in mice with increased expression of FGF2 in the retina. J Cell Physiol 185:135–142

    Article  CAS  PubMed  Google Scholar 

  180. Shen WY, Yu MJ, Barry CJ, Constable IJ, Rakoczy PE (1998) Expression of cell adhesion molecules and vascular endothelial growth factor in experimental choroidal neovascularisation in the rat. Br J Ophthalmol 82:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lambert V, Munaut C, Jost M, Noel A, Werb Z, Foidart JM, Rakic JM (2002) Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 161:1247–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bora NS, Kaliappan S, Jha P, Xu Q, Sohn JH, Dhaulakhandi DB, Kaplan HJ, Bora PS (2006) Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J Immunol 177:1872–1878

    Article  CAS  PubMed  Google Scholar 

  183. Lyzogubov VV, Tytarenko RG, Jha P, Liu J, Bora NS, Bora PS (2010) Role of ocular complement factor H in a murine model of choroidal neovascularization. Am J Pathol 177:1870–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585

    Article  PubMed  Google Scholar 

  185. Yi X, Ogata N, Komada M, Yamamoto C, Takahashi K, Omori K, Uyama M (1997) Vascular endothelial growth factor expression in choroidal neovascularization in rats. Graefes Arch Clin Exp Ophthalmol 235:313–319

    Article  CAS  PubMed  Google Scholar 

  186. Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195:241–248

    Article  CAS  PubMed  Google Scholar 

  187. Reich SJ, Fosnot J, Kuroki A, Tang W, Yang X, Maguire AM, Bennett J, Tolentino MJ (2003) Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 9:210–216

    CAS  PubMed  Google Scholar 

  188. Huang H, Shen J, Vinores SA (2011) Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS One 6:e21411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Takahashi H, Obata R, Tamaki Y (2006) A novel vascular endothelial growth factor receptor 2 inhibitor, SU11248, suppresses choroidal neovascularization in vivo. J Ocul Pharmacol Ther 22:213–218

    Article  CAS  PubMed  Google Scholar 

  190. Shen D, Wen R, Tuo J, Bojanowski CM, Chan CC (2006) Exacerbation of retinal degeneration and choroidal neovascularization induced by subretinal injection of Matrigel in CCL2/MCP-1-deficient mice. Ophthalmic Res 38:71–73

    Article  CAS  PubMed  Google Scholar 

  191. Jo YJ, Sonoda KH, Oshima Y, Takeda A, Kohno R, Yamada J, Hamuro J, Yang Y, Notomi S, Hisatomi T, Ishibashi T (2011) Establishment of a new animal model of focal subretinal fibrosis that resembles disciform lesion in advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 52:6089–6095

    Article  PubMed  Google Scholar 

  192. Frykman PK, Brown MS, Yamamoto T, Goldstein JL, Herz J (1995) Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci U S A 92:8453–8457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tiebel O, Oka K, Robinson K, Sullivan M, Martinez J, Nakamuta M, Ishimura-Oka K, Chan L (1999) Mouse very low-density lipoprotein receptor (VLDLR): gene structure, tissue-specific expression and dietary and developmental regulation. Atherosclerosis 145:239–251

    Article  CAS  PubMed  Google Scholar 

  194. Heckenlively JR, Hawes NL, Friedlander M, Nusinowitz S, Hurd R, Davisson M, Chang B (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    Article  PubMed  Google Scholar 

  195. Chen Y, Hu Y, Lu K, Flannery JG, Ma JX (2007) Very low density lipoprotein receptor, a negative regulator of the wnt signaling pathway and choroidal neovascularization. J Biol Chem 282:34420–34428

    Article  CAS  PubMed  Google Scholar 

  196. Marneros AG (2016) Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med 8:208–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Marneros AG (2016) VEGF-A and the NLRP3 Inflammasome in age-related macular degeneration. Adv Exp Med Biol 854:79–85

