Skip to main content

Progress in the Discovery of BCR-ABL Kinase Inhibitors for the Treatment of Leukemia

  • Chapter
Cancer II

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 28))

Abstract

Chemists first employed structure–activity relationships in designing busulphan, a chemotherapeutic for chronic myeloid leukemia (CML) in the 1950s. However, despite chemotherapy and later interferon immunotherapy, the median survival of patients remained less than 5 years. The elucidation that CML is driven by a tyrosine kinase mutation in haematopoietic stem cells enabled the discovery of imatinib, the first oncoprotein-targeted drug. Imatinib revolutionised CML therapy and set a new paradigm for the discovery of improved cancer drugs. Subsequently, medicinal chemists have capitalised upon X-ray co-crystal structures to rationally design superior ATP-competitive and allosteric ABL inhibitors. This progress has translated into clinical practice, such that chronic phase CML patients treated according to current guidelines have a normal life expectancy and many might in the future be able to discontinue treatment and maintain treatment-free remission. This review documents the history of CML drug discovery from arsenic through to asciminib, and progress towards a potential leukemia cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manley PW, Holzer P, Möbitz H, Skaanderup PR, Stauffer F (2015) Progress into the era of genomically targeted cancer drugs: 50 years of anticancer medicinal chemistry. Med Chem Rev 50:185–203

    Google Scholar 

  2. Neumann E (1872) Ein neuer Fall von Leukamie mit Erkrankung des Knochenmarks. Archives Heilkunde 13:502–508

    Google Scholar 

  3. Höglund M, Sandin F, Simonsson B (2015) Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol 94(Suppl 2):241–247

    Google Scholar 

  4. Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117:2033–2035

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hunter T (2007) Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 117:2036–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293

    CAS  PubMed  Google Scholar 

  7. Byrne M, Wray J, Reinert B, Wu Y, Nickoloff J, Lee S-H, Hromas R, Williamson E (2014) Mechanisms of oncogenic chromosomal translocations. Ann N Y Acad Sci 1310:89–97

    CAS  PubMed  Google Scholar 

  8. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. New Engl J Med 341:164–172

    CAS  PubMed  Google Scholar 

  9. Griffin JD (1986) Management of chronic myelogenous leukemia. Semin Hematol 23(3 Suppl 1):20–26

    CAS  PubMed  Google Scholar 

  10. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, Sawyers C, Shah N, Stock W, Willman CL, Friend S, Linsley PS (1986) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 103:2794–2799

    Google Scholar 

  11. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F, Apperley J, Cervantes F, Cortes J, Deininger M, Gratwohl A, Guilot F, Horowitz M, Hughes T, Kantarjian H, Larson R, Niederwieser D, Silver R, Hehlman R (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108:1809–1820

    CAS  PubMed  Google Scholar 

  12. Mahon F-X, Etienne G (2014) Deep molecular response in chronic myeloid leukemia: the new goal of therapy? Clin Cancer Res 20:310–322

    CAS  PubMed  Google Scholar 

  13. Press RD (2010) Major molecular response in CML patients treated with tyrosine kinase inhibitors: the paradigm for monitoring targeted cancer therapy. Oncologist 15:744–749

    PubMed  PubMed Central  Google Scholar 

  14. Cross NCP, Hochhaus A, Müller MC (2015) Molecular monitoring of chronic myeloid leukemia: principles and interlaboratory standardization. Ann Hematol 94(Suppl 2):219–225

    CAS  Google Scholar 

  15. Kampen KR (2012) The discovery and early understanding of leukemia. Leuk Res 36:6–13

    PubMed  Google Scholar 

  16. Geary CG (2000) The story of chronic myeloid leukaemia. Br J Haematol 110:2–11

    CAS  PubMed  Google Scholar 

  17. Piller GJ (2001) Leukaemia – a brief historical review from ancient times to 1950. Br J Haematol 112:282–292

    CAS  PubMed  Google Scholar 

  18. Lissauer D (1865) Zwei Fälle von Leucaemie. Berl Klin Wochenschr 2:403–404

    Google Scholar 

  19. Senn N (1903) Case of splenomedullary leukemia successfully treated by the use of Roentgen rays. Med Rec 64:281–282

    Google Scholar 

  20. Paulino AC, Reddy SP (1996) Splenic irradiation in the palliation of patients with lymphoproliferative and myeloproliferative disorders. Am J Hosp Palliat Care 13(6):32–35

    CAS  PubMed  Google Scholar 

  21. Osgood EE, Seaman AJ, Tivey H (1955) Comparative survival times of x-ray treated versus P32 treated patients with chronic leukemias under the program of titrated, regularly spaced total-body irradiation. Radiology 64:373–381

