Skip to main content

Relativistic Quantum Chemical and Molecular Dynamics Techniques for Medicinal Chemistry of Bioinorganic Compounds

  • Chapter
  • First Online:
Biophysical and Computational Tools in Drug Discovery

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 37))

Abstract

In this chapter we review relativistic quantum chemical and molecular dynamics techniques focused on drug discovery and predictive toxicology pertinent to bioinorganic compounds and chelates. We consider transition metal complexes of interest for therapeutic interventions of Alzheimer’s disease and several forms of cancer, especially ovarian and breast cancers. Hence transition metal complexes of curcumin, several analogs of cisplatin, and other second and third row transition metal complexes are highlighted as candidates for treating such diseases and in computer aided drug discovery. Next we have demonstrated the utility of relativistic quantum chemical tools for the studies of lanthanide complexes such as Gd(III) complexes with a number of multidentate ligands which are candidates for highly contrasting agents in MRI and Ce(III)/Eu(III)/Sm(III) complexes as a promising novel line of drugs for tuberculosis. We have also considered a variety of actinide complexes of interest in predictive toxicology and environmental bioremediation elucidating detailed mechanisms of interactions of uranyl and plutonyl ions with human serum protein transferrin and related microbial complexes of actinides exemplifying the significance of such relativistic techniques, especially in the context of medicinal chemistry and drug discovery involving the interactions of actinides with proteins and cells. We have not only reviewed relativistic quantum techniques but also hybrid computational techniques such as QM/MM ONIOM methods, quantum chemical optimization of geometries complexes, and hybrid quantum molecular dynamics methods for providing insights into protein–metal complex/chelate interactions. It is shown that one needs to consider multiple site or allosteric binding approaches to drug discovery in conjunction with relativistic quantum chemical studies even if they are carried out at relatively lower levels such as relativistic effective core potentials combined with density functional level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC-Phos:

Acetamide phosphonate silane

AFM:

Atomic force microscopy

BBB:

Blood–brain barrier

CGDn:

Gd(III)-fullerene complex: C60-(Gd-DOTA)n (n = 4–5)

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarly indices analysis

COVID-19:

Corona virus disease-2019

CP2K:

Car-parrinello 2K adaptation of car-parrinello molecular dynamics

CPMD:

Car-parrinello molecular dynamics

CPMD/CMD:

Hybrid Car-parrinello molecular dynamics/classical molecular dynamics

DF:

Dirac-Fock computations

DOTA:

Dodecane tetraacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

EDTA:

Ethylenediaminetetraacetic acid

FTIR:

Fourier transform infrared spectroscopy

H3L:

2,6-Diformyl-4-methylphenol-di(benzoylhydrazone)

HCV:

Hepatitis type C virus

HOMO:

Highest occupied molecular orbital

HOPO(3.4):

3-Hydroxy-4(1H)-pyridinone

LUMO:

Lowest unoccupied molecular orbital

MD:

Molecular dynamics

MEP:

Molecular electro static potentials

MM:

Molecular mechanics

MRI:

Magnetic resonance imaging

NNI:

Non-nucleotide inhibitors

NS5B:

Nonstructural protein 5B (NS5B) polymerase

QM/MM:

Quantum mechanics/molecular mechanics

QMSA:

Quantitative molecular similarity analysis

QSAR:

Quantitative structure activity relationship

QshAR:

Quantitative shape-activity relationship

RECP:

Relativistic effective potentials

SARS-COV-2:

Severe acute respiratory syndrome coronavirus 2

SO:

Spin-orbit coupling

T1:

Longitudinal relaxation time

T2:

Transverse relaxation time

TESPMA:

Triethoxysilylpropylmaleamic acid

TF:

Transferrin (apotransferrin)

UDP-GDH:

UDP-glucose dehydrogenase

UGT:

UDP-glucuronosyltransferase

References

  1. Khare CP (2004) Encyclopedia of Indian medicinal plants. Springer, Berlin, p 367

    Google Scholar 

  2. Balasubramanian K (2018) Mathematical and computational techniques for drug discovery: promises and developments. Curr Top Med Chem 18:2774–2799

    Article  CAS  PubMed  Google Scholar 

  3. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  4. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2004) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    Article  Google Scholar 

  5. Gasparini L, Rusconi L, Xu H, Del Soldato P, Ongini E (2004) Modulation of β-amyloid metabolism by non-steroidal anti-inflammatory drugs in neuronal cell cultures. J Neurochem 88:337–348

    Article  CAS  PubMed  Google Scholar 

  6. Wilken R, Veena M, Wang M, Srivatsan E (2011) Curcumin reviewed as a nontoxic potential adjuvant in resistant head and neck cancers. Mol Cancer 10:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  PubMed  Google Scholar 

  8. Priyadarsini KI (2014) The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19:20091–20112

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jagannathan R, Abraham PM, Poddar P (2012) Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability. J Phys Chem B 116:14533–14540

    Article  CAS  PubMed  Google Scholar 

  10. Balasubramanian K (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem 54:3512–3520

    Article  CAS  PubMed  Google Scholar 

  11. Patil VM, Das S, Balasubramanian K (2016) Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper. J Phys Chem A 120:3643–3653

    Article  CAS  PubMed  Google Scholar 

  12. Balasubramanian K (1991) Theoretical calculations on the transition energies of the UV-visible spectra of curcurnin pigment in turmeric. Indian J Chem 30A:61–65

    CAS  Google Scholar 

  13. Balasubramanian K (1990) Two colorful applications of the PPP method. Int J Quantum Chem 37:449–463

    Article  CAS  Google Scholar 

  14. Balasubramanian K (2016) Quantum chemical insights into metabolic inhibition of cytochrome P450 enzymes: piperine, curcumin, and metal complexes of curcumin: promises and bioavailability. In: Advances in studies on enzyme inhibitors as drugs. Nova Science Publishers, Hauppauge

    Google Scholar 

  15. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-X L and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24:1199–1208

    Article  CAS  PubMed  Google Scholar 

  16. Moos PJ, Edes K, Mullally JE, Fitzpatrick FA (2004) Curcumin impairs tumor suppressor p53 function in colon cancer cells. Carcinogenesis 25:1611–1617

    Article  CAS  PubMed  Google Scholar 

  17. Khafif A, Schantz SP, Chou TC, Edelstein D, Sacks PG (1998) Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19:419–424

    Article  CAS  PubMed  Google Scholar 

  18. Van Erk MJ, Teuling E, Staal YC, Huybers S, Van Bladeren PJ, Aarts JM, Van Ommen B (2004) Time-and dose-dependent effects of curcumin on gene expression in human colon cancer cells. J Carcinogenesis 3:8

    Article  Google Scholar 

  19. Fujisawa S, Atsumi T, Ishihara M, Kadoma Y (2004) Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res 24:563–570

    CAS  PubMed  Google Scholar 

  20. Leung MH, Pham DT, Lincoln SF, Kee TW (2012) Femtosecond transient absorption spectroscopy of copper (II)–curcumin complexes. Phys Chem Chem Phys 14:13580–13587

    Article  CAS  PubMed  Google Scholar 

  21. Xu G, Wang J, Liu T, Wang M, Zhou S, Wu B, Jiang M (2014) Synthesis and crystal structure of a novel copper (II) complex of curcumin-type and its application in in vitro and in vivo imaging. J Mater Chem B 2:3659–3656

