The Therapeutic Targeting of Long Noncoding RNA

  • Caroline J. WooEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 27)


While only 1–2% of the human genome is dedicated to protein-coding genes, much of the genome is actively transcribed. Long noncoding RNAs (lncRNAs) are a subset of noncoding RNAs that arise from this “dark matter.” They are involved in nearly every aspect of cellular biology, and in particular, transcriptional regulation through epigenetic protein complexes. Using an oligonucleotide-based approach, which can afford specificity, lncRNAs serve as potential therapeutic targets in many disease areas. This chapter discusses their biogenesis, biological roles, and considerations for drug development.


Epigenetics Long non-coding RNA Oligomers Upregulation 


  1. 1.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730CrossRefGoogle Scholar
  2. 2.
    Iyer MK et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208CrossRefGoogle Scholar
  3. 3.
    Clark SJ (2007) Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet 16(1):R88–R95CrossRefGoogle Scholar
  4. 4.
    Karpova NN, Sales AJ, Joca SR (2017) Epigenetic basis of neuronal and synaptic plasticity. Curr Top Med Chem 17(7):771–793CrossRefGoogle Scholar
  5. 5.
    Fritah S, Niclou SP, Azuaje F (2014) Databases for lncRNAs: a comparative evaluation of emerging tools. RNA 20(11):1655–1665CrossRefGoogle Scholar
  6. 6.
    Lai F et al (2015) Integrator mediates the biogenesis of enhancer RNAs. Nature 525(7569):399–403CrossRefGoogle Scholar
  7. 7.
    Rothschild G, Basu U (2017) Lingering questions about enhancer RNA and enhancer transcription-coupled genomic instability. Trends Genet 33(2):143–154CrossRefGoogle Scholar
  8. 8.
    Werner A, Berdal A (2005) Natural antisense transcripts: sound or silence? Physiol Genomics 23(2):125–131CrossRefGoogle Scholar
  9. 9.
    Zhang X et al (2014) The role of antisense long noncoding RNA in small RNA-triggered gene activation. RNA 20(12):1916–1928CrossRefGoogle Scholar
  10. 10.
    St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251CrossRefGoogle Scholar
  11. 11.
    Wilusz JE (2016) Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 1859(1):128–138CrossRefGoogle Scholar
  12. 12.
    Schlackow M et al (2017) Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol Cell 65(1):25–38CrossRefGoogle Scholar
  13. 13.
    Mele M et al (2017) Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res 27(1):27–37CrossRefGoogle Scholar
  14. 14.
    Kapranov P et al (2010) The majority of total nuclear-encoded non-ribosomal RNA in a human cell is ‘dark matter’ un-annotated RNA. BMC Biol 8:149CrossRefGoogle Scholar
  15. 15.
    Shiraki T et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100(26):15776–15781CrossRefGoogle Scholar
  16. 16.
    Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563CrossRefGoogle Scholar
  17. 17.
    Katayama S et al (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566CrossRefGoogle Scholar
  18. 18.
    Birney E et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816CrossRefGoogle Scholar
  19. 19.
    Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488CrossRefGoogle Scholar
  20. 20.
    Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159CrossRefGoogle Scholar
  21. 21.
    Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789CrossRefGoogle Scholar
  22. 22.
    Plath K et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616):131–135CrossRefGoogle Scholar
  23. 23.
    Silva J et al (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4(4):481–495CrossRefGoogle Scholar
  24. 24.
    Zhao J et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756CrossRefGoogle Scholar
  25. 25.
    Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2(1):59–67CrossRefGoogle Scholar
  26. 26.
    Agrelo R et al (2009) SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell 16(4):507–516CrossRefGoogle Scholar
  27. 27.
    Hasegawa Y et al (2010) The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19(3):469–476CrossRefGoogle Scholar
  28. 28.
    Pullirsch D et al (2010) The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137(6):935–943CrossRefGoogle Scholar
  29. 29.
    Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30(2):167–174CrossRefGoogle Scholar
  30. 30.
    Rinn JL et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323CrossRefGoogle Scholar
  31. 31.
    Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17(12):756–770CrossRefGoogle Scholar
  32. 32.
    Khorkova O, Hsiao J, Wahlestedt C (2015) Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev 87:15–24CrossRefGoogle Scholar
  33. 33.
    Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346CrossRefGoogle Scholar
  34. 34.
    Davidovich C, Cech TR (2015) The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21(12):2007–2022CrossRefGoogle Scholar
  35. 35.
