Antibacterials pp 165-188 | Cite as

Four Ways to Skin a Cat: Inhibition of Bacterial Topoisomerases Leading to the Clinic

  • Gregory S. BasarabEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 25)


Four classes of antibacterial agents that operate by inhibition of the Type II topoisomerases, DNA gyrase and Topoisomerase IV, have progressed at least through Phase 2 clinical trials. Compounds from each of the four classes are not cross-resistant to one another as determined by analyses with laboratory and clinical resistant bacterial strains. Hence, they are defined herein as sharing a mode of action, in that they inhibit the same targets, but differing in mode of inhibition, in that they obstruct enzyme activity via divergent binding modes. Two of the classes, fluoroquinolones and aminocoumarins, were long ago approved for clinical use, though the use of the latter has been limited. Two newer classes, spiropyrimidinetriones and quinolines, are represented by the advanced drug candidates zoliflodacin and gepotidacin, each featuring a novel scaffold and a distinct binding motif. X-ray crystallography has shown fluoroquinolone and spiropyrimidinetrione binding at DNA cleavage sites of the topoisomerases. However, the two differ by their dependence on [Mg2+] for binding serving in part to explain the lack of cross-resistance. Quinolines bind to DNA-topoisomerase complexes offset from the cleavage sites as ascertained by X-ray crystallography. Novobiocin, the only aminocoumarin to receive regulatory approval, competes with ATP binding at a site quite remote from the DNA-binding domain. As novobiocin has been withdrawn from the clinic, considerable drug discovery efforts have focused on alternative ATP site binders (ATPase inhibitors). With widespread use of fluoroquinolones leading to resistance, the importance of developing novel antibiotics that would not be cross-resistant is clear. Reviewed herein are the current understandings of the respective mechanisms of inhibition and the respective topoisomerase binding modes for the four classes of antibacterials now with clinical proof of concept.


Aminocoumarins Antibacterials Antibiotics Antimicrobial resistance ATPase inhibitors DNA gyrase Fluoroquinolones Quinolines Spiropyrimidinetriones Topoisomerase IV 



Considerable appreciation is due to Dr. Charles J. Eyermann for useful discussions and for the preparation of the graphics in this review. Dr. Ed Buurman graciously provided a critical review and helpful suggestions.


  1. 1.
    Mullard A (2014) Momentum builds around new antibiotic business models. Nat Rev Drug Discov 13:711–713. doi: 10.1038/nrd4455CrossRefPubMedGoogle Scholar
  2. 2.
    Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343. doi: 10.1038/nature17042CrossRefPubMedGoogle Scholar
  3. 3.
    Fernandes P, Martens E (2016) Antibiotics in late clinical development. Biochem Pharmacol. doi: 10.1016/j.bcp.2016.09.025CrossRefPubMedGoogle Scholar
  4. 4.
    Singh SB (2014) Confronting the challenges of discovery of novel antibacterial agents. Bioorg Med Chem Lett 24:3683–3689. doi: 10.1016/j.bmcl.2014.06.053CrossRefPubMedGoogle Scholar
  5. 5.
    Trauner A, Sassetti CM, Rubin EJ (2014) Genetic strategies for identifying new drug targets. Microbiol Spectr 2:1–16. doi: 10.1128/microbiolspec.MGM2-0030-2013.CorrespondenceCrossRefGoogle Scholar
  6. 6.
    Jones JA, Virga KG, Gumina G et al (2016) Recent advances in the rational design and optimization of antibacterial agents. Med Chem Commun 7:1694–1715. doi: 10.1039/C6MD00232CCrossRefGoogle Scholar
  7. 7.
    Tommasi R, Brown DG, Walkup GK et al (2015) ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 14:529–542. doi: 10.1038/nrd4572CrossRefPubMedGoogle Scholar
  8. 8.
    O’Neill J (2016) Tackling drug-resistance infections globally: final report and recommendations. Accessed 23 Jan 2017
  9. 9.
    The Pew Charitable Trusts (2016) A scientific roadmap for antibiotic discovery. The Pew Charitable Trusts. Accessed 23 Jan 2017
  10. 10.