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Wei D, Jiang B, Liu T, Ni J, Zhou S (2014) Two copper (II) complexes of curcumin derivatives: synthesis, crystal structure and in vitro antitumor activity. Transit Met Chem 39:553–558

    Article  CAS  Google Scholar 

  23. Banerjee R (2014) Inhibitory effect of curcumin-Cu (II) and curcumin-Zn (II) complexes on amyloid-beta peptide fibrillation. Bioinorg Chem Appl 2014:325873

    Article  PubMed  PubMed Central  Google Scholar 

  24. Banerjee R (2019) Beneficial role of Curcumin in preventing the aggregation of the amyloid-β peptide in Alzheimer’s disease. In: Curcumin for neurological and psychiatric disorders. Academic Press, New York, pp 345–363

    Chapter  Google Scholar 

  25. Banerjee R (2014) Effect of curcumin on the metal ion induced fibrillization of amyloid-β peptide. Spectrochim Acta A Mol Biomol Spectrosc 117:798–800

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues MA, Fernandes JN, Ruggiero R, Guerra W (2012) Palladium complex containing curcumin as ligand: thermal and spectral characterization. Am J Chem 2:157–159

    Article  Google Scholar 

  27. Farkas E, Sóvágó I (2016) Metal complexes of amino acids and peptides. In: Amino acids, peptides and proteins, pp 100–151

    Chapter  Google Scholar 

  28. Hieu TQ, Thao DT (2019) Enhancing the solubility of curcumin metal complexes and investigating some of their biological activities. J Chem 2019:8082195

    Article  Google Scholar 

  29. Pettinari R, Marchetti F, Condello F, Pettinari C, Lupidi G, Scopelliti R, Mukhopadhyay S, Riedel T, Dyson PJ (2014) Ruthenium (II)–arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics 33:3709–3715

    Article  CAS  Google Scholar 

  30. Agarwal R, Goel SK, Behari JR (2010) Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. J Appl Toxicol 30:457–468

    CAS  PubMed  Google Scholar 

  31. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–339

    CAS  PubMed  Google Scholar 

  32. Ali I, Haque A, Saleem K (2014) Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal Methods 6:2526–2536

    Article  CAS  Google Scholar 

  33. Ali IS, Kishwar W, Diana H (2013) Synthesis DNA binding hemolytic and anti-cancer assays of curcumin-based ligands and their ruthenium(III) complexes. Med Chem Res 22:1386–1398

    Article  CAS  Google Scholar 

  34. Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci 67:2785–2793

    Article  CAS  PubMed  Google Scholar 

  35. Asti M, Ferrari E, Groci S, Atti G, Rubagotti S, Lori M, Capponi PC, Zerbini A, Saladini M, Versari A (2014) Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease. Inorg Chem 53:4922–4933

    Article  CAS  PubMed  Google Scholar 

  36. Awasthi S, Pandya U, Singhal SS, Lin JT, Thiviyanathan V, Seifert WE, Awasthi YC, Ansari GA (2000) Curcumin-glutathione interactions and the role of human glutathione S-transferase PI-1. Chem Biol Int 128:19–38

    Article  CAS  Google Scholar 

  37. Babu KV, Rajasekharan KN (1994) A convenient synthesis of curcumin-I analogues. Org Prep Proced Int 26:674–677

    Article  CAS  Google Scholar 

  38. Barik A, Mishra B, Kunwar A, Kadam RM, Shen L, Dutta S, Padhye S, Satpati AK, Zhang HY, Priyadarsini KI (2007) Comparative study of copper (II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur J Med Chem 42:431–439

    Article  CAS  PubMed  Google Scholar 

  39. Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang H, Priyadarsini KI (2005) Evaluation of new copper–curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic Biol Med 39:811–822

    Article  CAS  PubMed  Google Scholar 

  40. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:367–377

    Article  CAS  PubMed  Google Scholar 

  41. Baumann W, Rodrigues SV, Viana LM (2000) Pigments and their solubility in and extractability by supercritical CO2- the case of curcumin. Braz J Chem Eng 17:323–328

    Article  CAS  Google Scholar 

  42. Borsari M, Ferrari E, Grandi R, Saladini M (2002) Curucminoids as potential new iron-chelating agents: spectroscopic polarographic and potentiometric study on their Fe(III) complexing ability. Inorg Chim Acta 328:61–68

    Article  CAS  Google Scholar 

  43. Canamares MV, Garcia-Ramos JV, Sanchez-Cortes S (2006) Degradation of curcumin in aqueous solutions and Ag nanoparticle studied by UV-Vis absorption and surface enhanced Raman spectroscopy. Appl Spectrosc 60:1386–1391

    Article  CAS  PubMed  Google Scholar 

  44. Chassagnez-Mendez AL, Correa NCF, Franca LF, Machado NT, Araujo ME (2000) Mass transfer model applied to the supercritical extraction with CO2 of curcumins from turmeric rhizomes. Braz J Chem Eng 17:315–322

    Article  CAS  Google Scholar 

  45. Chen W, Xu N, Xu L, Wang L, Li Z, Ma W, Zhu Y, Xu C, Kotov NA (2010) Multifunctional magnetoplasmonic nanoparticle assemblies for cancer therapy and diagnostics (Theranostics). Macromol Rapid Commun 31:228–236

    Article  CAS  PubMed  Google Scholar 

  46. Chin SF, Iyer KS, Saunders M, Tim G, Buckley C, Paskevicious M, Raston CL (2009) Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chemistry 15:5661–5665

    Article  CAS  PubMed  Google Scholar 

  47. Daniel S, Limson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Biol Inorg Chem 98:266–275

    CAS  Google Scholar 

  48. Dinda AK, Prashant CK, Naqvi S (2012) Curcumin loaded organically modified silica (ORMOSIL) nanoparticle; a novel agent for cancer therapy. Int J Nanotechnol 9:862–871

    Article  CAS  Google Scholar 

  49. Dutta S, Padhye S, Priyadarsini KI, Newton C (2005) Antioxidant and antiproliferative activity of curcumin semicarbazone derivative. Bio-Org Med Chem 15:2738–2744

    Article  CAS  Google Scholar 

  50. Esatbeyoglu T, Huebbe P, Insa MA, DawnChin E, Wagner AE, Rimbach G (2012) Curcumin—from molecule to biological function. Angew Chem Int Ed 51:5308–5332

    Article  CAS  Google Scholar 

  51. Eybl V, Kotyzova D, Leseticky L, Bludovska M, Koutensky J (2006) The influence of curcumin and manganese complex of curcumin on cadmium induced oxidative damage and trace elements status in tissues of mice. J Appl Toxicol 26:207–212

    Article  CAS  PubMed  Google Scholar 

  52. Fang J, Jun L, Holmegren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290

    Article  CAS  PubMed  Google Scholar 

  53. Ferrari E, Asti M, Benassi R, Francesca P, Saladini M (2013) Metal binding ability of curcumin derivatives: a theoretical vs. experimental approach. Dalton Trans 42:5304–5313

    Article  CAS  PubMed  Google Scholar 

  54. Gangwar RK, Dhumale VA, Kumari D, Nakate UT, Gosavi SW, Sharma RB, Kale SN, Datar S (2012) Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater Sci Eng C 32:2659–2663

    Article  CAS  Google Scholar 

  55. Gangwar RK, Tomar GB, Dhumale VA, Zinjarde S, Sharma RB, Datar S (2013) Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J Agric Food Chem 61:9632–9637