    Dai Q et al (2015) Competing endogenous RNA: a novel posttranscriptional regulatory dimension associated with the progression of cancer. Oncol Lett 10(5):2683–2690Google Scholar
  36. 36.
    Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429(6991):571–574CrossRefGoogle Scholar
  37. 37.
    Schmitt S, Prestel M, Paro R (2005) Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev 19(6):697–708CrossRefGoogle Scholar
  38. 38.
    Lucafo M et al (2015) Long noncoding RNA GAS5: a novel marker involved in glucocorticoid response. Curr Mol Med 15(1):94–99CrossRefGoogle Scholar
  39. 39.
    Valencia-Sanchez MA et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524CrossRefGoogle Scholar
  40. 40.
    Weng W et al. (2017) Circular RNA ciRS-7 – a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. epub ahead of print April 26, 2017Google Scholar
  41. 41.
    Kosik KS (2013) Molecular biology: circles reshape the RNA world. Nature 495(7441):322–324Google Scholar
  42. 42.
    Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859(1):163–168CrossRefGoogle Scholar
  43. 43.
    Yamazaki T, Hirose T (2015) The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed) 7:1–41CrossRefGoogle Scholar
  44. 44.
    Kim KM et al (2017) RNA in extracellular vesicles. Wiley Interdiscip Rev RNA 8(4). doi: 10.1002/wrna.1413
  45. 45.
    Sun M, Kraus WL (2015) From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 36(1):25–64CrossRefGoogle Scholar
  46. 46.
    Kotake Y et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30(16):1956–1962CrossRefGoogle Scholar
  47. 47.
    Smyk M et al (2013) Chromosome conformation capture-on-chip analysis of long-range cis-interactions of the SOX9 promoter. Chromosom Res 21(8):781–788CrossRefGoogle Scholar
  48. 48.
    Bradbury EM, Van Holde KE (1988) Chromatin. Series in molecular biology. Springer-Verlag, New York, 530 pp. Journal of Molecular Recognition, 1989. 2(3): p. i-iGoogle Scholar
  49. 49.
    Quinodoz S, Guttman M (2014) Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol 24(11):651–663CrossRefGoogle Scholar
  50. 50.
    Tsai MC et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693CrossRefGoogle Scholar
  51. 51.
    Tirado-Magallanes R et al (2017) Whole genome DNA methylation: beyond genes silencing. Oncotarget 8(3):5629–5637Google Scholar
  52. 52.
    Merry CR et al (2015) DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet 24(21):6240–6253CrossRefGoogle Scholar
  53. 53.
    Kapusta A, Feschotte C (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends Genet 30(10):439–452CrossRefGoogle Scholar
  54. 54.
    Johnson R, Guigo R (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20(7):959–976CrossRefGoogle Scholar
  55. 55.
    Kapusta A et al (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9(4):e1003470CrossRefGoogle Scholar
  56. 56.
    Tsirigos A, Rigoutsos I (2009) Alu and b1 repeats have been selectively retained in the upstream and intronic regions of genes of specific functional classes. PLoS Comput Biol 5(12):e1000610CrossRefGoogle Scholar
  57. 57.
    Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470(7333):284–288CrossRefGoogle Scholar
  58. 58.
    Mariner PD et al (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29(4):499–509CrossRefGoogle Scholar
  59. 59.
    Hirsch ML (2015) Adeno-associated virus inverted terminal repeats stimulate gene editing. Gene Ther 22(2):190–195CrossRefGoogle Scholar
  60. 60.
    Quentin Y (1992) Origin of the Alu family: a family of Alu-like monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res 20(13):3397–3401CrossRefGoogle Scholar
  61. 61.
    Kriegs JO et al (2007) Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet 23(4):158–161CrossRefGoogle Scholar
  62. 62.
    Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3(5):370–379CrossRefGoogle Scholar
  63. 63.
    Quentin Y (1994) A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res 22(12):2222–2227CrossRefGoogle Scholar
  64. 64.
    Hacisuleyman E et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21(2):198–206CrossRefGoogle Scholar
  65. 65.
    Hacisuleyman E et al (2016) Function and evolution of local repeats in the Firre locus. Nat Commun 7:11021CrossRefGoogle Scholar
  66. 66.
    Muller J et al (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111(2):197–208CrossRefGoogle Scholar
  67. 67.
    Cabili MN et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927CrossRefGoogle Scholar
  68. 68.