    Outterson K, Rex JH, Jinks T et al (2016) Accelerating global innovation to address antibacterial resistance: introducing CARB-X. Nat Rev Drug Discov 15:589–590. doi: 10.1038/nrd.2016.155CrossRefPubMedGoogle Scholar
  11. 11.
    Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413. doi: 10.1146/annurev.biochem.70.1.369CrossRefPubMedGoogle Scholar
  12. 12.
    Bush N, Evans-Roberts K, Maxwell A (2015) DNA topoisomerases. EcoSal Plus. doi: 10.1128/ecosalplusCrossRefPubMedGoogle Scholar
  13. 13.
    Hooper DC, Jacoby GA (2015) Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 1354:12–31. doi: 10.1111/nyas.12830CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pan XS, Yague G, Fisher LM (2001) Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob Agents Chemother 45:3140–3147. doi: 10.1128/AAC.45.11.3140-3147.2001CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Takei M, Fukuda H, Kishii R, Hosaka M (2001) Target preference of 15 quinolones against Staphylococcus aureus, based on antibacterial activities and target inhibition. Antimicrob Agents Chemother 45:3544–3547. doi: 10.1128/AAC.45.12.3544-3547.2001CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Azam MA, Thathan J, Jubie S (2015) Dual targeting DNA gyrase B (GyrB) and topoisomerse IV (ParE) inhibitors: a review. Bioorg Chem 62:41–63. doi: 10.1016/j.bioorg.2015.07.004CrossRefPubMedGoogle Scholar
  17. 17.
    Bisacchi GS, Manchester JI (2015) A new-class antibacterial – almost. Lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect Dis 1:4–41. doi: 10.1021/id500013tCrossRefPubMedGoogle Scholar
  18. 18.
    Ehmann DE, Lahiri SD (2014) Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr Opin Pharmacol 18:76–83. doi: 10.1016/j.coph.2014.09.007CrossRefPubMedGoogle Scholar
  19. 19.
    Mayer C, Janin YL (2014) Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 114:2313–2342. doi: 10.1021/cr4003984CrossRefPubMedGoogle Scholar
  20. 20.
    Tomasic T, Peterlin ML (2014) Prospects for developing new antibacterials targeting bacterial type IIA topoisomerases. Curr Top Med Chem 14:130–151. doi: 10.2174/1568026613666131113153251CrossRefPubMedGoogle Scholar
  21. 21.
    Foerster S, Golparian D, Jacobsson S et al (2015) Genetic resistance determinants, in vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front Microbiol 6:1–14. doi: 10.3389/fmicb.2015.01377CrossRefGoogle Scholar
  22. 22.
    McKinney DC, Basarab GS, Cocozaki AI et al (2015) Structural insights lead to a negamycin analog with improved antimicrobial activity against gram-negative pathogens. ACS Med Chem Lett 6:930–935. doi: 10.1021/acsmedchemlett.5b00205CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hooper DC, Jacoby GA (2016) Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025320. doi: 10.1101/cshperspect.a025320CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aldred KJ, Kerns RJ, Oshero N (2014) Mechanism of quinolone action and resistance. Biochemistry 53:1565–1574CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ibrahim-Elmagboul IB, Livermore DM (1997) Sensitivity testing of ciprofloxacin for Pseudomonas aeruginosa. J Antimicrob Chemother 39:309–317. doi: 10.1093/JAC/39.3.309CrossRefPubMedGoogle Scholar
  26. 26.
    Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105:559–592. doi: 10.1021/cr030101qCrossRefPubMedGoogle Scholar
  27. 27.
    Deep A, Chaudhary U, Sikka R (2011) In the quest of drugs for bad bugs: are newer fluoroquinolones any better? J Lab Physicians 3:130–131. doi: 10.4103/0974-2727.86851CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Soge OO, Salipante SJ, No D et al (2016) In vitro activity of delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of gonococcal delafloxacin resistance. Antimicrob Agents Chemother 60:3106–3111. doi: 10.1128/AAC.02798-15CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tapsall JW, Shultz TR, Limnius EA et al (1998) Failure of azithromycin therapy in gonorrhea and discorrelation with laboratory test parameters. Sex Transm Dis 25:505–508CrossRefPubMedGoogle Scholar
  30. 30.
