Skip to main content

Exploiting Kinase Inhibitors for Cancer Treatment: An Overview of Clinical Results and Outlook

  • Chapter
  • First Online:
Proteinkinase Inhibitors

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 36))

  • 586 Accesses

Abstract

Mutated or dysregulated protein kinases represent major oncogenic drivers in cancer. Due to the general druggability of these potential oncoproteins, protein kinases have been regarded the most significant drug targets in cancer cells for the past three decades. Starting with the approval of imatinib for targeting BCR-ABL in leukemia positive for Philadelphia chromosome, a multitude of different kinase inhibitors have been developed and approved for the market so far. Additionally, many new compounds with increased efficacy and target specificity are under development and clinical testing. While several of these compounds allow for an efficient temporary treatment success in different tumor entities, long-term cancer control is often limited due to the development of therapy resistance. Thus, overcoming drug resistance in tumors represents a major challenge for successful cancer therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALL:

Acute lymphoblastic leukemia

CEL:

Chronic eosinophilic leukemia

CLL:

Chronic lymphoblastic leukemia

CML:

Chronic myeloid leukemia

CNS:

Central nervous system

CRC:

Colorectal cancer

DFSP:

Dermatofibrosarcoma protuberans

ER:

Estrogen receptor

FDA:

Food and Drug Administration

GI:

Gastrointestinal

GIST:

Gastrointestinal stromal tumor

HCC:

Hepatocellular carcinoma

HES:

Hypereosinophilic syndrome

MDS/MDP:

Myelodysplastic/myeloproliferative diseases

NRY:

Non-receptor protein-tyrosine kinase

NSCLC:

Non-small cell lung carcinoma

PDAC:

Pancreatic ductal adenocarcinoma

PH:

Philadelphia chromosome

PNET:

Primitive neuroectodermal tumor

RCC:

Renal cell carcinoma

RY:

Receptor protein-tyrosine kinase

S/T:

Protein-serine/threonine protein kinase

SEGA:

Subependymal giant cell astrocytoma

shRNA:

Short hairpin RNA

T/Y:

Threonine/tyrosine dual specificity protein kinase

References

  1. Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus SRC gene product. Proc Natl Acad Sci 75(4):2021–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Castagna M et al (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257(13):7847–7851

    Article  CAS  PubMed  Google Scholar 

  3. Hidaka H et al (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide-dependent protein kinase and protein kinase C. Biochemistry 23(21):5036–5041

    Article  CAS  PubMed  Google Scholar 

  4. Knighton D et al (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414

    Article  CAS  PubMed  Google Scholar 

  5. Zheng J et al (1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci 2(10):1559–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yaish P et al (1988) Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 242(4880):933–935

    Article  CAS  PubMed  Google Scholar 

  7. Kovalenko M et al (1994) Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res 54(23):6106–6114

    CAS  PubMed  Google Scholar 

  8. Gazit A et al (1996) Tyrphostins. 5. Potent inhibitors of platelet-derived growth factor receptor tyrosine kinase: structure−activity relationships in quinoxalines, quinolines, and indole tyrphostins. J Med Chem 39(11):2170–2177

    Article  CAS  PubMed  Google Scholar 

  9. Osherov N et al (1993) Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J Biol Chem 268(15):11134–11142

    Article  CAS  PubMed  Google Scholar 

  10. Levitzki A, Mishani E (2006) Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem 75(1):93–109

    Article  CAS  PubMed  Google Scholar 

  11. Hunter T (2007) Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 117(8):2036–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roskoski R Jr (2020) FDA-approved protein kinase inhibitors. Blue Ridge Institute for Medical Research, Horse Shoe

    Google Scholar 

  13. Bhullar KS et al (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 17(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  CAS  PubMed  Google Scholar 

  15. Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(2, Supplement):S21–S26

    Article  CAS  Google Scholar 

  16. Oda K et al (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005.0010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lee HJ et al (2015) Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer. Br J Cancer 112(1):103–111

    Article  CAS  PubMed  Google Scholar 

  18. Yang C-H et al (2015) EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82. Biochim Biophys Acta 1852(7):1540–1549