    Zhou T, Kim Y, MacLeod AR (2016) Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics. Methods Mol Biol 1402:199–213CrossRefGoogle Scholar
  69. 69.
    Sharma VK, Watts JK (2015) Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem 7(16):2221–2242CrossRefGoogle Scholar
  70. 70.
    Weeks KM, Mauger DM (2011) Exploring RNA structural codes with SHAPE chemistry. Acc Chem Res 44(12):1280–1291CrossRefGoogle Scholar
  71. 71.
    Smith KT, Workman JL (2009) Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 41(1):21–25CrossRefGoogle Scholar
  72. 72.
    Chang J et al (2012) Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br J Cancer 106(1):116–125CrossRefGoogle Scholar
  73. 73.
    de Ruijter AJ et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749CrossRefGoogle Scholar
  74. 74.
    Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31CrossRefGoogle Scholar
  75. 75.
    Finnin MS et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193CrossRefGoogle Scholar
  76. 76.
    Wagner JM et al (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 1(3–4):117–136CrossRefGoogle Scholar
  77. 77.
    Mottamal M et al (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941CrossRefGoogle Scholar
  78. 78.
    Takayama K et al (2013) Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J 32(12):1665–1680CrossRefGoogle Scholar
  79. 79.
    Wang R et al (2012) Role of transcriptional corepressor CtBP1 in prostate cancer progression. Neoplasia 14(10):905–914CrossRefGoogle Scholar
  80. 80.
    Sung YY, Cheung E (2013) Antisense now makes sense: dual modulation of androgen-dependent transcription by CTBP1-AS. EMBO J 32(12):1653–1654CrossRefGoogle Scholar
  81. 81.
    Stirchak EP, Summerton JE, Weller DD (1989) Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucleic Acids Res 17(15):6129–6141CrossRefGoogle Scholar
  82. 82.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140Google Scholar
  83. 83.
    Lundin KE, Gissberg O, Smith CI (2015) Oligonucleotide therapies: the past and the present. Hum Gene Ther 26(8):475–485CrossRefGoogle Scholar
  84. 84.
    Subramanian RR et al (2015) Enhancing antisense efficacy with multimers and multi-targeting oligonucleotides (MTOs) using cleavable linkers. Nucleic Acids Res 43(19):9123–9132CrossRefGoogle Scholar
  85. 85.
    Adams BD et al (2017) Targeting noncoding RNAs in disease. J Clin Invest 127(3):761–771CrossRefGoogle Scholar
  86. 86.
    McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58CrossRefGoogle Scholar
  87. 87.
    Kauppinen S, Vester B, Wengel J (2005) Locked nucleic acid (LNA): high affinity targeting of RNA for diagnostics and therapeutics. Drug Discov Today Technol 2(3):287–290CrossRefGoogle Scholar
  88. 88.
    Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489(1):31–44CrossRefGoogle Scholar
  89. 89.
    Vickers TA, Crooke ST (2015) The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res 43(18):8955–8963CrossRefGoogle Scholar
  90. 90.
    Wu H et al (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279(17):17181–17189CrossRefGoogle Scholar
  91. 91.
    Gagnon KT et al (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6(1):211–221CrossRefGoogle Scholar
  92. 92.
    Torres AG, Threlfall RN, Gait MJ (2011) Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2′-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents. Artif DNA PNA XNA 2(3):71–78CrossRefGoogle Scholar
  93. 93.
    Fabani MM, Gait MJ (2008) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14(2):336–346CrossRefGoogle Scholar
  94. 94.
    Davis S et al (2009) Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37(1):70–77CrossRefGoogle Scholar
  95. 95.
    Gustincich S, Zucchelli S, Mallamaci A (2016) The Yin and Yang of nucleic acid-based therapy in the brain. Prog Neurobiol. doi: 10.1016/j.pneurobio.2016.11.001
  96. 96.
    Bishop KM (2016) Progress and promise of antisense oligonucleotide therapeutics for central nervous system diseases. Neuropharmacology. doi: 10.1016/j.neuropharm.2016.12.015
  97. 97.
    Moreno PM, Pego AP (2014) Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front Chem 2:87CrossRefGoogle Scholar
  98. 98.
    Crooke ST, Geary RS (2013) Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B. Br J Clin Pharmacol 76(2):269–276CrossRefGoogle Scholar
  99. 99.
    Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545CrossRefGoogle Scholar
  100. 100.
    Bassett AR et al (2014) Considerations when investigating lncRNA function in vivo. Elife 3:e03058CrossRefGoogle Scholar
  101. 101.