    US Food and Drug Administration (2016) Administration USF and D FDA drug safety communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; warns about disabling side effects that can occur together. Accessed 23 Jan 2017
  31. 31.
    Kim GK (2010) The risk of fluoroquinolone-induced tendinopathy and tendon rupture: what does the clinician need to know? J Clin Aesthet Dermatol 3:49–54PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sousa J, Alves G, Fortuna A, Falcão A (2014) Third and fourth generation fluoroquinolone antibacterials: a systematic review of safety and toxicity profiles. Curr Drug Saf 9:89–105. doi: 10.2174/1574886308666140106154754CrossRefPubMedGoogle Scholar
  33. 33.
    Drlica K, Malik M, Kerns RJ, Zhao X (2008) Quinolone-mediated bacterial death. Antimicrob Agents Chemother 52:385–392. doi: 10.1128/AAC.01617-06CrossRefPubMedGoogle Scholar
  34. 34.
    Kern G, Palmer T, Ehmann DE et al (2015) Inhibition of Neisseria gonorrhoeae type II topoisomerases by the novel spiropyrimidinetrione AZD0914. J Biol Chem 290:20984–20994. doi: 10.1074/jbc.M115.663534CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schröder W, Goerke C, Wolz C (2013) Opposing effects of aminocoumarins and fluoroquinolones on the SOS response and adaptability in Staphylococcus aureus. J Antimicrob Chemother 68:529–538. doi: 10.1093/jac/dks456CrossRefPubMedGoogle Scholar
  36. 36.
    Erill I, Campoy S, Barbé J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656. doi: 10.1111/j.1574-6976.2007.00082.xCrossRefPubMedGoogle Scholar
  37. 37.
    Laponogov I, Sohi MK, Veselkov DA et al (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 16:667–669. doi: 10.1038/nsmb.1604CrossRefPubMedGoogle Scholar
  38. 38.
    Bax BD, Chan PF, Eggleston DS et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940. doi: 10.1038/nature09197CrossRefPubMedGoogle Scholar
  39. 39.
    Chan PF, Srikannathasan V, Huang J et al (2015) Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun 6:10048. doi: 10.1038/ncomms10048CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Aldred KJ, McPherson SA, Turnbough CL et al (2013) Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res 41:4628–4639. doi: 10.1093/nar/gkt124CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Unemo M, Shafer WM (2015) Future treatment of gonorrhoea – novel emerging drugs are essential and in progress? Expert Opin Emerg Drugs 20:1–4. doi: 10.1517/14728214.2015.1039981CrossRefGoogle Scholar
  42. 42.
    Basarab GS, Kern GH, McNulty J et al (2015) Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial type II topoisomerases. Sci Rep 5:11827. doi: 10.1038/srep11827CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Miller AA, Bundy GL, Mott JE et al (2008) Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors. Antimicrob Agents Chemother 52:2806–2812. doi: 10.1128/AAC.00247-08CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Barbachyn MR (2004) Tricylic tetrahydroquinoline antibacterial agents. WO2004031195, 15 April 2004Google Scholar
  45. 45.
    Barbachyn MR (2006) Antibacterial agents. WO2006120563, 16 November 2006Google Scholar
  46. 46.
    Curtis M (2014) Tetracyclic tetrahydroquinoline antibacterial agents. US20140088093, 27 March 2014Google Scholar
  47. 47.
    Barbachyn MR (2007) 8-Pyrazinyl-S-spiropyrimidinetrione-oxazinoquinoline derivatives as antibacterial agents. WO2007072151, 28 June 2007Google Scholar
  48. 48.
    Basarab GS (2009) Spiro condensed barbituric acid derivatives for use as antibacterial. WO2009010801, 22 January 2009Google Scholar
  49. 49.
    Basarab GS, Galullo V, Degrace N et al (2014) Synthesis of a tetrahydronaphthyridine spiropyrimidinetrione DNA gyrase inhibiting antibacterial agent – differential substitution at all five carbon atoms of pyridine. Org Lett 16:6456–6459. doi: 10.1021/ol503256hCrossRefPubMedGoogle Scholar
  50. 50.