    Article  CAS  PubMed  Google Scholar 

  19. Bossi P et al (2016) Prognostic and predictive value of EGFR in head and neck squamous cell carcinoma. Oncotarget 7(45):74362–74379

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gan HK, Cvrljevic AN, Johns TG (2013) The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J 280(21):5350–5370

    Article  CAS  PubMed  Google Scholar 

  21. An Z et al (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37(12):1561–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han J et al (2015) CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep 5:11483

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sacher AG et al (2016) Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol 2(8):1014–1022

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Silva N et al (2015) Molecular effects of Lapatinib in the treatment of HER2 overexpressing oesophago-gastric adenocarcinoma. Br J Cancer 113:1305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. D’Amato V et al (2015) Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev 41(10):877–883

    Article  PubMed  CAS  Google Scholar 

  26. Bachelot T et al (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14(1):64–71

    Article  CAS  PubMed  Google Scholar 

  27. Long X-H et al (2014) Lapatinib alters the malignant phenotype of osteosarcoma cells via downregulation of the activity of the HER2-PI3K/AKT-FASN axis in vitro. Oncol Rep 31(1):328–334

    Article  CAS  PubMed  Google Scholar 

  28. Chen J-C et al (2014) Suppression of Dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol 21(4):555–563

    Article  Google Scholar 

  29. Mok TS et al (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Article  CAS  PubMed  Google Scholar 

  30. Sim EHA et al (2018) Gefitinib for advanced non-small cell lung cancer. Cochrane Database Syst Rev 1:CD006847

    PubMed  Google Scholar 

  31. Neal JW (2010) The SATURN trial: the value of maintenance erlotinib in patients with non-small-cell lung cancer. Future Oncol 6(12):1827–1832

    Article  CAS  PubMed  Google Scholar 

  32. Wang JP et al (2015) Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: a randomized, open-label, prospective trial. Oncotarget 6(20):18162–18173

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cappuzzo F (2013) Erlotinib in the first-line treatment of non-small-cell lung cancer AU – D’Arcangelo, Manolo. Expert Rev Anticancer Ther 13(5):523–533

    Article  PubMed  CAS  Google Scholar 

  34. Paz-Ares L et al (2017) Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol 28(2):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu YL et al (2013) LUX-Lung 6: a randomized, open-label, phase III study of afatinib (A) versus gemcitabine/cisplatin (GC) as first-line treatment for Asian patients (PTS) with EGFR mutation-positive (EGFR M+) advanced adenocarcinoma of the lung. J Clin Oncol 31(15_suppl):8016–8016

    Article  Google Scholar 

  36. Morris S et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263(5151):1281–1284

    Article  CAS  PubMed  Google Scholar 

  37. Morris SW et al (1997) ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14:2175

    Article  CAS  PubMed  Google Scholar 

  38. Hallberg B, Palmer RH (2016) The role of the ALK receptor in cancer biology. Ann Oncol 27(suppl_3):iii4–iii15

    Article  PubMed  Google Scholar 

  39. Stute C et al (2004) Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(miliAlk) as receptor for Jeb signalling. Development 131(4):743–754

    Article  CAS  PubMed  Google Scholar 

  40. Janoueix-Lerosey I et al (2018) The ALK receptor in sympathetic neuron development and neuroblastoma. Cell Tissue Res 372(2):325–337

    Article  CAS  PubMed  Google Scholar 

  41. Yao S et al (2013) Anaplastic lymphoma kinase is required for neurogenesis in the developing central nervous system of zebrafish. PLoS One 8(5):e63757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yip PY (2015) Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl Lung Cancer Res 4(2):165–176

    CAS  PubMed  PubMed Central  Google Scholar 

  43. An R et al (2016) CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma. Oncotarget 7(20):29199–29210

    Article  PubMed  PubMed Central  Google Scholar 

  44. Umapathy G et al (2014) The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal 7(349):ra102

    Article  PubMed  CAS  Google Scholar 

  45. Hallberg B, Palmer RH (2013) Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 13:685

    Article  CAS  PubMed  Google Scholar 

  46. Soda M et al (2007) Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448:561

    Article  CAS  PubMed  Google Scholar 

  47. Hofman P (2017) ALK in non-small cell lung cancer (NSCLC) pathobiology, epidemiology, detection from tumor tissue and algorithm diagnosis in a daily practice. Cancers 9(8):107