    CAS  PubMed  Google Scholar 

  22. Galton DAG (1956) Use of myleran and similar agents in chronic leukemias. Adv Cancer Res 4:73–112

    CAS  PubMed  Google Scholar 

  23. Lawrence JH, Dobson RL, Low-Beer BVA, Brown BR (1948) Chronic myelogenous leukemia: a study of one hundred and twenty-nine cases treated with radioactive phosphorus. JAMA 136:672–677

    CAS  Google Scholar 

  24. Papac RJ (2001) Origins of cancer therapy. Yale J Biol Med 74:391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Avendano C, Menendez JC (2008) DNA alkylating agents. In: Medicinal chemistry of anticancer drugs. Elsevier, Amsterdam, pp 139–176

    Google Scholar 

  26. Haddow A, Timmis GM (1953) Myleran in chronic myeloid leukemia. Chemical constitution and biological action. Lancet:207–208

    Google Scholar 

  27. Galton DAG (1953) Myleran in chronic myeloid leukaemia: results of treatment. Lancet:208–213

    Google Scholar 

  28. Medical Research Council’s Working Party for Therapeutic Trials in Leukaemia (1968) Chronic granulocytic leukaemia: comparison of radiotherapy and busulphan therapy. Br Med J 1(5586):201–208

    Google Scholar 

  29. Galaup A, Paci A (2013) Pharmacology of dimethane sulfonate alkylating agents: busulfan and treosulfan. Expert Opin Drug Metab Toxicol 9:333–347

    CAS  PubMed  Google Scholar 

  30. Probin V, Wang Y, Zhou D (2007) Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med 42:1858–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dresler WFC, Stein R (1869) Ueber den Hydroxylharnstoff. Justus Liebigs Ann Chem 150:242–252

    Google Scholar 

  32. Stearns B, Losee KL, Bernstein J (1963) Hydroxyurea: a new type of potential antitumor agent. J Med Chem 6:201

    CAS  PubMed  Google Scholar 

  33. Kennedy BJ, Yarbro JW (1966) Metabolic and therapeutic effects of hydroxyurea in chronic myeloid leukemia. JAMA 195:1038–1043

    CAS  PubMed  Google Scholar 

  34. Stevens MR (1999) Hydroxyurea: an overview. J Biol Regul Homeost Agents 13:172–175

    CAS  PubMed  Google Scholar 

  35. Alvino GM, Collingwood D, Murphy JM, Delrow J, Brewer BJ, Raghuraman MK (2007) Replication in hydroxyurea: it’s matter of time. Mol Cell Biol 27:6396–6406

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Koc A, Wheeler LJ, Mathews CK, Merrill GF (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279:223–230

    CAS  PubMed  Google Scholar 

  37. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, Queisser W, Loffler H, Heinze B, Georgii A (1993) Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood 82:398–407

    CAS  PubMed  Google Scholar 

  38. Hehlmann R (1988) Cytostatic therapy of chronic myelogenous leukemia: review and perspectives. In: Huhn D, Hellriegel KP, Niederle N (eds) Chronic myelocytic leukemia and interferon. Springer, Berlin, pp 102–112

    Google Scholar 

  39. Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12:125–135

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Talpaz M, Mercer J, Hehlmann R (2015) The interferon-alpha revival in CML. Ann Hematol 94(Suppl 2):S195–S207

    PubMed  Google Scholar 

  41. Talpaz M, McCredie KB, Mavligit GM, Gutterman JU (1983) Leukocyte interferon-induced myeloid cytoreduction in chronic myelogenous leukemia. Blood 62:689–692

    CAS  PubMed  Google Scholar 

  42. Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE, Talpaz M, Tura S (1999) An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 94:1517–1536

    CAS  PubMed  Google Scholar 

  43. Baccarani M, Rosti G, De Vivo A, Bonifazi F, Russo D, Martinelli G, Testoni N, Amabile M, Fiacchini M, Montefusco E et al (2002) A randomized study of interferon-α versus interferon-α and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood 99:1527–1535

    CAS  PubMed  Google Scholar 

  44. Wang Y, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570

    CAS  PubMed  Google Scholar 

  45. Dhalluin C, Ross A, Leuthold L, Foser S, Gsell B, Mueller F, Senn H (2005) Structural and biophysical characterization of the 40 kDa PEG-interferon-α2a and its individual positional isomers. Bioconjug Chem 16:504–517

    CAS  PubMed  Google Scholar 

  46. Lipton JH, Khoroshko N, Golenkov A, Abdulkadyrov K, Nair K, Raghunadharao D, Brummendorf T, Yoo K, Bergstrom B (2007) Phase II, randomized, multicenter, comparative study of peginterferon-α-2a (40 kD) (Pegasys) versus interferon α-2a (Roferon-A) in patients with treatment-naive, chronic-phase chronic myelogenous leukemia. Leuk Lymphoma 48:497–505