    Basarab GS, Doig P, Galullo V et al (2015) Discovery of novel DNA gyrase inhibiting spiropyrimidinetriones – benzisoxazole fusion with N-linked oxazolidinone substituents leading to a clinical candidate (ETX0914). J Med Chem 58:6264–6282. doi: 10.1021/acs.jmedchem.5b00863CrossRefPubMedGoogle Scholar
  51. 51.
    Basarab GS, Brassil P, Doig P et al (2014) Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization. J Med Chem 57:9078–9095. doi: 10.1021/jm501174mCrossRefPubMedGoogle Scholar
  52. 52.
    STD Prevention Conference (2016) 5B5 A phase II trial of single-dose oral ETX0914 (AZD0914) for treatment of uncomplicated urogenital gonorrhea. Accessed 23 Jan 2017
  53. 53.
    Srikannathasan V, Wohlkonig A, Shillings A et al (2015) Crystallization and initial crystallographic analysis of covalent DNA-cleavage complexes of Staphyloccocus aureus DNA gyrase with QPT-1, moxifloxacin and etoposide. Acta Crystallogr Sect F Struct Biol Commun 71:1242–1246. doi: 10.1107/S2053230X15015290CrossRefGoogle Scholar
  54. 54.
    Arnoldi E, Pan X-S, Fisher LM (2013) Functional determinants of gate-DNA selection and cleavage by bacterial type II topoisomerases. Nucleic Acids Res 41:9411–9423. doi: 10.1093/nar/gkt696CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Huband MD, Bradford PA, Otterson LG et al (2015) In vitro antibacterial activity of AZD0914, a new spiropyrimidinetrione DNA gyrase/topoisomerase inhibitor with potent activity against gram-positive, fastidious gram-negative, and atypical bacteria. Antimicrob Agents Chemother 59:467–474. doi: 10.1128/AAC.04124-14CrossRefPubMedGoogle Scholar
  56. 56.
    Alm RA, Lahiri SD, Kutschke A et al (2015) Characterization of the novel DNA gyrase inhibitor AZD0914: low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 59:1478–1486. doi: 10.1128/AAC.04456-14CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chapman JS, Georgopapdakou NH (1988) Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 32:438–442. doi: 10.1128/aacCrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kostyanev T, Bonten MJM, O’Brien S et al (2016) The innovative medicines initiative’s new drugs for bad bugs programme: European public-private partnerships for the development of new strategies to tackle antibiotic resistance. J Antimicrob Chemother 71:290–295. doi: 10.1093/jac/dkv339CrossRefPubMedGoogle Scholar
  59. 59.
    Waites KB, Crabb DM, Duffy LB, Huband MD (2015) In vitro antibacterial activity of AZD0914 against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother 59:3627–3629. doi: 10.1128/AAC.04945-14CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Biedenbach DJ, Huband MD, Hackel M et al (2015) In vitro activity of AZD0914, a novel bacterial DNA gyrase/topoisomerase IV inhibitor, against clinically relevant gram-positive and fastidious gram-negative pathogens. Antimicrob Agents Chemother 59:6053–6063. doi: 10.1128/AAC.01016-15CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Su X-H, Wang B-X, Le W-J et al (2016) Multidrug-resistant Neisseria gonorrhoeae isolates from Nanjing, China, are sensitive to killing by a novel DNA gyrase inhibitor, ETX0914 (AZD0914). Antimicrob Agents Chemother 60:621–623. doi: 10.1128/AAC.01211-15CrossRefPubMedGoogle Scholar
  62. 62.
    Unemo M, Ringlander J, Wiggins C et al (2015) High in vitro susceptibility to the novel spiropyrimidinetrione ETX0914 (also known as AZD0914) among 873 contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries during 2012-2014. Antimicrob Agents Chemother 59:5220–5225. doi: 10.1128/AAC.00786-15CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ellsworth EL, Tran TP, Showalter HDH et al (2006) 3-aminoquinazolinediones as a new class of antibacterial agents demonstrating excellent antibacterial activity against wild-type and multidrug resistant organisms. J Med Chem 49:6435–6438. doi: 10.1021/jm060505lCrossRefPubMedGoogle Scholar
  64. 64.