    Article  PubMed Central  CAS  Google Scholar 

  48. Nwizu T et al (2011) Crizotinib (PF02341066) as a ALK/MET inhibitor – special emphasis as a therapeutic drug against lung cancer. Drugs Future 36(2):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwak EL et al (2010) Anaplastic lymphoma kinase inhibition in non–small-cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crinò L et al (2011) Initial phase II results with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005. J Clin Oncol 29(15_suppl):7514

    Article  Google Scholar 

  51. Shaw AT et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394

    Article  CAS  PubMed  Google Scholar 

  52. Solomon BJ et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177

    Article  PubMed  CAS  Google Scholar 

  53. Friboulet L et al (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4(6):662–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim D-W et al (2016) Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol 17(4):452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crinò L et al (2016) Multicenter phase II study of whole-body and intracranial activity with ceritinib in patients with ALK-rearranged non–small-cell lung cancer previously treated with chemotherapy and crizotinib: results from ASCEND-2. J Clin Oncol 34(24):2866–2873

    Article  PubMed  CAS  Google Scholar 

  56. Bearz A et al (2016) Ceritinib vs chemotherapy (CT) in patients (pts) with advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC) previously treated with CT and crizotinib (CRZ): results from the confirmatory phase 3 ASCEND-5 study. Ann Oncol 27(suppl_6):1–36

    Google Scholar 

  57. Soria J-C et al (2017) First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389(10072):917–929

    Article  CAS  PubMed  Google Scholar 

  58. Rothenstein JM, Chooback N (2018) ALK inhibitors, resistance development, clinical trials. Curr Oncol 25(Suppl 1):S59–S67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zeaiter A et al (2016) Updated efficacy and safety from the global phase II NP28673 study of alectinib in patients (pts) with previously treated ALK+ non-small-cell lung cancer (NSCLC). Ann Oncol 27(suppl_6):1263P

    Google Scholar 

  60. Yang JC-H et al (2017) Pooled systemic efficacy and safety data from the pivotal phase II studies (NP28673 and NP28761) of alectinib in ALK-positive non-small cell lung cancer. J Thorac Oncol 12(10):1552–1560

    Article  PubMed  PubMed Central  Google Scholar 

  61. Peters S et al (2017) Alectinib versus crizotinib in untreated ALK-positive non–small-cell lung cancer. N Engl J Med 377(9):829–838

    Article  CAS  PubMed  Google Scholar 

  62. Huang W-S et al (2016) Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J Med Chem 59(10):4948–4964

    Article  CAS  PubMed  Google Scholar 

  63. Kim D-W et al (2017) Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase–positive non–small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol 35(22):2490–2498

    Article  CAS  PubMed  Google Scholar 

  64. Solomon B et al (2017) OA 05.06 phase 2 study of lorlatinib in patients with advanced ALK+/ROS1+ non-small-cell lung cancer. J Thorac Oncol 12(11):S1756

    Article  Google Scholar 

  65. Solomon BJ et al (2018) Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol 19(12):1654–1667

    Article  CAS  PubMed  Google Scholar 

  66. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  67. Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669

    Article  CAS  PubMed  Google Scholar 

  68. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795

    Article  CAS  PubMed  Google Scholar 

  69. Di Lorenzo G et al (2010) Third-line sorafenib after sequential therapy with sunitinib and mtor inhibitors in metastatic renal cell carcinoma. Eur Urol 58(6):906–911

    Article  PubMed  CAS  Google Scholar 

  70. Motzer RJ et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124

    Article  CAS  PubMed  Google Scholar 

  71. Carducci MA et al (2015) Atrasentan in patients with advanced renal cell carcinoma: a phase 2 trial of the ECOG-ACRIN Cancer Research Group (E6800). Clin Genitourin Cancer 13(6):531–539.e1