    CAS  PubMed  Google Scholar 

  47. European Association for the Study of the Liver (2015) EASL recommendations on treatment of hepatitis C 2015. J Hepatol 63:199–236

    Google Scholar 

  48. Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: a perspective. Genome Biol 4:111

    PubMed  PubMed Central  Google Scholar 

  49. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    CAS  PubMed  Google Scholar 

  50. Meyer T, Regenass U, Fabbro D, Alteri E, Rosel J, Muller M, Caravatti G, Matter A (1989) A derivative of staurosporine (CGP41251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int J Cancer 43:851–856

    CAS  PubMed  Google Scholar 

  51. Morita Y, Takaishi T, Honda Z, Miyamoto T (1988) Role of protein kinase C in histamine release from human basophils. Allergy 43:100–104

    CAS  PubMed  Google Scholar 

  52. Torley LW, Johnson BB, Dusza J (1987) Preparation of 4,5,6-substituted 2-pyrimidinamines as allergy inhibitors, antiasthmatics, and hypoglycemics. Eur Patent Appl 233461, 26 Aug 1987

    Google Scholar 

  53. Paul R, Hallett WA, Hanifin JW, Reich MF, Johnson BD, Lenhard RH, Dusza JP, Kerwar SS, Lin Y, Pickett WC, Seifert CM, Torley LW, Tarrant ME, Wrenn S (1993) Preparation of substituted N-phenyl-4-aryl-2-pyrimidinamines as mediator release inhibitors. J Med Chem 36:2716–2725

    CAS  PubMed  Google Scholar 

  54. Zimmermann J, Caravatti G, Mett H, Meyer T, Mueller M, Lydon NB, Fabbro D (1996) Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch Pharm 329:371–376

    CAS  Google Scholar 

  55. Geissler JF, Roesel JL, Meyer T, Trinks UP, Traxler P, Lydon NB (1992) Benzopyranones and benzothiopyranones: a class of tyrosine protein kinase inhibitors with selectivity for the v-abl kinase. Cancer Res 52:4492–4498

    CAS  PubMed  Google Scholar 

  56. Zimmermann J (1993) Preparation of 2-anilinopyrimidines as antiatherosclerotics and neoplasm inhibitors. Eur Patent Appl 564409, 6 Oct 1993

    Google Scholar 

  57. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB, Traxler P (1996) (Phenylamino)pyrimidine (PAP) derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett 6:1221–1226

    CAS  Google Scholar 

  58. Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB (1997) Potent and selective inhibitors of the ABL-kinase: phenylaminopyrimidine (PAP) derivatives. Bioorg Med Chem Lett 7:187–192

    CAS  Google Scholar 

  59. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56:100–104

    CAS  PubMed  Google Scholar 

  60. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    CAS  PubMed  Google Scholar 

  61. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Sawyers CL (1999) Clinical efficacy and safety of an ABL specific tyrosine kinase inhibitor as targeted therapy for chronic myelogenous leukemia. Blood 94:368a

    Google Scholar 

  62. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    CAS  PubMed  Google Scholar 

  63. Roy L, Guilhot J, Krahnke T, Guerci-Bresler A, Druker BJ, Larson RA, O’Brien S, So C, Massimini G, Guilhot F (2006) Survival advantage from imatinib compared with the combination interferon plus cytarabine in chronic-phase chronic myelogenous leukemia: historical comparison between two phase 3 trials. Blood 108:1478–1484

    CAS  PubMed  Google Scholar 

  64. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, Goldman JM, Müller MC, Radich JP, Rudoltz M, Mone M, Gathmann I, Hughes TP, Larson RA (2009) Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23:1054–1061

    CAS  PubMed  Google Scholar 

  65. Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364

    CAS  PubMed  Google Scholar 

  66. Tong M, Seeliger MA (2014) Targeting conformational plasticity of protein kinases. ACS Chem Biol 10:190–200

    PubMed  Google Scholar 

  67. Kornevc AP, Taylor SS (2015) Dynamics-driven allostery in protein kinases. Trends Biochem Sci 40:628–647

    Google Scholar 

  68. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289(5486):1938–1942

    CAS  PubMed  Google Scholar 

  69. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 62:4236–4243

    CAS  PubMed  Google Scholar 

  70. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871

    CAS  PubMed  Google Scholar 

  71. Cowan-Jacob SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J, Rummel G, Rheinberger P, Centeleghe M, Fabbro D, Manley PW (2007) Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukemia. Acta Crystallogr 63:80–93