    Laponogov I, Pan X-S, Veselkov DA et al (2010) Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS One 5:e11338. doi: 10.1371/journal.pone.0011338CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pucci MJ, Podos SD, Thanassi JA et al (2011) In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 55:2860–2871. doi: 10.1128/AAC.01666-10CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Savage VJ, Charrier C, Salisbury A-M et al (2016) Biological profiling of novel tricyclic inhibitors of bacterial DNA gyrase and topoisomerase IV. J Antimicrob Chemother 71:1905–1913. doi: 10.1093/jac/dkw061CrossRefPubMedGoogle Scholar
  67. 67.
    Savage VJ, Charrier C, Salisbury A-M et al (2016) Efficacy of a novel tricyclic topoisomerase inhibitor in a murine model of Neisseria gonorrhoeae infection. Antimicrob Agents Chemother 60:5592–5594. doi: 10.1128/AAC.00913-16CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Laponogov I, Veselkov DA, Crevel IM-T et al (2013) Structure of an “open” clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport. Nucleic Acids Res 41:9911–9923. doi: 10.1093/nar/gkt749CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pan XS, Gould KA, Fisher LM (2009) Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV. Antimicrob Agents Chemother 53:3822–3831. doi: 10.1128/AAC.00113-09CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Aldred KJ, Schwanz HA, Li G et al (2013) Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug–enzyme interactions. ACS Chem Biol 8:2660–2668. doi: 10.1021/cb400592nCrossRefPubMedGoogle Scholar
  71. 71.
    Ross JE, Scangarella-Oman NE, Flamm RK, Jones RN (2014) Determination of disk diffusion and MIC quality control guidelines for GSK2140944, a novel bacterial type II topoisomerase inhibitor antimicrobial agent. J Clin Microbiol 52:2629–2632. doi: 10.1128/JCM.00656-14CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jones RN, Fedler KA, Scangarella-Oman NE et al (2016) Multicenter investigation of gepotidacin (GSK2140944) agar dilution quality control determinations for Neisseria gonorrhoeae ATCC 49226. Antimicrob Agents Chemother 60:4404–4406. doi: 10.1128/AAC.00527-16CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Biedenbach DJ, Bouchillon SK, Hackel M et al (2016) In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother 60:1918–1923. doi: 10.1128/AAC.02820-15CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pasteur LM (1853) Recherces sur les alcaoides des quinquinas. C R Hebd Seances Acad Sci 37:110–114Google Scholar
  75. 75.
    Biddle HC (1912) The converison of cinchonine and quinine into their poisonous isomers, cinchotoxine and quinotoxine, and the relation of this to the toxicity of the cinchona alkaloids. J Am Chem Soc 34:500–515. doi: 10.1021/ja02205a017CrossRefGoogle Scholar
  76. 76.
    Rabe P (1910) Zur Kenntnis der Chinaalkaloide XII. Justus Liebigs Ann Chem 373:85–120. doi: 10.1002/jlac.19103730108CrossRefGoogle Scholar
  77. 77.
    Lecrubier C, Uzan A, Samama M (1972) Action of a new cerebral vasodilator, viquidil, on the aggregation of blood platelets in vitro. Arzneimittelforschung 22:1341–1346Google Scholar
  78. 78.
    Kenny M, Lenehan TJ, Lambe R et al (1983) The effect of PK 5078, a new serotonin uptake inhibitor, on serotonin levels and uptake in human platelets, following administration to healthy volunteers. Eur J Clin Pharmacol 25:23–28. doi: 10.1007/BF00544009CrossRefPubMedGoogle Scholar
  79. 79.
    Khanna NM (1994) A process for the preparation of 1-(6′-methoxy-4′-quinolinyl)-3-(3″-vinyl-1″-(dialkylaminoalkyl or heterocyclylalkyl)-4″-piperidyl)-2-methylenepropan-1-ones and their water soluble salts. IN174013, 27 August 1994Google Scholar
  80. 80.
    Coates WJ (1999) Preparation of piperidinylalkylquinolines as antibacterials. WO1999037635, 29 July 1999Google Scholar
  81. 81.