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bhargava P, Robinson MO (2011) Development of second-generation VEGFR tyrosine kinase inhibitors: current status. Curr Oncol Rep 13(2):103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raymond E et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364(6):501–513

    Article  CAS  PubMed  Google Scholar 

  74. Llovet JM et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390

    Article  CAS  PubMed  Google Scholar 

  75. Grothey A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312

    Article  CAS  PubMed  Google Scholar 

  76. Demetri GD et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302

    Article  CAS  PubMed  Google Scholar 

  77. Bruix J et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389(10064):56–66

    Article  CAS  PubMed  Google Scholar 

  78. Zirlik K, Duyster J (2018) Anti-angiogenics: current situation and future perspectives. Oncol Res Treat 41(4):166–171

    Article  CAS  PubMed  Google Scholar 

  79. Srinivasan D, Plattner R (2006) Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66(11):5648–5655

    Article  CAS  PubMed  Google Scholar 

  80. Sirvent A et al (2007) The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene 26:7313

    Article  CAS  PubMed  Google Scholar 

  81. Mgbemena VE (2014) Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia AU – Ross, Theodora S. Mol Cell Oncol 1(3):e963450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schenone S et al (2015) Analogs, formulations and derivatives of imatinib: a patent review AU – Musumeci, Francesca. Expert Opin Ther Pat 25(12):1411–1421

    Article  PubMed  CAS  Google Scholar 

  83. Cohen MH et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 8(5):935–942

    CAS  PubMed  Google Scholar 

  84. Dematteo RP et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373(9669):1097–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dagher R et al (2002) Approval summary. Imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 8(10):3034–3038

    CAS  PubMed  Google Scholar 

  86. Hasford J et al (2011) Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood 118(3):686–692

    Article  CAS  PubMed  Google Scholar 

  87. Hochhaus A et al (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16:2190

    Article  CAS  PubMed  Google Scholar 

  88. Rossari F, Minutolo F, Orciuolo E (2018) Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol 11(1):84–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kantarjian HM et al (2011) Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol 12(9):841–851

    Article  CAS  PubMed  Google Scholar 

  90. Kantarjian HM et al (2012) Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 119(5):1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Skora L et al (2013) NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Proc Natl Acad Sci 110(47):E4437–E4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah NP et al (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305(5682):399–401

    Article  CAS  PubMed  Google Scholar 

  93. Boschelli DH et al (2001) Optimization of 4-Phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J Med Chem 44(23):3965–3977

    Article  CAS  PubMed  Google Scholar 

  94. Boschelli F, Arndt K, Gambacorti-Passerini C (2010) Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 46(10):1781–1789

    Article  CAS  PubMed  Google Scholar 

  95. Redaelli S et al (2009) Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol 27(3):469–471

    Article  CAS  PubMed  Google Scholar 

  96. Cortes JE et al (2017) Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol 36(3):231–237

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huang W-S et al (2010) Discovery of 3-[2-(Imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem 53(12):4701–4719

    Article  CAS  PubMed  Google Scholar 

  98. Cortes JE et al (2012) Ponatinib in refractory Philadelphia chromosome–positive leukemias. N Engl J Med 367(22):2075–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nicolini FE et al (2015) The impact of ponatinib versus allogeneic stem cell transplant (SCT) on outcomes in patients with chronic myeloid leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) with the T315I mutation. Blood 126(23):480–480

    Article  Google Scholar 

  100. Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13(12):928–942

    Article  CAS  PubMed  Google Scholar 

  101. Agianian B, Gavathiotis E (2018) Current insights of BRAF inhibitors in cancer. J Med Chem 61(14):5775–5793

    Article  CAS  PubMed  Google Scholar 

  102. Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16(5):281–298

    Article  CAS  PubMed  Google Scholar 

  103. Roring M et al (2012) Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling. EMBO J 31(11):2629–2647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rajakulendran T et al (2009) A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461(7263):542–545

    Article  CAS  PubMed  Google Scholar 

  105. Heidorn SJ et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2):209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  107. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4):295–308