    CAS  Google Scholar 

  72. Tokarski JS, Newitt JA, Chang CYJ, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FY, Borzillerri R, Lombardo LJ, Xie D, Zhang Y, Klei HE (2006) The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790–5797

    CAS  PubMed  Google Scholar 

  73. Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro F, Furet P, Liebetanz J, Mestan J, Manley PW (2004) Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 4:285–299

    CAS  PubMed  Google Scholar 

  74. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau M, Reader V, Sweetman G, Bauer A, Bouwmeester T, Hopf C, Kruse U, Neubauer G, Ramsden N, Rick J, Kuster B, Drewes G (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044

    CAS  PubMed  Google Scholar 

  75. Karaman MW, Herrgard S, Treiber DK, Gallant P, Corey E, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132

    CAS  PubMed  Google Scholar 

  76. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042

    CAS  PubMed  Google Scholar 

  77. Hochhaus A, La Rosee P (2004) Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia 18:1321–1331

    CAS  PubMed  Google Scholar 

  78. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    CAS  PubMed  Google Scholar 

  79. Apperley JF (2007) Part I: mechanisms of resistance to imatinib in chronic myeloid leukemia. Lancet Oncol 8:1018–1029

    CAS  PubMed  Google Scholar 

  80. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, Gathmann I, Wang Y (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028

    CAS  PubMed  Google Scholar 

  81. Manley PW, Blasco F, Mestan J, Aichholz A (2013) The kinetic deuterium isotope effect as applied to metabolic deactivation of imatinib to the des-methyl metabolite, CGP74588. Bioorg Med Chem 21:3231–3239

    CAS  PubMed  Google Scholar 

  82. Manley PW, Stiefl N, Cowan-Jacob SW, Kaufman S, Mestan J, Wartmann M, Wiesmann M, Woodman R, Gallagher N (2010) Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem 18:6977–6986

    CAS  PubMed  Google Scholar 

  83. Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6:587–595

    PubMed  Google Scholar 

  84. Das J, Barrish JC (2010) Dasatinib, a kinase inhibitor to treat chronic myelogenous leukemia. In: Analogue-based drug discovery II, pp 493–506

    Google Scholar 

  85. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV, Shen Z, Cook LS, Doweyko AM, Pitt S, Pang S, Shen DR, Fang Q, de Fex HF, McIntyre KW, Shuster DJ, Gillooly KM, Behnia K, Schieven GL, Wityak J, Barrish JC (2006) 2-Aminothiazole as a novel kinase inhibitor template. Structure–activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl]-2-methyl-4-pyrimidinyl] amino]-1, 3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 49:6819–6832

    CAS  PubMed  Google Scholar 

  86. Das J, Padmanabha R, Chen P, Norris DJ, Doweyko AMP, Barrish JC, Wityak J (2000) Preparation of cyclic protein tyrosine kinase inhibitors. PCT Int Appl 2000062778, 26 Oct 2000

    Google Scholar 

  87. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LAM, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM (2004) Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47:6658–6661

    CAS  PubMed  Google Scholar 

  88. Vajpai N, Strauss A, Fendrich G, Cowan-Jacob SW, Manley PW, Grzesiek S, Jahnke W (2008) Solution conformations and dynamics of ABL kinase inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. J Biol Chem 283:18292–18302

    CAS  PubMed  Google Scholar 

  89. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401

    CAS  PubMed  Google Scholar 

  90. O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MWN, Brian J, Druker BJ (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res 65:4500–4505

    PubMed  Google Scholar 

  91. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, Cortes J, O’Brien S, Nicaise C, Bleickardt E, Blackwood-Chirchir MA, Iyer V, Chen TT, Huang F, Decillis AP, Sawyers CL (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–2541

    CAS  PubMed  Google Scholar 

  92. Aguilera DG, Tsimberidou AM (2009) Dasatinib in chronic myeloid leukemia: a review. Ther Clin Risk Manag 5:281–289

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hochhaus A, Baccarani M, Deininger M, Apperley JF, Lipton JH, Goldberg SL, Corm S, Shah NP, Cervantes F, Silver RT, Niederwieser D, Stone RM, Dombret H, Larson RA, Roy L, Hughes T, Müller MC, Ezzeddine E, Countouriotis AM, Kantarjian HM (2008) Dasatinib induces durable cytogenetic responses in patients with chronic myelogenous leukemia in chronic phase with resistance or intolerance to imatinib. Leukemia 22:1200–1206

    CAS  PubMed  Google Scholar 

  94. Guilhot F, Apperley J, Kim DW, Eduardo O, Bullorsky EO, Michele Baccarani M, Roboz GJ, Amadori S, de Souza CA, Lipton JH, Hochhaus A, Heim D, Larson RA, Branford S, Muller MC, Agarwal P, Gollerkeri A, Talpaz M (2007) Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood 109:4143–4150