    Gomez L, Hack MD, Wu J et al (2007) Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: synthesis and preliminary SAR analysis. Bioorg Med Chem Lett. doi: 10.1016/j.bmcl.2007.03.003CrossRefPubMedGoogle Scholar
  82. 82.
    Widdowson K, Hennessy A (2010) Advances in structure-based drug design of novel bacterial topoisomerase inhibitors. Future Med Chem 2:1619–1622. doi: 10.4155/fmc.10.250CrossRefPubMedGoogle Scholar
  83. 83.
    Jamieson C, Moir EM, Rankovic Z, Wishart G (2006) Medicinal chemistry of hERG optimizations: highlights and hang-ups. J Med Chem 49:12–14. doi: 10.1021/jm060379lCrossRefGoogle Scholar
  84. 84.
    Du L, Li M, You Q (2009) The interactions between hERG potassium channel and blockers. Curr Top Med Chem 9:330–338. doi: 10.2174/156802609788317829CrossRefPubMedGoogle Scholar
  85. 85.
    Kratz JM, Schuster D, Edtbauer M et al (2014) Experimentally validated hERG pharmacophore models as cardiotoxicity prediction tools. J Chem Inf Model 54:2887–2901. doi: 10.1021/ci5001955CrossRefPubMedGoogle Scholar
  86. 86.
    Black MT, Stachyra T, Platel D et al (2008) Mechanism of action of the antibiotic NXL101, a novel nonfluoroquinolone inhibitor of bacterial type II topoisomerases. Antimicrob Agents Chemother 52:3339–3349. doi: 10.1128/AAC.00496-08CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Reck F, Alm RA, Brassil P et al (2012) Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pKa. J Med Chem 55:6916–6933. doi: 10.1021/jm300690sCrossRefPubMedGoogle Scholar
  88. 88.
    Surivet J-P, Zumbrunn C, Rueedi G et al (2013) Design, synthesis, and characterization of novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram-positive activity. J Med Chem 56:7396–7415. doi: 10.1021/jm400963yCrossRefPubMedGoogle Scholar
  89. 89.
    Axten, JM (2004) Preparation of quinolines and 1,​5-​naphthyridines as antibacterial agents. WO200405814, 15 July 2004Google Scholar
  90. 90.
    Lahiri SD, Kutschke A, McCormack K, Alm RA (2015) Insights into the mechanism of inhibition of novel bacteria topoisomerase inhibitors from characterization of resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 59:5278–5287. doi: 10.1128/AAC.00571-15CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Biospace Life Sciences (2008) Novexel discontinues development of NXL101. Accessed 23 Jan 2017
  92. 92.
    Dubois VFS, Smania G, Yu H et al (2017) Translating QT interval prolongation from conscious dogs to humans. Br J Clin Pharmacol 83:349–362. doi: 10.1111/bcp.13123CrossRefPubMedGoogle Scholar
  93. 93.
    GSK (2015) Study ID 107895. Accessed 23 Jan 2017
  94. 94.
    Bouchillon SK, Hackel M, Miller LA, Scangarella-Omen NE (2013) In vitro activity of GSK2140944, a novel topoisomerase inhibitor, against isolates associated with lower respiratory tract and skin infections. Poster presented at the 53rd international congress of antimicrobial agents and chemotherapy, p F-1216, Denver, CO, 10–13 Sept 2013Google Scholar
  95. 95.
    Tiffany CA, McDonald M, Patel A et al (2013) Safey and pharmacokinetics of single escalating oral doses of GSK2140944, a novel bacterial topoisomerase inhibitor. Poster presented at the 53rd international congress of antimicrobial agents and chemotherapy, p F-1218, Denver, CO, 10–13 Sept 2013Google Scholar
  96. 96. (2016) 11 studies found for: GSK2140944. Accessed 23 Jan 2017
  97. 97.
  98. 98.
    Dougherty TJ, Nayar A, Newman JV et al (2014) NBTI 5463 is a novel bacterial type II topoisomerase inhibitor with activity against gram-negative bacteria and in vivo efficacy. Antimicrob Agents Chemother 58:2657–2664. doi: 10.1128/AAC.02778-13CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17:421–433. doi: 10.1016/j.chembiol.2010.04.012CrossRefPubMedGoogle Scholar
  100. 100.