    Article  CAS  PubMed  Google Scholar 

  108. Zambon A et al (2012) Small molecule inhibitors of BRAF in clinical trials. Bioorg Med Chem Lett 22(2):789–792

    Article  CAS  PubMed  Google Scholar 

  109. Rahman MA et al (2014) BRAF inhibitors: from the laboratory to clinical trials. Crit Rev Oncol Hematol 90(3):220–232

    Article  CAS  PubMed  Google Scholar 

  110. Alcala AM, Flaherty KT (2012) BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance. Clin Cancer Res 18(1):33–39

    Article  CAS  PubMed  Google Scholar 

  111. Bollag G et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467(7315):596–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tap WD et al (2010) Pharmacodynamic characterization of the efficacy signals due to selective BRAF inhibition with PLX4032 in malignant melanoma. Neoplasia 12(8):637–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chapman PB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. da Rocha Dias S et al (2013) The European Medicines Agency review of vemurafenib (Zelboraf(R)) for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Eur J Cancer 49(7):1654–1661

    Article  PubMed  CAS  Google Scholar 

  115. Flaherty KT et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363(9):809–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ravnan MC, Matalka MS (2012) Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin Ther 34(7):1474–1486

    Article  CAS  PubMed  Google Scholar 

  117. Mattei PL et al (2013) Cutaneous effects of BRAF inhibitor therapy: a case series. Ann Oncol 24(2):530–537

    Article  CAS  PubMed  Google Scholar 

  118. Anforth R, Fernandez-Penas P, Long GV (2013) Cutaneous toxicities of RAF inhibitors. Lancet Oncol 14(1):e11–e18

    Article  CAS  PubMed  Google Scholar 

  119. Gibney GT, Zager JS (2013) Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opin Drug Metab Toxicol 9(7):893–899

    Article  CAS  PubMed  Google Scholar 

  120. Hauschild A et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365

    Article  CAS  PubMed  Google Scholar 

  121. Zhang W (2015) BRAF inhibitors: the current and the future. Curr Opin Pharmacol 23:68–73

    Article  PubMed  CAS  Google Scholar 

  122. Barras D (2015) BRAF mutation in colorectal cancer: an update. Biomark Cancer 7(Suppl 1):9–12

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Witkiewicz AK et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744

    Article  CAS  PubMed  Google Scholar 

  124. Poulikakos PI et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480(7377):387–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Eisen T et al (2006) Sorafenib in advanced melanoma: a phase II randomised discontinuation trial analysis. Br J Cancer 95(5):581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilhelm SM et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  CAS  PubMed  Google Scholar 

  127. Rimassa L et al (2013) A phase II randomized dose escalation trial of sorafenib in patients with advanced hepatocellular carcinoma. Oncologist 18(4):379–380

    Article  PubMed  PubMed Central  Google Scholar 

  128. Escudier B et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27(20):3312–3318

    Article  CAS  PubMed  Google Scholar 

  129. Rimassa L, Santoro A (2009) Sorafenib therapy in advanced hepatocellular carcinoma: the SHARP trial. Expert Rev Anticancer Ther 9(6):739–745

    Article  CAS  PubMed  Google Scholar 

  130. Wilhelm S et al (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844

    Article  CAS  PubMed  Google Scholar 

  131. Brose MS et al (2011) Rationale and design of decision: a double-blind, randomized, placebo-controlled phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer. BMC Cancer 11:349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brose MS et al (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940):319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rudalska R et al (2014) In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 20(10):1138–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Janne PA et al (2017) Selumetinib plus docetaxel compared with docetaxel alone and progression-free survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. JAMA 317(18):1844–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim C, Giaccone G (2018) MEK inhibitors under development for treatment of non-small-cell lung cancer. Expert Opin Investig Drugs 27(1):17–30

    Article  CAS  PubMed  Google Scholar 

  136. Moriceau G et al (2015) Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 27(2):240–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Long GV et al (2017) Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a phase 3 study. Ann Oncol 28(7):1631–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Long GV et al (2017) Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N Engl J Med 377(19):1813–1823