    CAS  PubMed  Google Scholar 

  56. Garcea G, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ, Berry DP (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gianluca M, Erika F, Gigliola L, Valentina A, Francesca F, Claudio M, Francesca P, Monica S, Ledi M (2011) The role of coordination chemistry in the development of innovative gallium-based bioceramics: the case of curcumin. J Mater Chem 21:5027–5037

    Article  CAS  Google Scholar 

  58. Grykiewicz G, Silfirski P (2012) Curcumin and curcuminoids in quest for medicinal status. Acta Biochim Pol 59:201–212

    Google Scholar 

  59. Gupta S, Prasad S, Ji HK, Patchva S, Webb LJ, Priyadarsini KI, Aggarwal BB (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28:1937–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hatamie S, Nouri M, Karandikar SK, Kulkarni A, Dhole SD, Phase DM, Kale SN (2012) Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Mater Sci Eng C 32:92–97

    Article  CAS  Google Scholar 

  61. Hoehle SI, Pfeiffer E, Solyom AM, Metzler M (2006) Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J Agric Food Chem 54:756–764

    Article  CAS  PubMed  Google Scholar 

  62. Huang QM, Wang S, Pan W, Deng PX, Zhou H, Pan ZQ (2012) Synthesis and characterization of curcumin bridged porphyrins as photosensitizers. Chem J Chin Univ Chin 33:732–737

    CAS  Google Scholar 

  63. Ireson CR, Jones DJL, Orr S, Coughtrie MWH, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gesher AJ (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemol Biomark Prev 11:105–111

    CAS  Google Scholar 

  64. Iwunze MO, McEwan D (2004) Peroxynitrite interaction with curcumin solubilised in ethanol. Cell Mol Biol 50:749–752

    CAS  PubMed  Google Scholar 

  65. Jiang T, Wang L, Zhang S, Sun PC, Ding CF, Chu YQ, Zhou P (2011) Interaction of curcumin with Al(III) and its complex structures based on experiments and theoretical calculations. J Mol Struct 1004:163–173

    Article  CAS  Google Scholar 

  66. Jiang T, Zhi X, Zhang Y, Pan L, Zhou P (2012) Inhibitory effect of curcumin on the Al(III)-induced A beta(42) aggregation and neurotoxicity in vitro. Biochim Biophys Acta Mol Basis Dis 1822:1207–1215

    Article  CAS  Google Scholar 

  67. Jin D, Lee J, Seo ML, Jaworski J, Jung JH (2012) Controlled drug delivery from mesoporous silica using a pH response release. New J Chem 36:1616–1620

    Article  CAS  Google Scholar 

  68. Jin D, Park KW, Lee JH, Song K, Kim JG, Seo ML, Jung JH (2011) The selective immobilization of curcumin onto the internal surface of mesoporous hollow silica particles by covalent bonding and its controlled release. J Mat Chem 21:3641–3645

    Article  CAS  Google Scholar 

  69. John VD, Kuttan G, Krishnankutty K (2002) Anti-tumor studies of metal chelates of synthetic curcuminoids. J Exp Clin Cancer Res 21:219–224

    CAS  PubMed  Google Scholar 

  70. Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 12:3064–3068

    Article  Google Scholar 

  71. Jung Y, Xu W, Kim H, Ha N, Neckers L (2007) Curcumin-induced degradation of ErbB2: a role for the ubiquitin ligase CHIP and the Michael reaction acceptor activity of curcumin. Biochim Biophys Acta, Mol Cell Res 1773:383–390

    Article  CAS  PubMed  Google Scholar 

  72. Khalil MI, Al-Zahem AM, Al-Qunaibit MH (2013) Synthesis characterisation Mössbauer parameters and anti-tumor activity of Fe(III) curcumin complex. Bioinorg Chem Appl 2013:982423. https://doi.org/10.1155/2013/982423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Khurana A, Ho CT (1988) High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in curcuma longa. J Liquid Chromatogr 11:2295–2304

    Article  CAS  Google Scholar 

  74. Kim JE, Kim AR, Chung HY, Han SY, Kim BS, Choi JS (2003) In vitro peroxynitrite scavenging activity of diarylheptanoids from Curcumia longa. Phytother Res 17:481–484

    Article  CAS  PubMed  Google Scholar 

  75. Kim YJ, Lee HJ, Shin Y (2013) Optimization and validation of high-performance liquid chromatography method for individual curcuminoids in turmeric by heat-refluxed extraction. J Agric Food Chem 61:10911–10918

    Article  CAS  PubMed  Google Scholar 

  76. Koiram PR, Veerapur VR, Kunwar A, Mishra B, Barik A, Priyadarsini KI, Unnikrishnan MK (2007) Effect of curcumin and curcumin copper complex on radiation induced changes in the antioxidant enzymes levels in the livers of Swiss albino mice. J Radiat Res 48:241–245

    Article  CAS  PubMed  Google Scholar 

  77. Kunwar A, Barik A, Pandey R, Priyadarsini KI (2006) Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. Biochim Biophys Acta 1760:1513–1520

    Article  CAS  PubMed  Google Scholar 

  78. Kunwar A, Narang K, Priyadarsini KI, Krishna M, Pandey R, Sainis KB (2007) Delayed activation of PKCδ and NFκB and higher radioprotection in splenic lymphocytes by copper (II)-curcumin (1:1) complex. J Cell Biochem 102:1214–1224

    Article  CAS  PubMed  Google Scholar 

  79. Kurmudle N, Kagliwal LD, Bankar SB, Singhal RS (2013) Enzyme-assisted extraction for enhanced yields of turmeric oleoresin and its constituents. Food Biosci 3:36–51

    Article  CAS  Google Scholar 

  80. Lee KJ, Kim YS, Jung PM, Ma JY (2013) Optimization of the conditions for the analysis of curcumin and a related compound in Curcuma longa with mobile-phase composition and column temperature via RP-HPLC. Asian J Chem 25:6306–6310

    Article  CAS  Google Scholar 

  81. Lee KJ, Kim YS, Ma JY (2013) Separation and identification of curcuminoids from Asian turmeric (Curcuma longa L) using RP-HPLC and LC-MS. Asian J Chem 25:909–912

    Article  CAS  Google Scholar 

  82. Lee KJ, Ma JY, Kim YS, Kim DS, Jin Y (2012) High purity extraction and simultaneous high-performance liquid chromatography analysis of curcuminoids in turmeric. J Appl Biol Chem 55:61–65

    Article  CAS  Google Scholar 

  83. Lee KJ, Yang HJ, Jeong SW, Ma JY (2012) Solid-phase extraction of curcuminoid from turmeric using physical process method. Korean. J Pharmacogn 43:250–256

    CAS  Google Scholar 

  84. Leung MH, Harada M, Kee T, Tak W (2013) Delivery of curcumin and medicinal effects of the copper(II)-curcumin complexes. Curr Pharm Des 19:2070–2083

    CAS  PubMed  Google Scholar 

  85. Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation apoptosis signaling and angiogenesis. Cancer 104:1322–1331

    Article  CAS  PubMed  Google Scholar 

  86. Lou JR, Zhang XX, Zheng J, Ding WQ (2010) Transient metals enhance cytotoxicity of curcumin: potential involvement of the NF-kappaB and mTOR signaling pathways. Anticancer Res 30:3249–3255

    CAS  PubMed  Google Scholar 

  87. Ma’Mani L, Nikzad S, Kheiri-Manjili H, Al-Musawi S, Saeedi M, Askaralou S (2014) Curcumin-loaded guanidine functionalized PEGylated mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy. Eur J Med Chem 83:646–654