    Charlton RW (1969) Recent advances in antibiotics. South African Med J 43:311–316Google Scholar
  101. 101.
    Basarab GS, Manchester JI, Bist S et al (2013) Fragment-to-hit-to-lead discovery of a novel pyridylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J Med Chem 56:8712–8735. doi: 10.1021/jm401208bCrossRefPubMedGoogle Scholar
  102. 102.
    Eakin AE, Green O, Hales N et al (2012) Pyrrolamide DNA gyrase inhibitors: fragment-based nuclear magnetic resonance screening to identify antibacterial agents. Antimicrob Agents Chemother 56:1240–1246. doi: 10.1128/AAC.05485-11CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Cheng AC, Coleman RG, Smyth KT et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotech 25:71–75. doi: 10.1038/nbt1273CrossRefGoogle Scholar
  104. 104.
    Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49:377–389. doi: 10.1021/ci800324mCrossRefPubMedGoogle Scholar
  105. 105.
    Tsai FTF, Singh OMP, Skarzynski T et al (1997) The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins Struct Funct Genet 28:41–52. doi: 10.1002/(SICI)1097-0134(199705)28:1<41::AID-PROT4>3.0.CO;2-MCrossRefPubMedGoogle Scholar
  106. 106.
    Lewis RJ, Singh OM, Smith CV et al (1996) The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J 15:1412–1420PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lu J, Patel S, Sharma N et al (2014) Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chem Biol 9:2023–2031. doi: 10.1021/cb5001197CrossRefPubMedGoogle Scholar
  108. 108.
    Basarab GS, Hill PJ, Garner CE et al (2014) Optimization of pyrrolamide topoisomerase II inhibitors toward identification of an antibacterial clinical candidate (AZD5099). J Med Chem 57:6060–6082. doi: 10.1021/jm500462xCrossRefPubMedGoogle Scholar
  109. 109.
    Škedelj V, TomaŠić T, MaŠič LP, Zega A (2011) ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 54:915–929. doi: 10.1021/jm101121sCrossRefPubMedGoogle Scholar
  110. 110.
    Basarab GS, Nichols W, Eakin AE (2015) Design of antibacterial agents. In: Tang Y-W, Sussman M, Liu D et al (eds) Molecular medical microbiology, 2nd edn. Academic Press, London, Waltham, and San Diego, pp 611–626Google Scholar
  111. 111.
    Tari LW, Li X, Trzoss M et al (2013) Tricyclic GyrB/ParE (TriBE) inhibitors: a new class of broad-spectrum dual-targeting antibacterial agents. PLoS One 8:1–14. doi: 10.1371/journal.pone.0084409CrossRefGoogle Scholar
  112. 112.
    Tyndale EM (2013) Preparation of heterocyclic urea compounds as antibacterial agents. WO2013091011, 27 June 2013Google Scholar
  113. 113.
    Bifulco N (2010) Heterocyclic urea derivatives and methods of use thereof. WO2010136817, 2 December 2010Google Scholar
  114. 114.
    O’Dowd H, Shannon DE, Chandupatla KR et al (2015) Discovery and characterization of a water-soluble prodrug of a dual inhibitor of bacterial DNA gyrase and topoisomerase IV. ACS Med Chem Lett 6:822–826. doi: 10.1021/acsmedchemlett.5b00196CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zabawa TP, Parr TR, Lister T (2016) Treatment of gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 33:7–12. doi: 10.1016/j.mib.2016.05.005CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Thayer AM (2016) Antibiotics: will the bugs always win? Chem Eng News 94:36–43Google Scholar
  117. 117.
    Jacoby GA, Corcoran MA, Hooper DC (2015) Protective effect of Qnr on agents other than quinolones that target DNA gyrase. Antimicrob Agents Chemother 59:6689–6695. doi: 10.1128/AAC.01292-15CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Phillips JW, Goetz MA, Smith SK et al (2011) Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol 18:955–965. doi: 10.1016/j.chembiol.2011.06.011CrossRefPubMedGoogle Scholar
  119. 119.
    Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485:439–440. doi: 10.1038/485439aCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Drug Discovery and Development Center (H3D)University of Cape TownRondeboschSouth Africa

Personalised recommendations