    Article  CAS  PubMed  Google Scholar 

  139. Ascierto PA et al (2016) Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol 17(9):1248–1260

    Article  CAS  PubMed  Google Scholar 

  140. Griffin M et al (2017) BRAF inhibitors: resistance and the promise of combination treatments for melanoma. Oncotarget 8(44):78174–78192

    Article  PubMed  PubMed Central  Google Scholar 

  141. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671

    Article  CAS  PubMed  Google Scholar 

  142. Anagnostopoulou V et al (2013) Differential effects of dehydroepiandrosterone and testosterone in prostate and colon cancer cell apoptosis: the role of nerve growth factor (NGF) receptors. Endocrinology 154:2446

    Article  CAS  PubMed  Google Scholar 

  143. WeiSz L, Efferth T (2012) Polo-like kinase 1 as target for cancer therapy. Exp Hematol Oncol 1:38

    Article  CAS  Google Scholar 

  144. Akinleye A et al (2013) Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 6:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Fayard E et al (2011) Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. In: Phosphoinositide 3-kinase in health and disease. Springer, New York, pp 31–56

    Google Scholar 

  146. Cance WG et al (2013) Disrupting the scaffold to improve focal adhesion kinase–targeted cancer therapeutics. Sci Signal 6:pe10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Ahmed K et al (2015) Targeting CK2 for cancer therapy using a nanomedicine approach. In: Protein kinase CK2 cellular function in normal and disease states. Springer, New York, pp 299–315

    Chapter  Google Scholar 

  148. Hilton JF, Shapiro GI (2014) Aurora kinase inhibition as an anticancer strategy. J Clin Oncol 32:57

    Article  CAS  PubMed  Google Scholar 

  149. Jones JA et al (2017) Efficacy and safety of idelalisib in combination with ofatumumab for previously treated chronic lymphocytic leukaemia: an open-label, randomised phase 3 trial. Lancet Haematol 4(3):e114–e126

    Article  PubMed  Google Scholar 

  150. Pandey R, Kapur R (2018) Kinase inhibitors in clinical practice: an expanding world. J Allergy Clin Immunol 141(2):522–524

    Article  PubMed  Google Scholar 

  151. Shapiro GI et al (2015) First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res 21(8):1888–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eriksson A et al (2015) Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J 5:e307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Haïk S et al (2014) Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:150

    Article  PubMed  CAS  Google Scholar 

  154. Bedard PL et al (2014) Abstract CT205: a phase I dose-escalation study of trametinib (T) in combination with continuous or intermittent GSK2126458 (GSK458) in patients (pts) with advanced solid tumors. Cancer Res 74:CT205

    Google Scholar 

  155. Dowsett M et al (2012) Phase II randomized study of pre-operative pf-04691502 plus letrozole compared with letrozole (L) in patients with estrogen receptor-positive, HER2-negative early breast cancer (BC). Ann Oncol 23:44

    Article  Google Scholar 

  156. Powles T et al (2014) A randomized phase II study of GDC-0980 versus everolimus in metastatic renal cell carcinoma (mRCC) patients (pts) after VEGF-targeted therapy (VEGF-TT). J Clin Oncol 32(15_suppl):4525

    Article  Google Scholar 

  157. Yu P et al (2014) Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther 13:1078

    Article  CAS  PubMed  Google Scholar 

  158. Mukherjee B et al (2012) The dual PI3K/mTOR inhibitor NVP-BEZ235 is a potent inhibitor of ATM-and DNA-PKCs-mediated DNA damage responses. Neoplasia 14:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bauer TM, Patel MR, Infante JR (2015) Targeting PI3 kinase in cancer. Pharmacol Ther 146:53–60

    Article  CAS  PubMed  Google Scholar 

  160. Di Leo A et al (2018) Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 19(1):87–100

    Article  PubMed  Google Scholar 

  161. Manic G et al (2015) Trial watch: targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Mol Cell Oncol 2(4):e1012976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Lee J-M et al (2018) Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study. Lancet Oncol 19(2):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wilson TR et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401

    Article  CAS  PubMed  Google Scholar 

  165. Chell V et al (2013) Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene 32:3059

    Article  CAS  PubMed  Google Scholar 

  166. Foguel D et al (2014) The importance of a gatekeeper residue on the aggregation of transthyretin implications for transthyretin-related amyloidoses. J Biol Chem 289(41):28324–28337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    Article  CAS  PubMed  Google Scholar 

