Antibacterials pp 119-147 | Cite as

Allosteric Inhibition of Bacterial Targets: An Opportunity for Discovery of Novel Antibacterial Classes

  • Jayda E. Meisel
  • Jed F. FisherEmail author
  • Mayland Chang
  • Shahriar MobasheryEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 25)


Small molecules that act through an allosteric mechanism to modulate activity of a protein target are abundantly represented in the pharmacopeia. These allosteric modulators are, however, preeminently therapeutics for eukaryotic diseases rather than therapy for prokaryotic infection. Recent examples of the success of biochemical and computational screening methods, paired with protein structural characterization, underscore the promise of allosteric activity modulation as a new approach for antibacterial discovery. In this review, we show how allostery has been leveraged to this objective. In particular, exploitation of an allosteric site on penicillin-binding protein 2a – the resistance enzyme of methicillin-resistant Staphylococcus aureus – demonstrates both that allosteric-modulating structures may themselves possess antibiotic activity and additionally may act as synergists within multi-drug combinations. Future discovery strategies against both old and new bacterial targets may exploit the opportunities offered by allosteric checkpoints within critical bacterial pathways.


β-lactams Adjuvant Aminoglycosides MRSA PBP2a Synergy Virtual screening 



We gratefully acknowledge funding of this work by NIH grants AI90818, AI104987, AI116548, and GM61629.