    Article  PubMed  Google Scholar 

  88. Marczylo TH, Steward WP, Gescher AJ (2009) Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem 57:797–803

    Article  CAS  PubMed  Google Scholar 

  89. Mei X, Xu D, Xu S, Zheng Y, Xu S (2011) Gastroprotective and antidepressant effects of a new zinc(II)-curcumin complex in rodent models of gastric ulcer and depression induced by stresses. Pharmacol Biochem Behav 99:66–74

    Article  CAS  PubMed  Google Scholar 

  90. Moamen RS (2013) Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: chelation effect on their thermal stability and biological activity. Spectrochim Acta Part A Mol Biomol Spectrosc 105:326–337

    Article  Google Scholar 

  91. Mohammadi K, Thompson KH, Patrick BO, Storr T, Martins C, Polishchuk E, Yuen VG, McNeill JH, Orvig C (2005) Synthesis and characterisation of dual function vanadyl gallium and indium curcumin complexes for medicinal applications. J Inorg Biochem 99:2217–2225

    Article  CAS  PubMed  Google Scholar 

  92. Oguzturk H, Ciftci O, Aydin M, Timurkaan N, Beytur A, Yilmaz F (2012) Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia 44:243–249

    Article  CAS  PubMed  Google Scholar 

  93. Pallikkavil R, Ummathur MS, Sreedharan S, Krishnankutty K (2013) Synthesis characterization and antimicrobial studies of Cd(II) Hg(II) Pb(II) Sn(II) and Ca(II) complexes of curcumin. Main Group Metal Chem 36:123–127

    Article  CAS  Google Scholar 

  94. Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19:2093–2100

    CAS  PubMed  Google Scholar 

  95. Priyadarsini KI (1997) Free radical reactions of curcumin in model membranes. Free Radic Biol Med 23:838–884

    Article  CAS  PubMed  Google Scholar 

  96. Priyadarsini KI (2009) Photophysics photochemistry and photobiology of curcumin: studies from organic solutions bio-mimetics and living cells. J Photochem Photobiol C 10:81–96

    Article  CAS  Google Scholar 

  97. Pucci D, Bellini T, Crispini A, D’Agnano I, Liquori PF, Garcia-Orduna P, Pirillo S, Valentini A, Zanchetta G (2012) DNA binding and cytotoxicity of fluorescent curcumin-based Zn(II) complexes. Med Chem Commun 3:462–468

    Article  CAS  Google Scholar 

  98. Rennolds J, Malireddy S, Hassan F, Tridandapani S, Parinandi N, Boyaka PN, Cormet-Boyaka E (2012) Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem Biophys Res Commun 417:256–261

    Article  CAS  PubMed  Google Scholar 

  99. Sagnou M, Benaki D, Triantis C, Tsotakos T, Psycharis V, Raptopoulou CP, Pirmettis I, Papadopoulos M, Pelecanou M (2011) Curcumin as the OO bidentate ligand in “2+1” complexes with the [M(CO)3]+ (M = Re Tc99m) tricarbonyl core for radiodiagnostic applications. Inorg Chem 50:1295–1303

    Article  CAS  PubMed  Google Scholar 

  100. Sakey R, Bafubiandi-Mulaba AF, Rajnikanth V, Varaprasad K, Reddy NN, Raju KM (2012) Development and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications. J Inorg Organomet Polym Mater 22:1254–1262

    Article  Google Scholar 

  101. Sharma KK, Chandra S, Basu DK (1987) Synthesis and antiarthritic study of a new orally active diferuloyl methane (curcumin) gold complex. Inorg Chim Acta 135:47–48

    Article  CAS  Google Scholar 

  102. Simoni D, Rizzi M, Rondanin R, Baruchello R, Marchetti P, Invidiata FP, Labbozzetta M, Poma P, Carina V, Notarbartolo M et al (2008) Antitumor effects of curcumin and structurally modified b-diketone analogs on multidrug resistant cancer cells. Bioorganic Med Chem Lett 18:845–849

    Article  CAS  Google Scholar 

  103. Sindhu K, Rajaram A, Sreeram KJ, Rajaram R (2014) Curcumin conjugated gold nanoparticle synthesis and its bioavailability. RSC Adv 4:1808–1814

    Article  Google Scholar 

  104. Singh DK, Jagannathan R, Khandelwal P, Abraham PM, Poddar P (2013) In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale 5:1882–1893

    Article  CAS  PubMed  Google Scholar 

  105. Singh SP, Sharma M, Gupta PK (2014) Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Lasers Med Sci 29:645–652

    Article  PubMed  Google Scholar 

  106. Singh U, Verma S, Ghosh HN, Rath MC, Priyadarsini KI, Sharma A, Pushpa KK, Sarkar SK, Mukherjee T (2010) Photo-degradation of curcumin in the presence of TiO2 nanoparticles: fundamentals and application. J Mol Catal A 318:106–111

    Article  CAS  Google Scholar 

  107. Sreelakshmi C, Goel N, Datta KKR, Addlagatta A, Ummani R, Reddy BVS (2013) Green synthesis of curcumin capped gold nanoparticles and evaluation of their cytotoxicity. Nanosci Nanotechnol Lett 5:1258–1265

    Article  CAS  Google Scholar 

  108. Sun YM, Zhang HY, Chen DZ, Liu CB (2002) Theoretical elucidation on the antioxidant mechanism of Curcumin: a DFT study. Org Lett 4:2909–2911

    Article  CAS  PubMed  Google Scholar 

  109. Thompson KH, Bohmerle K, Polishchuk E, Martins C, Toleikis P, Tse J, Yuen V, McNeill JH, Orvig C (2004) Complementary inhibition of synoviocyte smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. J Inorg Biochem 98:2063–2070

    Article  CAS  PubMed  Google Scholar 

  110. Vajragupta O, Boonchoong P, Berliner LJ (2004) Manganese complexes of curcumin analogues: evaluation of hydroxyl radical scavenging ability superoxide dismutase activity and stability towards hydrolysis. Free Radic Res 38:303–314

    Article  CAS  PubMed  Google Scholar 

  111. Vajragupta O, Boonchoong P, Watanabe H, Wongkrajang Y, Kammasud N (2003) Manganese complexes of curcumin and its derivatives: evaluation for the radical scavenging ability and neuroprotective activity. Free Radic Biol Med 35:1632–1644

    Article  CAS  PubMed  Google Scholar 

  112. Valentini A, Conforti F, Crispini A, De Martino A, Condello R, Stellitano C, Giuseppe R, Ghedini M, Federici G, Bernardini S et al (2009) Synthesis oxidant properties and antitumoral effects of a heteroleptic palladium(II) complex of curcumin on human prostate cancer cells. J Med Chem 52:484–491

    Article  CAS  PubMed  Google Scholar 

  113. Wilken R, Veena SM, Wang MB, Srivatsan ES (2011) Curcumin: a review of anticancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:1–19

    Article  Google Scholar 

  114. Yallapu MM, Ebeling MC, Khan S, Sundram V, Chauhan N, Gupta BK, Puumala SE, Jaggi M, Chauhan SC (2013) Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther 12:1471–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yan H, The C, Sreejit S, Zhu L, Kwok A, Fang W, Ma X, Nguyen KT, Korzh V, Zhao Y (2012) Functional mesoporous silica nanoparticles for photothermal-controlled drug delivery. Angew Chem Int Ed 51:8373–8377