    Article  CAS  PubMed  Google Scholar 

  198. Williams DM, Lee GR, Cartwright GE (1974) Ferroxidase activity of rat ceruloplasmin. Am J Physiol 227:1094–1097

    Article  CAS  PubMed  Google Scholar 

  199. Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, Dunaief JL (2004) Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A 101:13850–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    Article  CAS  PubMed  Google Scholar 

  201. Hadziahmetovic M, Dentchev T, Song Y, Haddad N, He X, Hahn P, Pratico D, Wen R, Harris ZL, Lambris JD, Beard J, Dunaief JL (2008) Ceruloplasmin/hephaestin knockout mice model morphologic and molecular features of AMD. Invest Ophthalmol Vis Sci 49:2728–2736

    Article  PubMed  Google Scholar 

  202. Dawson WW, Dawson JC, Lake KP, Gonzalez-Martinez J (2008) Maculas, monkeys, models, AMD and aging. Vision Res 48:360–365

    Article  PubMed  Google Scholar 

  203. Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986) Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci 27:184–193

    CAS  PubMed  Google Scholar 

  204. Gouras P, Ivert L, Landauer N, Mattison JA, Ingram DK, Neuringer M (2008) Drusenoid maculopathy in rhesus monkeys (Macaca mulatta): effects of age and gender. Graefes Arch Clin Exp Ophthalmol 246:1395–1402

    Article  PubMed  PubMed Central  Google Scholar 

  205. Umeda S, Ayyagari R, Allikmets R, Suzuki MT, Karoukis AJ, Ambasudhan R, Zernant J, Okamoto H, Ono F, Terao K, Mizota A, Yoshikawa Y, Tanaka Y, Iwata T (2005) Early-onset macular degeneration with drusen in a cynomolgus monkey (Macaca fascicularis) pedigree: exclusion of 13 candidate genes and loci. Invest Ophthalmol Vis Sci 46:683–691

    Article  PubMed  Google Scholar 

  206. Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K, Yoshikawa Y, Tanaka Y, Iwata T (2005) Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J 19:1683–1685

    Article  CAS  PubMed  Google Scholar 

  207. Francis PJ, Appukuttan B, Simmons E, Landauer N, Stoddard J, Hamon S, Ott J, Ferguson B, Klein M, Stout JT, Neuringer M (2008) Rhesus monkeys and humans share common susceptibility genes for age-related macular disease. Hum Mol Genet 17:2673–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Singh KK, Krawczak M, Dawson WW, Schmidtke J (2009) Association of HTRA1 and ARMS2 gene variation with drusen formation in rhesus macaques. Exp Eye Res 88:479–482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our funding agencies [National Eye Institute grants R01 EY027802 and R01 EY028160 (to GM), P30 EY005722 (to the Duke Eye Center), and the Research to Prevent Blindness, Inc. (RPB) Core grant (to the Duke Eye Center)] for their continued support of our ongoing research and quest to understand complex retinal diseases and identify new therapeutic targets. We also express our gratitude to the donors and their families for their generosity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goldis Malek .

Editor information

Editors and Affiliations

Ethics declarations

Funding: This study was funded by National Eye Institutes grants R01 EY028702 and R01 EY028160 (to GM), P30 EY005722 (to the Duke Eye Center), and the Research to Prevent Blindness, Inc. (RPB) Core grant (to the Duke Eye Center).

Ethical Approval: Donor tissues obtained are used following approval from the Duke Institutional Review Board (IRB) committee. Similarly, animal studies are performed following protocol approval from the Duke Institutional Animal Care and Use Committee (IACUC).

Informed Consent: Not applicable.

Conflict of Interest: The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malek, G., Yao, PL., Choudhary, M. (2020). Models of Pathologies Associated with Age-Related Macular Degeneration and Their Utilities in Drug Discovery. In: Cioffi, C.L. (eds) Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases. Topics in Medicinal Chemistry, vol 35. Springer, Cham. https://doi.org/10.1007/7355_2020_93

Download citation

Publish with us

Policies and ethics