    CAS  PubMed  Google Scholar 

  95. Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Soledad Undurraga M, Wang J, Kassack IJJ, Kim D-W, Ogura M, Pavlovsky C, Junghanss C, Milone JH, Nicolini FE, Robak T, Van Droogenbroeck J, Vellenga E, Bradley-Garelik M, Zhu C, Hochhaus A (2012) Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 19:1123–1129

    Google Scholar 

  96. Shah NP, Guilot F, Cortes JE, Schiffer CA, Le Coutre P, Brummendorf TH, Kantarjian HM, Hochhaus A, Rousselot P, Mohamed H, Healey D, Cunningham M, Saglio G (2014) Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood 123:2317–2324

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Parker WT, Ho M, Scott HS, Hughes TP, Branford S (2012) Poor response to second-line kinase inhibitors in chronic myeloid leukemia patients with multiple low-level mutations, irrespective of their resistance profile. Blood 119:2234–2238

    CAS  PubMed  Google Scholar 

  98. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Deininger MWN, Lennard AL, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone S, Tura S, Mahon F-X, Fernandes-Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937

    CAS  PubMed  Google Scholar 

  99. Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Furet P, Mestan J, Meyer T (2004) Urea-derivatives of STI571 as inhibitors of Bcr-Abl and PDGFR kinases. Bioorg Med Chem Lett 14:5793–5797

    CAS  PubMed  Google Scholar 

  100. Eck MJ, Manley PW (2009) The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Curr Opin Cell Biol 21:288–295

    CAS  PubMed  Google Scholar 

  101. Manley PW, Drueckes P, Fendrich G, Furet P, Liebetanz J, Martiny-Baron G, Mestan J, Trappe J, Wartmann M, Fabbro D (2010) Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta 1804:445–453

    CAS  PubMed  Google Scholar 

  102. Weisberg E, Manley PW, Breitenstein W, Brueggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Mohammed A, Neuberg D, Wright RD, Gilliland DG, Griffin JD (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141

    CAS  PubMed  Google Scholar 

  103. Jensen MR, Brüggen J, DiLea C, Mestan J, Manley PW (2006) AMN107: efficacy of the selective Bcr-Abl tyrosine kinase inhibitor in a murine model of chronic myelogenous leukemia. In: Abstracts of the 97th annual meeting of the American Association for Cancer Research, Washington, DC, 1-5 April 2006. Proc Am Assoc Cancer Res 47:61–62. Abstr 780

    Google Scholar 

  104. Manley PW, Zimmermann J (2012) Drug research leading to imatinib and beyond to nilotinib. In: Peters J-U (ed) Polypharmacology in drug discovery. Wiley, Hoboken, NJ, pp 409–421

    Google Scholar 

  105. Pierce AC, Sandretto KL, Guy W, Bemis GW (2002) Kinase inhibitors and the case for CH...O hydrogen bonds in protein–ligand binding. Proteins 49:567–576

    CAS  PubMed  Google Scholar 

  106. Olsen JA, Banner DW, Seiler P, Wagner B, Tschopp T, Obst-Sander U, Kansy M, Müller K, Diederich F (2004) Fluorine interactions at the thrombin active site: protein backbone fragments H-Cα-C=O comprise a favourable C-F environment and interactions of C-F with electrophiles. ChemBioChem 5:666–675

    CAS  PubMed  Google Scholar 

  107. Manley PW, Cowan-Jacob SW, Fendrich G, Jahnke W, Fabbro D (2011) Nilotinib, in comparison to both dasatinib and imatinib, possesses a greatly prolonged residence time when bound to the BCR-ABL kinase SH1 domain. In: Abstracts of the 53rd annual meeting of the American Society of Hematology, San Diego, CA, 10-13 Dec 2011. Blood 118(21):727. Abstr 1694

    Google Scholar 

  108. Weisberg E, Manley PW, Mestan J, Cowan-Jacob S, Ray A, Griffin JD (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94:1765–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, Tanaka C, Manley P, Rae P, Mietlowski W, Bochinski K, Hochhaus A, Griffin JD, Hoelzer D, Albitar M, Dugan M, Cortes J, Alland L, Ottmann OG (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551

    PubMed  Google Scholar 

  110. Tanaka C, Yin OQP, Sethuraman V, Smith T, Wang X, Grouss K, Kantarjian H, Giles F, Ottmann OG, Galitz L, Schran H (2009) Clinical pharmacokinetics of the BCR–ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 87:197–203