    Article  CAS  Google Scholar 

  116. Roy A, Sarkar B, Celik C, Ghosh A, Basu U, Jana M, Jana A, Gencay A, Sezgin GC, Ildiz N, Dam P (2020) Can concomitant use of zinc and curcumin with other immunity-boosting nutraceuticals be the arsenal against COVID-19? Phytother Res. https://doi.org/10.1002/ptr.6766

  117. Soni VK, Mehta A, Ratre YK, Tiwari AK, Amit A, Singh RP, Sonkar SC, Chaturvedi N, Shukla D, Vishvakarma NK (2020) Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol 12:173551

    Article  Google Scholar 

  118. Babaei F, Nassiri-Asl M, Hosseinzadeh H (2020) Curcumin (a constituent of turmeric): new treatment option against COVID-19. Food Sci Nutr 8:5215–5227. https://doi.org/10.1002/fsn3.1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lippert B (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, New York

    Book  Google Scholar 

  120. Mantri Y, Baik MH (2006) Computational studies: cisplatin. In: Encyclopedia of inorg chemistry. Wiley, New York

    Google Scholar 

  121. Reedijk J (2003) New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proc Natl Acad Sci U S A 100:3611–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reedijk J (2009) Platinum anticancer coordination compounds: study of DNA binding inspires new drug design. Eur J Inorg Chem 2009:1303–1312

    Article  Google Scholar 

  123. Reedijk J (2011) Increased understanding of platinum anticancer chemistry. Pure Appl Chem 83:1709–1719

    Article  CAS  Google Scholar 

  124. Reedijk J (2016) Metal-ion nucleic-acid interactions: a personal account. Inorg Chim Acta 452:268–272

    Article  CAS  Google Scholar 

  125. Wang D, Lippard SJ (2015) Cellular processing of platinum anticancer drugs. Nat Rev Drug Disc 4:307

    Article  Google Scholar 

  126. Marques MP (2013) Platinum and palladium polyamine complexes as anticancer agents: the structural factor. ISRN Spectroscopy 2013:287353. https://doi.org/10.1155/2013/287353

    Article  CAS  Google Scholar 

  127. Mitra K, Gautam S, Kondaiah P, Chakravarty AR (2017) Platinum (II) complexes of curcumin showing photocytotoxicity in visible light. Eur J Inorg Chem 12:1753–1763

    Article  Google Scholar 

  128. Upadhyay A, Gautam S, Ramu V, Kondaiah P, Chakravarty AR (2019) Photocytotoxic cancer cell-targeting platinum (II) complexes of glucose-appended curcumin and biotinylated 1, 10-phenanthroline. Dalton Trans 48:17556–17565

    Article  CAS  PubMed  Google Scholar 

  129. McCarthy SL, Hinde RJ, Miller KJ, Anderson JS, Basch H, Krauss M (1990) Theoretical studies of cis-Pt (II)-diammine binding to duplex DNA. Biopolym Orig Res Biomol 29:823–836

    Article  CAS  Google Scholar 

  130. Miller KJ, McCrthy SL, Krauss M (1990) Binding of cis-(1, 2-diaminocyclohexane) platinum (II) and its derivatives to duplex DNA. J Med Chem 33(3):1043–1046

    Article  CAS  PubMed  Google Scholar 

  131. Balasubramanian K (2016) Quantum chemical insights into Alzheimer's disease: Curcumin’s chelation with Cu (II), Zn (II), and Pd (II) as a mechanism for its prevention. Int J Q Chem 116:1107–1119

    Article  CAS  Google Scholar 

  132. Balasubramanian K, Kaufman JJ, Koski WS, Balaban AT (1980) Graph theoretical characterization and computer generation of certain carcinogenic benzenoid hydrocarbons and identification of bay regions. J Comput Chem 1:149–157

    Article  CAS  Google Scholar 

  133. Kaufman JJ, Hariharan PC, Koski WS, Balasubramanian K (1985) Quantum chemical and other theoretical studies of carcinogens, their metabolic activation and attack on DNA constituents. Prog Clin Biol Res 172:263–275

    CAS  Google Scholar 

  134. Balasubramanian K, Feng PY (1990) Potential-energy surfaces for Pt2+ H and Pt+ H interactions. J Chem Phys 92:541–550

    Article  CAS  Google Scholar 

  135. Balasubramanian K (1989) Ten low-lying electronic states of Pd3. J Chem Phys 91:307–313

    Article  CAS  Google Scholar 

  136. Balasubramanian K, Liao DW (1989) Spectroscopic properties of low-lying electronic states of rhodium dimer. J Phys Chem 93:3989–3992

    Article  CAS  Google Scholar 

  137. Majumdar D, Balasubramanian K (1997) Theoretical study of the electronic states of Rh5. J Chem Phys 106:4053–4060

    Article  CAS  Google Scholar 

  138. Dai D, Balasubramanian K (1996) Electronic states of Rh4. Chem Phys Lett 263:703–709

    Article  CAS  Google Scholar 

  139. Roszak S, Balasubramanian K (1994) Reaction of the copper dimer with ethylene. A theoretical study. Chem Phys Lett 231:18–24

    Article  CAS  Google Scholar 

  140. Dai D, Balasubramanian K (1992) Potential energy surfaces for platinum (Pt3) + hydrogen atom and palladium (Pd3) + hydrogen atom interactions. J Phys Chem 96:3279–3282

    Article  CAS  Google Scholar 

  141. Benavides-Garcia M, Balasubramanian K (1991) Spectroscopic constants and potential energy curves for OsH. J Mol Spectrosc 150:271–279

    Article  CAS  Google Scholar 

  142. David Jeba Singh DM, Pradeep T, Thirumoorthy K, Balasubramanian K (2010) Closed-cage tungsten oxide clusters in the gas phase. J Phys Chem A 114:5445–5452

    Article  CAS  Google Scholar 

  143. Majumdar D, Roszak S, Balasubramanian K (1997) Theoretical study of the interaction of benzene with Rh+ and Rh2+ cations. J Chem Phys 107:408–414

    Article  CAS  Google Scholar 

  144. Roszak S, Balasubramanian K (1995) Theoretical-study of the interaction of benzene with platinum atom and cation. Chem Phys Lett 234:101–106

    Article  CAS  Google Scholar 

  145. Majumdar D, Roszak S, Balasubramanian K (2001) Interaction of benzene (Bz) with with Pt and Pt2 A theoretical study of Benzene with Bz-Pt2 Bz2-Pt and Bz2-Pt2 species. J Chem Phys 114:10300–10310

    Article  CAS  Google Scholar 

  146. Simeon T, Balasubramanian K, Welch CR (2010) Theoretical study of the interactions of in+ and In3+ with stone-Wales defect single-walled carbon nanotubes. J Phys Chem Lett 1:457–462. https://doi.org/10.1021/jz900125e

    Article  CAS  Google Scholar 

  147. Gschneidner KA, Bunzli JC, Pecharsky VK (2004) Handbook on the physics and chemistry of rare earths. Elsevier, Amserdam

    Google Scholar 

  148. Akhtar H, Kumar S, Banik B, Banerjee S, Nagaraju G, Chakravarthy AR (2013) Enhancing the photocytotoxic potential of curcumin on terpyridyl-lanthanide(III) complex formation. Dalton Trans 42:182–195

    Article  Google Scholar 

  149. Song YM, Xu JP, Ding L, Hou Q, Liu JW, Zhu ZL (2009) Syntheses characterisation and biological activities of rare earth metal complexes with curcumin and 1 10-phenanthroline-5 6-dione. J Inorg Biochem 103:396–400