    Nelson CA et al (2011) Inhibiting TGF-beta activity improves respiratory function in mdx mice. Am J Pathol 178(6):2611–2621CrossRefGoogle Scholar
  102. 102.
    Halley P et al (2014) Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep 6(1):222–230CrossRefGoogle Scholar
  103. 103.
    Castle JW et al (2015) Therapeutic ultrasound: increased HDL-cholesterol following infusions of acoustic microspheres and apolipoprotein A-I plasmids. Atherosclerosis 241(1):92–99CrossRefGoogle Scholar
  104. 104.
    Bebee TW, Dominguez CE, Chandler DS (2012) Mouse models of SMA: tools for disease characterization and therapeutic development. Hum Genet 131(8):1277–1293CrossRefGoogle Scholar
  105. 105.
    Li F et al (2016) Novel insights into the role of long noncoding RNA in ocular diseases. Int J Mol Sci 17(4):478CrossRefGoogle Scholar
  106. 106.
    Cooper C et al (2009) Increasing the relative expression of endogenous non-coding steroid receptor RNA activator (SRA) in human breast cancer cells using modified oligonucleotides. Nucleic Acids Res 37(13):4518–4531CrossRefGoogle Scholar
  107. 107.
    Leygue E (2007) Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nucl Recept Signal 5:e006Google Scholar
  108. 108.
    Hube F et al (2006) Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 25(7):418–428CrossRefGoogle Scholar
  109. 109.
    Powell WT et al (2013) A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet 22(21):4318–4328CrossRefGoogle Scholar
  110. 110.
    Cruvinel E et al (2014) Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 23(17):4674–4685CrossRefGoogle Scholar
  111. 111.
    Carpenter S et al (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341(6147):789–792CrossRefGoogle Scholar
  112. 112.
    Rapicavoli NA et al (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762CrossRefGoogle Scholar
  113. 113.
    Faghihi MA et al (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14(7):723–730CrossRefGoogle Scholar
  114. 114.
    Gharami K et al (2008) Brain-derived neurotrophic factor over-expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J Neurochem 105(2):369–379CrossRefGoogle Scholar
  115. 115.
    Xie Y, Hayden MR, Xu B (2010) BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30(44):14708–14718CrossRefGoogle Scholar
  116. 116.
    Khalil AM et al (2008) A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome. PLoS One 3(1):e1486CrossRefGoogle Scholar
  117. 117.
    Ladd PD et al (2007) An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16(24):3174–3187CrossRefGoogle Scholar
  118. 118.
    Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157CrossRefGoogle Scholar
  119. 119.
    Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338CrossRefGoogle Scholar
  120. 120.
    Hancock JM (2014) Circles within circles: commentary on Ghosal et al. (2013) “Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits”. Front Genet 5:459Google Scholar
  121. 121.
    Chen L et al (2015) Circular RNAs in eukaryotic cells. Curr Genomics 16(5):312–318CrossRefGoogle Scholar
  122. 122.
    Dong YF et al (2016) Potential role of microRNA-7 in the anti-neuroinflammation effects of nicorandil in astrocytes induced by oxygen-glucose deprivation. J Neuroinflammation 13(1):60CrossRefGoogle Scholar
  123. 123.
    Chaudhuri AD et al (2016) MicroRNA-7 regulates the function of mitochondrial permeability transition pore by targeting VDAC1 expression. J Biol Chem 291(12):6483–6493CrossRefGoogle Scholar
  124. 124.
    Zheng XB, Zhang M, Xu MQ (2017) Detection and characterization of ciRS-7: a potential promoter of the development of cancer. Neoplasma 64(3):321–328CrossRefGoogle Scholar
  125. 125.
    Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388CrossRefGoogle Scholar
  126. 126.
    Zhao J et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953CrossRefGoogle Scholar
  127. 127.
    Woo CJ et al (2017) Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc Natl Acad Sci U S A 114(8):e1509–e1518CrossRefGoogle Scholar
  128. 128.
    d’Ydewalle C et al (2017) The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy. Neuron 93(1):66–79CrossRefGoogle Scholar
  129. 129.
    Cabianca DS et al (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149(4):819–831CrossRefGoogle Scholar
  130. 130.
    Chen JC et al (2016) Morpholino-mediated knockdown of DUX4 toward facioscapulohumeral muscular dystrophy therapeutics. Mol Ther 24(8):1405–1411CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.RaNA TherapeuticsCambridgeUSA

Personalised recommendations