    PubMed  Google Scholar 

  111. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, Ossenkoppele GJ, Nicolini FE, O’Brien SG, Litzow M, Bhatia R, Cervantes F, Haque A, Shou Y, Resta DJ, Weitzman A, Hochhaus A, le Coutre P (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110:3540–3546

    CAS  PubMed  Google Scholar 

  112. Le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N, Apperley JF, Larson RA, Abruzzese E, O’Brien SG, Kuliczkowski K, Hochhaus A, Mahon FX, Saglio G, Gobbi M, Kwong YL, Baccarani M, Hughes T, Martinelli G, Radich JP, Zheng M, Shou Y, Kantarjian H (2008) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111:1834–1839

    PubMed  Google Scholar 

  113. Hochhaus A, Rosti G, Cross NCP, Steegmann JL, le Coutre P, Ossenkoppele G, Petrov L, Masszi T, Hellmann A, Griskevicius L, Wiktor-Jedrzejczak W, Rea D, Coriu D, Brümmendorf TH, Porkka K, Saglio G, Gastl G, Müller MC, Schuld P, Di Matteo P, Pellegrino A, Dezzani L, Mahon F-X, Baccarani M, Giles FJ (2015) Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study. Leukemia 30:57–64

    PubMed  PubMed Central  Google Scholar 

  114. Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A 77:1311–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Myers MR, Setzer NN, Spada AP, Zulli AL, Hsu CYJ, Zilberstein A, Johnson SE, Hook LE, Jacoski MV (1997) The preparation and SAR of 4-(anilino), 4-(phenoxy), and 4-(thiophenoxy)-quinazolines: inhibitors of p56lck and EGF-R tyrosine kinase activity. Bioorg Med Chem Lett 7:417–420

    CAS  Google Scholar 

  116. Wang YD, Miller K, Boschelli DH, Ye F, Wu B, Floyd MB, Powell DW, Wissner A, Weber JM, Boschelli F (2000) Inhibitors of Src tyrosine kinase: the preparation and structure-activity relationship of 4-anilino-3-cyanoquinolines and 4-anilinoquinazolines. Bioorg Med Chem Lett 10:2477–2480

    CAS  PubMed  Google Scholar 

  117. Boschelli DH (2002) 4-Anilino-3-quinolinecarbonitriles: an emerging class of kinase inhibitors. Curr Top Med Chem 2:1051–1063

    CAS  PubMed  Google Scholar 

  118. Boschelli DH, Ye F, Wang YD, Dutia M, Johnson SL, Wu B, Miller K, Powell DW, Yaczko D, Young M, Tischler M, Arndt K, Discafani C, Etienne C, Gibbons J, Grod J, Lucas J, Weber JM, Boschelli F (2001) Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J Med Chem 44:3965–3977

    CAS  PubMed  Google Scholar 

  119. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J, Frost P, Ye F, Boschelli DH, Boschelli F (2003) SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 63:375–381

    CAS  PubMed  Google Scholar 

  120. Boschelli F, Arndt K, Gambacorti-Passerini C (2010) Bosutinib: a review of preclinical studies in chronic myelogenous leukaemia. Eur J Cancer 46:1781–1789

    CAS  PubMed  Google Scholar 

  121. Levinson NM, Boxer SG (2012) Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. PLoS One 7(4):e29828

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Rix LLR, Rix U, Colinge J, Hantschel O, Bennett KL, Stranzl T, Müller A, Baumgartner C, Valent P, Augustin M, Till JH, Superti-Furga G (2009) Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23:477–485

    PubMed  Google Scholar 

  123. Vi Doan AW, Prescott H (2015) Bosutinib for the treatment of chronic myeloid leukemia. Am J Health Syst Pharm 72:439–447

    PubMed  Google Scholar 

  124. Bruemmendorf TH, Cortes JE, Antonio de Souza C, Guilhot F, Duvillie L, Pavlov D, Gogat K, Countouriotis AM, Gambacorti-Passerini C (2015) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol 168:69–81

    CAS  Google Scholar 

  125. Huang WS, Zhu X, Wang Y, Azam M, Wen D, Sundaramoorthi R, Thomas RM, Liu S, Banda G, Lentini SP, Das S, Xu Q, Keats J, Wang F, Wardwell S, Ning Y, Snodgrass JT, Broudy MI, Russian K, Daley GD, Iuliucci J, Dalgarno DC, Clackson T, Sawyer TK, Shakespeare WC (2009) 9-(Arenethenyl)purines as dual Src/Abl kinase inhibitors targeting the inactive conformation: design, synthesis, and biological evaluation. J Med Chem 52:4743–4756