    Article  CAS  PubMed  Google Scholar 

  150. Zhou SX, Xuan W, Jia-Feng D, Dong Y, Jiang B, Wei D, Wan ML, Jia Y (2012) Synthesis optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. J Mater Chem 22:22774–22780

    Article  CAS  Google Scholar 

  151. Silva SR, Duarte ÉC, Ramos GS, Kock FV, Andrade FD, Frézard F, Colnago LA, Demicheli C (2015) Gadolinium (III) complexes with N-alkyl-N-methylglucamine surfactants incorporated into liposomes as potential MRI contrast agents. Bioinorg Chem Appl 2015:942147. https://doi.org/10.1155/2015/942147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Clough TJ, Jiang L, Wong KL, Long NJ (2019) Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat Commun 10:1–4

    Article  CAS  Google Scholar 

  153. Wang L, Zhu X, Tang X, Wu C, Zhou Z, Sun C, Deng SL, Ai H, Gao J (2015) A multiple gadolinium complex decorated fullerene as a highly sensitive T 1 contrast agent. Chem Commun 51:4390–4393

    Article  CAS  Google Scholar 

  154. Porcar-Tost O, Olivares JA, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM (2019) Gadolinium complexes of highly rigid, open-chain ligands containing a cyclobutane ring in the backbone: decreasing ligand Denticity might enhance kinetic inertness. Inorg Chem 58:13170–13183

    Article  CAS  PubMed  Google Scholar 

  155. Zhang B, Cheng L, Duan B, Tang W, Yuan Y, Ding Y, Hu A (2019) Gadolinium complexes of diethylenetriamine-N-oxide pentaacetic acid-bisamide: a new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Trans 48:1693–1699

    Article  CAS  PubMed  Google Scholar 

  156. Wang Y, Zhang R, Song R, Guo K, Meng Q, Feng H, Duan C, Zhang Z (2016) Fluoride-specific fluorescence/MRI bimodal probe based on a gadolinium (III)–flavone complex: synthesis, mechanism and bioimaging application in vivo. J Mater Chem B 4:7379–7386

    Article  CAS  PubMed  Google Scholar 

  157. Frullano L, Rohovec J, Peters JA, Geraldes CFGC (2002) Structures of MRI contrast agents in solution. Top Curr Chem 221:25–60

    Article  CAS  Google Scholar 

  158. Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8

    Article  CAS  PubMed  Google Scholar 

  159. Floyd III WC, Klemm PJ, Smiles DE, Kohlgruber AC, Pierre VC, Mynar JL, Fréchet JM, Raymond KN (2011) Conjugation effects of various linkers on Gd (III) MRI contrast agents with dendrimers: optimizing the hydroxypyridinonate (HOPO) ligands with nontoxic, degradable esteramide (EA) dendrimers for high relaxivity. J Am Chem Soc 133(8):2390–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Datta A, Raymond KN (2009) Gd− hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents. Acc Chem Res 42:938–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Xu K, Xu N, Zhang B, Tang W, Ding Y, Hu A (2020) Gadolinium complexes of macrocyclic diethylenetriamine-N-oxide pentaacetic acid-bisamide as highly stable MRI contrast agents with high relaxivity. Dalton Trans 49:8927–8932

    Article  CAS  PubMed  Google Scholar 

  162. Das K, Nandi S, Mondal S, Askun T, Cantürk Z, Celikboyun P, Massera C, Garribba E, Datta A, Sinha C, Akitsu T (2015) Triply phenoxo bridged Eu (III) and Sm (III) complexes with 2, 6-diformyl-4-methylphenol-di (benzoylhydrazone): structure, spectra and biological study in human cell lines. New J Chem 39:1101–1114

    Article  CAS  Google Scholar 

  163. Daumann LJ, Tatum DS, Snyder BE, Ni C, Law GL, Solomon EI, Raymond KN (2015) New insights into structure and luminescence of Eu(III) and Sm(III) complexes of the 3, 4, 3-LI (1, 2-HOPO) ligand. J Am Chem Soc 137:2816–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mara MW, Tatum DS, March AM, Doumy G, Moore EG, Raymond KN (2019) Energy transfer from antenna ligand to europium (III) followed using ultrafast optical and X-ray spectroscopy. J Am Chem Soc 141:11071–11081

    Article  CAS  PubMed  Google Scholar 

  165. Daumann LJ, Werther P, Ziegler MJ, Raymond KN (2016) Siderophore inspired tetra-and octadentate antenna ligands for luminescent Eu (III) and Tb (III) complexes. J Inorg Biochem 162:263–273

    Article  CAS  PubMed  Google Scholar 

  166. Taha M, Khan I, Coutinho JA (2016) Complexation and molecular modeling studies of europium (III)–gallic acid–amino acid complexes. J Inorg Biochem 157:25–33

    Article  CAS  PubMed  Google Scholar 

  167. Wu T, Kessler J, Bouř P (2016) Chiral sensing of amino acids and proteins chelating with Eu(III) complexes by Raman optical activity spectroscopy. Phys Chem Chem Phys 18(34):23803–23811

    Article  CAS  PubMed  Google Scholar 

  168. Hong D, Zhao HM (2020) Eu (III)-coordination polymer: inhibitory activity on cervical cancer via inducing ROS mediated apoptosis. Drug Dev Indust Pharm 14:1–4. https://doi.org/10.1080/03639045.2020.1826508

    Article  CAS  Google Scholar 

  169. Harris M, Henoumont C, Peeters W, Toyouchi S, Vander Elst L, Parac-Vogt TN (2018) Amphiphilic complexes of Ho (III), Dy (III), Tb (III) and Eu (III) for optical and high field magnetic resonance imaging. Dalton Trans 47:10646–10653

    Article  CAS  PubMed  Google Scholar 

  170. Majumdar D, Balasubramanian K, Nitsche H (2002) A comparative theoretical study of bonding in UO22+, UO2+, UO2, UO2, OUCO, O2U (CO)2 and UO2CO3. Chem Phys Lett 361:143–151

    Article  CAS  Google Scholar 

  171. Cao Z, Balasubramanian K, Calvert MG, Nitsche H (2009) Solvation effects on isomeric preferences of curium(III) complexes with multidentate phosphonopropionic acid ligands: CmH(2)PPA(2+) and CmHPPA(+) complexes. Inorg Chem 48:9700–9714. https://doi.org/10.1021/ic901054h

    Article  CAS  PubMed  Google Scholar 

  172. Cao Z, Balasubramanian K (2009) Theoretical studies of UO2(OH)(H2O)(n)(+), UO2(OH)(2)(H2O)(n), NpO2(OH)(H2O)(n), and PuO2(OH)(H2O)(n)(+) (n <= 21) complexes in aqueous solution. J Chem Phys 131:164504. https://doi.org/10.1063/1.3244041

    Article  CAS  PubMed  Google Scholar 

  173. Majumdar D, Roszak S, Balasubramanian K, Nitsche H (2003) Theoretical study of aqueous uranyl carbonate (UO2CO3) and its hydrated complexes: UO2CO3.nH2O (n = 1 - 3). Chem Phys Lett 372:232–241

    Article  CAS  Google Scholar 

  174. Chaudhuri D, Balasubramanian K (2004) Electronic structure and spectra of plutonyl complexes and their hydrated forms: PuO2CO3 and PuO2CO3.nH2O (n=1,2). Chem Phys Lett 399:67–72