  168. Gibbons DL et al (2012) The rise and fall of gatekeeper mutations? The BCR-ABL1 T315I paradigm. Cancer 118:293

    Article  CAS  PubMed  Google Scholar 

  169. Heinrich MC et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24:4764

    Article  CAS  PubMed  Google Scholar 

  170. Metzgeroth G et al (2012) Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation. Leukemia 26:162

    Article  CAS  PubMed  Google Scholar 

  171. Nishikawa S et al (2018) Selective gene amplification to detect the T790M mutation in plasma from patients with advanced non-small cell lung cancer (NSCLC) who have developed epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance. J Thorac Dis 10(3):1431–1439

    Article  PubMed  PubMed Central  Google Scholar 

  172. Pauwels D, Sweron B, Cools J (2012) The N676D and G697R mutations in the kinase domain of FLT3 confer resistance to the inhibitor AC220. Haematologica 97:1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xavier CP et al (2009) Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett 281:162

    Article  CAS  PubMed  Google Scholar 

  174. Kobayashi S et al (2005) EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. N Engl J Med 352:786

    Article  CAS  PubMed  Google Scholar 

  175. Pao W et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Yun CH et al (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci 105:2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Heymach JV et al (2006) Epidermal growth factor receptor inhibitors in development for the treatment of non–small cell lung cancer. Clin Cancer Res 12:4441s

    Article  CAS  PubMed  Google Scholar 

  178. Kwak EL et al (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci U S A 102:7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Modugno M et al (2007) Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358. Cancer Res 67:7987

    Article  CAS  PubMed  Google Scholar 

  180. Weisberg E et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129

    Article  CAS  PubMed  Google Scholar 

  181. Gumireddy K et al (2005) A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci U S A 102:1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gumireddy K et al (2005) ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7:275

    Article  CAS  PubMed  Google Scholar 

  183. Copland M et al (2008) BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 111:2843

    Article  CAS  PubMed  Google Scholar 

  184. Orphanos GS, Ioannidis GN, Ardavanis AG (2009) Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol 48:964

    Article  CAS  PubMed  Google Scholar 

  185. Shah DR, Shah RR, Morganroth J (2013) Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf 36:413

    Article  CAS  PubMed  Google Scholar 

  186. Mayor S (2006) Targeting cardiovascular complications. Lancet Oncol 7:282

    Article  PubMed  Google Scholar 

  187. Moslehi JJ, Deininger M (2015) Tyrosine kinase inhibitor–associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol 33:4210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bernards R, Brummelkamp TR, Beijersbergen RL (2006) shRNA libraries and their use in cancer genetics. Nat Methods 3:701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lars Zender or Daniel Dauch .

Editor information

Editors and Affiliations

Ethics declarations

Funding: L.Z. and D.D. are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [FOR2314 (D.D., L.Z.), SFB-TR209 (D.D., L.Z.,), SFB-TR240 (L.Z.), Gottfried Wilhelm Leibniz Program (L.Z.)], the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s excellence strategy – EXC 2180 – 390900677 [Image Guided and Functionally Instructed Tumour Therapies (iFIT)], the Landesstiftung Baden-Wuerttemberg [‘Improve CRC’ (D.D., L.Z.)], the European Research Council [‘CholangioConcept’ (L.Z.)] and the German Center for Translational Cancer Research (DKTK).

Ethical Approval: This chapter does not contain any studies with human participants or animals performed by of the authors.

Informed Consent: All authors have given their consent to this book chapter.

Conflict of Interest: The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moschopoulou, A., Zwirner, S., Zender, L., Dauch, D. (2020). Exploiting Kinase Inhibitors for Cancer Treatment: An Overview of Clinical Results and Outlook. In: Laufer, S. (eds) Proteinkinase Inhibitors. Topics in Medicinal Chemistry, vol 36. Springer, Cham. https://doi.org/10.1007/7355_2020_100

Download citation

Publish with us

Policies and ethics