    CAS  PubMed  Google Scholar 

  126. Huang W, Metcalf CA, Sundaramoorthi R, Wang Y, Zou D, Thomas RM, Zhu X, Cai L, Wen D, Liu S, Romero J, Qi J, Chen I, Banda G, Lentini SP, Das S, Xu Q, Keats J, Wang F, Wardwell S, Ning Y, Snodgrass JT, Broudy MI, Russian K, Zhou T, Commodore L, Narasimhan NI, Mohemmad QK, Iuliucci J, Rivera VM, Dalgarno DC, Sawyer TK, Clackson T, Shakespeare WC (2010) Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-[4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl]benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J Med Chem 53:4701–4719

    CAS  PubMed  Google Scholar 

  127. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang W, Xu Q, Metcalf CA, Tyner JW, Loriaux MM, Corbin AS, Wardwell S, Ning Y, Keats JA, Wang Y, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer TK, Dalgarno DC, Deininger MWN, Druker BJ, Clackson T (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell 16:401–412

    PubMed  PubMed Central  Google Scholar 

  128. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O’Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson T, Turner CD, Haluska FG, Druker BJ, Deininger MW, Talpaz M (2012) Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367:2075–2088

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cortes JE, Kim DW, Pinilla-Ibarz J, Le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J, DeAngelo DJ, Abruzzese E, Rea D, Baccarani M, Müller MC, Gambacorti-Passerini C, Wong S, Lustgarten S, Rivera VM, Clackson T, Turner CD, Haluska FG, Guilhot F, Deininger MW, Hochhaus A, Hughes T, Goldman JM, Shah NP, Kantarjian H (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369:1783–1796

    CAS  PubMed  Google Scholar 

  130. Iclusig [package insert] (2012) ARIAD Pharmaceuticals, Cambridge, MA

    Google Scholar 

  131. Fava C, Morotti A, Dogliotti I, Saglio G, Rege-Cambrin G (2015) Update on emerging treatments for chronic myeloid leukemia. Expert Opin Emerg Drugs 20:183–196

    CAS  PubMed  Google Scholar 

  132. Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, Assouline S, Etienne G, Nicolini FE, Le Coutre P, Clark RE, Stenke L, Andorsky D, Oehler V, Lustgarten S, Rivera VM, Clackson T, Haluska FG, Baccarani M, Cortes JE, Guilhot F, Hochhaus A, Hughes T, Kantarjian HM, Shah NP, Talpaz M, Deininger MW (2016) Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol 17:612–621

    CAS  PubMed  Google Scholar 

  133. Manley PW, Bruggen J, Floersheimer A, Furet P, Jensen MR, Mestan J, Pissot C, Cowan-Jacob S (2008) Rational design of T315I BCR-Abl inhibitors for the treatment of chronic myelogenous leukemia (CML): BGG463. In: Abstracts of the fall meeting of the Swiss Chemical Society, Zurich, Switzerland, 11 Sept 2008. Chimia 62(7–8):579. Abstr 88

    Google Scholar 

  134. Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, Marque F, Régnier CH, De Pover A, Ryckelynck H, Bhagwat N, Koppikar P, Goel A, Wyder L, Tavares G, Baffert F, Pissot-Soldermann C, Manley PW, Gaul C, Voshol H, Levine RL, Sellers WR, Hofmann F, Radimerski T (2012) Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov 2:512–523

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ren P, Wang X, Zhang G, Ding Q, You S, Zhang Q, Chopiuk G, Pamela A, Sim T, Gray NS (2005) Preparation of imidazolylpyrimidinamines as protein kinase inhibitors. PCT Int Appl WO 2005123719, 29 Dec 2005

    Google Scholar 

  136. Choi HG, Ren P, Adrian F, Sun F, Lee HS, Wang X, Ding Q, Zhang G, Xie Y, Zhang J, Liu Y, Tove T, Warmuth M, Manley PW, Mestan J, Gray NS, Sim T (2010) A type-II kinase inhibitor capable of inhibiting the T315I “gatekeeper” mutant of Bcr-Abl. J Med Chem 53:5439–5448

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, Zhang G, Hur W, Ding S, Manley PW, Mestan J, Fabbro D, Gray NS (2006) Allosteric inhibitors of Bcr-Abl-dependent cell proliferation. Nat Chem Biol 2:95–102

    CAS  PubMed  Google Scholar 

  138. Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo GR, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu L, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS (2010) Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463:501–506

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Choi Y, Seeliger MA, Panjarian SB, Kim H, Deng X, Sim T, Couch B, Koleske AJ, Smithgall TE, Gray NS (2009) N-Myristoylated c-Abl tyrosine kinase localizes to the endoplasmic reticulum upon binding to an allosteric inhibitor. J Biol Chem 284:29005–29014