    Article  CAS  Google Scholar 

  175. Balasubramanian K, Chaudhuri D (2008) Computational modeling of environmental plutonyl mono-, di- and tricarbonate complexes with Ca counterions: structures and spectra: PuO2(CO3)3Ca32, PuO2(CO3)3Ca, and PuO2(CO3)3Ca3. Chem Phys Lett 450:196–202. https://doi.org/10.1016/j.cplett.2007.11.012

    Article  CAS  Google Scholar 

  176. Wheaton V, Majumdar D, Balasubramanian K, Chauffe L, Allen PG (2003) A comparative theoretical study of uranyl silicate complexes. Chem Phys Lett 371:349–359

    Article  CAS  Google Scholar 

  177. Ramanjaneyulu PS, Sayi YS, Raman VA, Ramakumar KL (2007) Spectrophotometric determination of boron in nuclear grade uranium compounds with curcumin and studies on effect of HNO3. J Radioanal Anal Nucl Chem 274:109–114

    Article  CAS  Google Scholar 

  178. Romanchuk AY, Kalmykov SN, Kersting AB, Zavarin M (2016) Behaviour of plutonium in the environment. Russ Chem Rev 85:995. https://doi.org/10.1070/RCR4602

    Article  CAS  Google Scholar 

  179. Benavides-Garcia MG, Balasubramanian K (2009) Structural insights into the binding of Uranyl with human serum protein Apotransferrin structure and spectra of protein-Uranyl interactions. ACS Chem Res Toxicol 22:1613–1621. https://doi.org/10.1021/tx900184r

    Article  CAS  Google Scholar 

  180. Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, Torne-Celer C, Plantevin S, Pible O, Berthomieu C, Quéméneur E (2007) Structural consequences of binding of UO22+ to apotransferrin: can this protein account for entry of uranium into human cells? Biochemistry 46:2215–2226

    Article  CAS  PubMed  Google Scholar 

  181. Yang N, Zhang H, Wang M, Hao Q, Sun H (2012) Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Sci Rep 2:999. https://doi.org/10.1038/srep00999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ansoborlo E, Prat O, Moisy P, Den Auwer C, Guilbaud P, Carriere M, Gouget B, Duffield J, Doizi D, Vercouter T, Moulin C (2006) Actinide speciation in relation to biological processes. Biochimie 88:1605–1618

    Article  CAS  PubMed  Google Scholar 

  183. Reeves B, Beccia MR, Solari PL, Smiles DE, Shuh DK, Berthomieu C, Marcellin D, Bremond N, Mangialajo L, Pagnotta S, Monfort M (2019) Uranium uptake in Paracentrotus lividus sea urchin, accumulation and speciation. Environ Sci Technol 53:7974–7983

    Article  CAS  PubMed  Google Scholar 

  184. Majumdar D, Balasubramanian K (2004) Theoretical studies on the nature of uranyl-silicate, uranyl-phosphate and uranyl-arsenate interactions in the model H2UO2SiO4 · 3H2O, HUO2PO4 · 3H2O, and HUO2AsO4 · 3H2O molecules. Chem Phys Lett 397:26–33

    Article  CAS  Google Scholar 

  185. Hennig C, Panak PJ, Reich T, Rossberg A, Raff J, Selenska-Pobell S, Matz W, Bucher JJ, Bernhard G, Nitsche H (2001) EXAFS investigation of uranium (VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces. Radiochim Acta 89:625–632

    Article  CAS  Google Scholar 

  186. Panak PJ, Knopp R, Booth CH, Nitsche H (2002) Spectroscopic studies on the interaction of U (VI) with Bacillus sphaericus. Radiochim Acta 90:779–783

    Article  CAS  Google Scholar 

  187. Knopp R, Panak PJ, Wray LA, Renninger NS, Keasling JD, Nitsche H (2003) Laser spectroscopic studies of interactions of UVI with bacterial phosphate species. Chem Eur J 9:2812–2818

    Article  CAS  PubMed  Google Scholar 

  188. Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schwaiger LK, Parsons-Moss T, Hubaud, A, Tueysuez H, Balasubramanian K, Yang P, Nitsche H (2010) Actinide and lanthanide complexation by organically modified mesoporous silica. In: Abstracts of papers of the American Chemical Society, 239:98-NUCL, WOS:000208189303645

    Google Scholar 

  190. Parsons-Moss T, Schwaiger LK, Hubaud A, Hu YJ, Tuysuz H, Yang P, Balasubramanian K, Nitsche H (2011) Plutonium complexation by phosphonate-functionalized mesoporous silica. Abstracts American Chemical Society. 241:48-NUCL. WOS:000291982806306

    Google Scholar 

  191. Pallares RM, Sturzbecher-Hoehne M, Shivaram NH, Cryan JP, D’Aléo A, Abergel RJ (2020) Two-photon antenna sensitization of curium: evidencing metal-driven effects on absorption cross section in f-element complexes. J Phys Chem Lett 11:6063–6067

    Article  CAS  PubMed  Google Scholar 

  192. Gupta AK, Saxena AK (2010) 3D-QSAR CoMFA and CoMSIA studies on a set of diverse α1a-adrenergic receptor antagonists. Med Chem Res 20:1455–1464

    Article  Google Scholar 

  193. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  PubMed  Google Scholar 

  194. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  PubMed  Google Scholar 

  195. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  196. Shaik B, Zafar T, Balasubramanian K, Gupta SP (2020) An overview of ovarian cancer: molecular processes involved and development of target-based chemotherapeutics. Curr Top Med Chem. https://doi.org/10.2174/1568026620999201111155426

  197. Balasubramanian K, Gupta SP (2019) Quantum molecular dynamics, topological, group theoretical and graph theoretical studies of protein-protein interactions. Curr Tpc Med Chem 19:426–443

    Article  CAS  Google Scholar 

  198. Murugesan V, Prabhakar YS, Katti SB (2009) CoMFA and CoMSIA studies on thiazolidin-4-one as anti-HIV-1 agents. J Mol Graph Model 27:735–743

    Article  CAS  PubMed  Google Scholar 

  199. Mezey PG (1992) Similarity analysis in two and three dimensions using lattice animals and polycubes. J Math Chem 11:27–45

    Article  Google Scholar 

  200. Mezey PG, Warburton P, Jako E, Szekeres Z (2002) Dimension concepts and reduced dimensions in toxicological QShAR databases as tools for data quality assessment. J Math Chem 30:375

    Article  Google Scholar 

  201. Mezey PG (2009) Some dimension problems in molecular databases. J Math Chem 45:1–6

    Article  CAS  Google Scholar 

  202. Mezey PG (1992) Shape-similarity measures for molecular bodies: a 3D topological approach to quantitative shape-activity relations. J Chem Inf Comput Sci 32:650–656

    Article  CAS  Google Scholar 

  203. Carbó-Dorca R (2018) DNA, unnatural base pairs and hypercubes. J Math Chem 56:1353–1356. https://doi.org/10.1007/s10910-018-0866-9

    Article  CAS  Google Scholar 

  204. Carbó-Dorca R, Leyda L, Arnau M (1980) How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int J Quantum Chem 17:1185–1189

    Article  Google Scholar 

  205. Carbó-Dorca R, Mezey PG (1999) Advances in molecular similarity. Elsevier, Amsterdam

    Google Scholar 

  206. Balasubramanian K (1979) A generalized wreath product method for the enumeration of stereo and position isomers of polysubstituted organic compounds. Theor Chim Acta 51:37–54

    Article  CAS  Google Scholar 

  207. Balasubramanian K (1985) Applications of combinatorics and graph theory to spectroscopy and quantum chemistry. Chem Rev 85:599–618

    Article  CAS  Google Scholar 

  208. Arockiaraj M, Klavžar S, Kavitha SR, Mushtaq S, Balasubramanian K (2020) Relativistic structural characterization of molybdenum and tungsten disulfide materials. Int J Quantum Chem 11:e26492

    Google Scholar 

  209. Arockiaraj M, Clement J, Paul D, Balasubramanian K (2020) Relativistic distance-based topological descriptors of Linde type A zeolites and their doped structures with very heavy elements. Mol Phys 5:e1798529

    Google Scholar 

  210. Arockiaraj M, Kavitha SR, Mushtaq S, Balasubramanian K (2020) Relativistic topological molecular descriptors of metal trihalides. J Mol Struct 14:128368

    Article  Google Scholar 

  211. Balasubramanian K (1997) Relativistic effects in chemistry, part A: theory and techniques. Wiley-Interscience, New York, p 301

    Google Scholar 

  212. Balasubramanian K (1997) Relativistic effects in chemistry, parts B: applications. Wiley-Interscience, New York, p 527

    Google Scholar 

  213. Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comput Chem 24:760–769

    Article  CAS  PubMed  Google Scholar 

  214. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  PubMed  Google Scholar 

  215. Piana S, Bucher D, Carloni P, Rothlisberger U (2004) Reaction mechanism of HIV-1 protease by hybrid Car-Parrinello/classical MD simulations. J Phys Chem B 108:11139–11149

    Article  CAS  Google Scholar 

  216. Perilla JR, Schulten K (2017) Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959. https://doi.org/10.1038/ncomms15959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. von Ragué Schleyer P, Schreiner PR, Schaefer IIIHF, Jorgensen WL, Thiel W, Glen RC, Allinger LN, Clark T, Gasteiger J, Chandler D, Handy NC et al (1988) Encyclopedia of computational chemistry. Wiley, New York

    Google Scholar 

  218. Balasubramanian K (1988) Relativistic configuration interaction calculations for polyatomics: applications to PbH2, SnH2, and GeH2. J Chem Phys 89:5731–5738

    Article  CAS  Google Scholar 

  219. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Patil VM, Narkhede RR, Masand N, Rameshwar S, Cheke RS, Balasubramanian, K (2020) Molecular insights into resveratrol and its analogs as SARS-CoV-2 (COVID-19) protease inhibitors. Coronaviruses. https://doi.org/10.2174/2666796701999201218142828

  221. Balasubramanian K, Patil VM (2018) Quantum molecular modeling of hepatitis C virus inhibition through non-structural protein 5B polymerase receptor binding of C5-arylidene rhodanines. Comput Biol Chem 73:147–158

    Article  CAS  PubMed  Google Scholar 

  222. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  223. Balasubramanian K (2018) Relativity and the Jahn–Teller, Berry pseudorotations of TBP clusters: group theory, spin–orbit and combinatorial nuclear spin statistics of TBP Desargues–Levi isomerization graph. J Math Chem 56:2194–2225

    Article  CAS  Google Scholar 

  224. Balasubramanian K (1979) Enumeration of internal rotation reactions and their reaction graphs. Theor Chim Acta 53:129–146

    Article  CAS  Google Scholar 

  225. Balasubramanian K (1982) Topological and group theoretical analysis in dynamic NMR spectroscopy. J Phys Chem 86(24):4668–4674

    Article  CAS  Google Scholar 

  226. Cao Z, Balasubramanian K (2007) Unusual geometries and spectroscopic properties of electronic states of In2N2. Chem Phys Lett 439:288–295

    Article  CAS  Google Scholar 

  227. Reiher M, Wolf A (2014) Relativistic quantum chemistry: the fundamental theory of molecular science. Wiley, New York

    Book  Google Scholar 

  228. Balasubramanian K (1990) Electronic structure of (GaAs)2. Chem Phys Lett 171(1-2):58–62

    Article  CAS  Google Scholar 

  229. Benavides‐Garcia M, Balasubramanian K (1994) Bond energies, ionization potentials, and the singlet–triplet energy separations of SnCl2, SnBr2, SnI2, PbCl2, PbBr2, PbI2, and their positive ions. J Chem Phys 100(4):2821–2830

    Article  Google Scholar 

  230. Balasubramanian K, Das KK (1990) Reply to “Comments on ‘Binding energies and ionization potentials of the tetramers of copper, silver, and gold’”. J Phys Chem 94(21):8379–8380

    Article  CAS  Google Scholar 

  231. Balasubramanian K (1987) Relativistic calculations of electronic states of SnS. Chem Phys Lett 139(3-4):262–266

    Article  CAS  Google Scholar 

  232. Balasubramanian K (2002) Electronic states of the superheavy element 113 and (113) H. Chem Phys Lett 361(5-6):397–404

    Article  CAS  Google Scholar 

  233. Balasubramanian K, Liao DW (1991) Spectroscopic constants and potential energy curves of Bi2 and Bi2-. J Chem Phys 95:3064–3073

    Google Scholar 

  234. Latifzadeh L, Balasubramanian K (1996) Spectroscopic constants and potential energy curves of AsF. Chem Phys Lett 250:171–177

    Article  CAS  Google Scholar 

  235. Latifzadeh L, Balasubramanian K (1995) Electronic states of AsF2 and AsF2+. Chem Phys Lett 237:222–228

    Article  CAS  Google Scholar 

  236. Dai D, Balasubramanian K (1993) Geometries and potential energies of electronic states of GaX2 and GaX3 (X= Cl, Br, and I). J Chem Phys 99:293–301

    Article  CAS  Google Scholar 

  237. Dolg M, Stoll H (1996) Electronic structure calculations for molecules containing lanthanide atoms. Handbook Phys Chem Rare Earths 22:607–729

    Article  CAS  Google Scholar 

  238. Dolg M (2015) Computational methods in lanthanide and actinide chemistry. Wiley, New York

    Book  Google Scholar 

  239. Morss LR, Edelstein NM, Fuger J (2006) The chemistry of the actinide transactinide elements.3rd edn. Springer, Berlin

    Book  Google Scholar 

  240. Balasubramanian K, Sumathi K, Dai D (1991) Group V trimers and their positive ions: the electronic structure and potential energy surfaces. J Chem Phys 95:3494–3505

    Article  CAS  Google Scholar 

  241. Balasubramanian K (2021) Computational and artificial intelligence techniques for drug discovery and administration, comprehensive pharmacology. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgement

This review is dedicated to the fond memory of Professor Heino Nitsche of Lawrence Berkeley Lab and UC Berkeley, my collaborator and a pioneer in experimental actinide chemistry. The author was significantly benefited by numerous discussions and interactions with Prof Nitsche and his research group, especially with regard to actinide complexes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Balasubramanian .

Editor information

Editors and Affiliations

Ethics declarations

Funding: No funding was received for this work.

Conflict of Interest: The author declares that he has no conflict of interest.

Ethical Approval: This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramanian, K. (2021). Relativistic Quantum Chemical and Molecular Dynamics Techniques for Medicinal Chemistry of Bioinorganic Compounds. In: Saxena, A.K. (eds) Biophysical and Computational Tools in Drug Discovery. Topics in Medicinal Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/7355_2020_109

Download citation

Publish with us

Policies and ethics