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Deng X, Okram B, Ding Q, Zhang J, Choi Y, Adrian FJ, Wojciechowski A, Zhang G, Che J, Bursulaya B, Cowan-Jacob SW, Rummel G, Sim T, Gray NS (2010) Expanding the diversity of allosteric Bcr-Abl inhibitors. J Med Chem 53:6934–6946

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jahnke W, Grotzfeld RM, Pelle X, Strauss A, Fendrich G, Cowan-Jacob SW, Cotesta S, Fabbro D, Furet P, Mestan J, Marzinzik AL (2010) Binding or bending: distinction of allosteric Abl kinase agonists from antagonists by an NMR-based conformational assay. J Am Chem Soc 132:7043–7048

    CAS  PubMed  Google Scholar 

  142. Schoepfer J, Berellini G, Cai H, Caravatti G, Dodd S, Furet P, Gangal G, Grotzfeld RM, Quamrul HA, Hood T, Cowan-Jacob S, Jahnke W, Loo A, Manley PW, Pelle X, Salem B, Sharma S, Zhu W, Marzinzik A, Gabriel T, Keen N, Petruzzelli L, Vanasse G, Sellers WR, Wylie A (2015) Discovery and pharmacological properties of ABL001, a novel potent and specific BCR-ABL allosteric inhibitor. In: Abstracts of the 250th American Chemical Society national meeting, Boston, MA, 16-20 Aug 2015, MEDI-285

    Google Scholar 

  143. Xu G, Shen H, Tong T, Lu A, Gou S (2010) Synthesis, crystal structure, and spectral characterization of flumatinib mesylate. Synth Comm 40:2564–2570

    CAS  Google Scholar 

  144. Kim S, Menon H, Jootar S, Saikia T, Kwak J, Sohn S, Park JS, Jeong SH, Kim HJ, Kim Y, Oh SJ, Kim H, Zang DY, Chung JS, Shin HJ, Do YR, Kim J, Kim D, Choi CW, Park S, Park HL, Lee GL, Cho DJ, Shin JS, Kim D (2014) Efficacy and safety of radotinib in chronic phase chronic myeloid leukemia patients with resistance or intolerance to BCR-ABL1 tyrosine kinase inhibitors. Haematologica 99:1191–1196

    PubMed  PubMed Central  Google Scholar 

  145. Chan WW, Wise SC, Kaufman MD, Ahn Y, Ensinger CL, Haack T, Hood MM, Jones J, Lord JW, Lu W, Miller D, Patt WC, Smith BD, Petillo PA, Rutkoski TJ, Telikepalli H, Vogeti L, Yao T, Chun L, Clark R, Evangelista P, Gavrilescu LC, Lazarides K, Zaleskas VM, Stewart LJ, Van Etten RA, Flynn DL (2011) Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell 19:556–568

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gugliotta G, Castagnetti F, Fogli M, Cavo M, Baccarani M, Rosti G (2013) Impact of comorbidities on the treatment of chronic myeloid leukemia with tyrosine-kinase inhibitors. Expert Rev Hematol 6:563–574

    CAS  PubMed  Google Scholar 

  147. Efficace F, Cannella L (2016) The value of quality of life assessment in chronic myeloid leukemia patients receiving tyrosine kinase inhibitors. Hematology Am Soc Hematol Educ Program 206:170–179

    Google Scholar 

  148. Pavlu J, Szydlo RM, Goldman JM, Apperley JF (2011) Three decades of transplantation for chronic myeloid leukemia: what have we learned? Blood 117:755–763

    CAS  PubMed  Google Scholar 

  149. Yong ASM, Eolia Brissot E, Rubinstein S, Savani BN, Mohty M (2015) Transplant to treatment-free remission: the evolving view of ‘cure’ in chronic myeloid leukemia. Expert Rev Hematol 8:785–797

    CAS  PubMed  Google Scholar 

  150. Mahon F-X (2015) Discontinuation of tyrosine kinase therapy in CML. Ann Hematol 94(Suppl 2):S187–S193

    PubMed  Google Scholar 

  151. Hughes TP, Ross DM (2016) Moving treatment-free remission into mainstream clinical practice in CML. Blood 128:17–23

    CAS  PubMed  Google Scholar 

  152. Vonka V, Petráĉková M (2015) Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol 11:511–522

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manley, P.W., Stiefl, N.J. (2017). Progress in the Discovery of BCR-ABL Kinase Inhibitors for the Treatment of Leukemia. In: Waring, M.J. (eds) Cancer II. Topics in Medicinal Chemistry, vol 28. Springer, Cham. https://doi.org/10.1007/7355_2017_5

Download citation

Publish with us

Policies and ethics