  1. 1.
    Walsh CT (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70. doi: 10.1038/nrmicro727CrossRefPubMedGoogle Scholar
  2. 2.
    Walsh CT, Wencewicz TA (2014) Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo) 67:7–22. doi: 10.1038/ja.2013.49CrossRefGoogle Scholar
  3. 3.
    Perry J, Waglechner N, Wright G (2016) The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med 6:a025197. doi: 10.1101/cshperspect.a025197CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cox JAG, Worthington T (2017) The ‘Antibiotic Apocalypse’ – scaremongering or scientific reporting? Trends Microbiol 25:167–169. doi: 10.1016/j.tim.2016.11.016CrossRefPubMedGoogle Scholar
  5. 5.
    Fowler T, Walker D, Davies SC (2014) The risk/benefit of predicting a post-antibiotic era: is the alarm working? Ann N Y Acad Sci 1323:1–10. doi: 10.1111/nyas.12399CrossRefPubMedGoogle Scholar
  6. 6.
    Oldfield E, Feng X (2014) Resistance-resistant antibiotics. Trends Pharmacol Sci 35:664–674. doi: 10.1016/ Scholar
  7. 7.
    Wright GD (2015) Solving the antibiotic crisis. ACS Infect Dis 1:80–84. doi: 10.1021/id500052sCrossRefPubMedGoogle Scholar
  8. 8.
    Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343. doi: 10.1038/nature17042CrossRefPubMedGoogle Scholar
  9. 9.
    Wright GD (2016) Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 24:862–871. doi: 10.1016/j.tim.2016.06.009CrossRefPubMedGoogle Scholar
  10. 10.
    Fisher JF, Mobashery S (2016) Endless resistance. Endless antibiotics? Med Chem Commun 7:37–49. doi: 10.1039/c5md00394fCrossRefGoogle Scholar
  11. 11.
    Melander R, Melander C (2017) Antibiotic adjuvants. Top Med Chem. doi: 10.1007/7355_2017_10CrossRefGoogle Scholar
  12. 12.
    Sothiselvam S, Liu B, Han W, et al (2014) Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci U S A 111:9804–9809. doi: 10.1073/pnas.1403586111CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hussain T, Llácer JL, Wimberly BT, et al (2016) Large-scale movements of IF3 and tRNA during bacterial translation initiation. Cell 167:133–144. doi: 10.1016/j.cell.2016.08.074CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carrasco-Lopez C, Rojas-Altuve A, Zhang W, et al (2011) Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism. J Biol Chem 286:31714–31722. doi: 10.1074/jbc.M111.264366CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bacik JP, Whitworth GE, Stubbs KA, et al (2012) Active site plasticity within the glycoside hydrolase NagZ underlies a dynamic mechanism of substrate distortion. Chem Biol 19:1471–1482. doi: 10.1016/j.chembiol.2012.09.016CrossRefPubMedGoogle Scholar
  16. 16.
    Chung BC, Mashalidis EH, Tanino T, et al (2016) Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature 533:557–560. doi: 10.1038/nature17636CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Warner LR, Gatzeva-Topalova PZ, Doerner PA, et al (2017) Flexibility in the periplasmic domain of BamA is important for function. Structure 25:94–106. doi: 10.1016/j.str.2016.11.013CrossRefPubMedGoogle Scholar
  18. 18.
    Dominguez-Gil T, Lee M, Acebrón-Avalos I, et al (2016) Activation by allostery in cell-wall remodeling by a modular membrane-bound lytic transglycosylase from Pseudomonas aeruginosa. Structure 24:1729–1741. doi: 10.1016/j.str.2016.07.019CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Andersen KK, Vad B, Omer S, et al (2016) Concatemers of outer membrane protein A take detours in the folding landscape. Biochemistry 55:7123–7140. doi: 10.1021/acs.biochem.6b01153CrossRefPubMedGoogle Scholar
  20. 20.
    Samsudin F, Ortiz-Suarez ML, Piggot TJ, et al (2016) OmpA: a flexible clamp for bacterial cell wall attachment. Structure 24:2227–2235. doi: 10.1016/j.str.2016.10.009CrossRefPubMedGoogle Scholar
  21. 21.
    Bugg TDH (2017) Nucleoside natural product antibiotics targetting microbial cell wall biosynthesis. Top Med Chem. doi: 10.1007/7355_2017_4CrossRefGoogle Scholar
  22. 22.
    Campbell J, Singh AK, Santa Maria Jr JP, et al (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116. doi: 10.1021/cb100269fCrossRefPubMedGoogle Scholar
  23. 23.
    Brown S, Santa Maria Jr JP, Walker S (2013) Wall teichoic acids of Gram-positive bacteria. Annu Rev Microbiol 67:313–336. doi: 10.1146/annurev-micro-092412-155620CrossRefPubMedGoogle Scholar
  24. 24.
    Farha MA, Leung A, Sewell EW, et al (2013) Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol 8:226–233. doi: 10.1021/cb300413mCrossRefPubMedGoogle Scholar
  25. 25.
    Sewell EWC, Brown ED (2014) Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot 67:43–51. doi: 10.1038/ja.2013.100CrossRefPubMedGoogle Scholar
  26. 26.
    Sutterlin HA, Malinverni JC, Lee SH, et al (2017) Antibacterial new target discovery: sentinel examples, strategies and surveying success. Top Med Chem. doi: 10.1007/7355_2016_31CrossRefGoogle Scholar
  27. 27.
    Silver LL (2016) Appropriate targets for antibacterial drugs. Cold Spring Harb Perspect Med 6:a030239. doi: 10.1101/cshperspect.a030239CrossRefPubMedGoogle Scholar
  28. 28.
    Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153:293–305. doi: 10.1016/j.cell.2013.03.034CrossRefPubMedGoogle Scholar
  29. 29.
    Nussinov R, Tsai CJ (2014) Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol Sci 35:256–264. doi: 10.1016/ Scholar
  30. 30.
    Nussinov R, Tsai CJ (2015) The design of covalent allosteric drugs. Annu Rev Pharmacol Toxicol 55:249–267. doi: 10.1146/annurev-pharmtox-010814-124401CrossRefPubMedGoogle Scholar
  31. 31.
    Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532:334–339. doi: 10.1038/nature17629CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Morales-Perez CL, Noviello CM, Hibbs RE (2016) X-ray structure of the human α4β2 nicotinic receptor. Nature 538:411–415. doi: 10.1038/nature19785CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lane JR, Abdul-Ridha A, Canals M (2013) Regulation of GPCR by allosteric ligands. ACS Chem Neurosci 4:527–534. doi: 10.1021/cn400005tCrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Changeux JP, Christopoulos A (2016) Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166:1084–1102. doi: 10.1016/j.cell.2016.08.015CrossRefPubMedGoogle Scholar
  35. 35.
    Kapoor K, McGill N, Peterson CB, et al (2016) Discovery of novel non-active site inhibitors of the prothrombinase enzyme complex. J Chem Inf Model 56:535–547. doi: 10.1021/acs.jcim.5b00596CrossRefPubMedGoogle Scholar
  36. 36.
    Horn JR, Shoichet BK (2004) Allosteric inhibition through core disruption. J Mol Biol 336:1283–1291. doi: 10.1016/j.jmb.2003.12.068CrossRefPubMedGoogle Scholar
  37. 37.
    Bowman GR, Geissler PL (2012) Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci U S A 109:11681–11686. doi: 10.1073/pnas.1209309109CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Moroni E, Paladino A, Colombo G (2015) The dynamics of drug discovery. Curr Top Med Chem 15:2043–2055. doi: 10.2174/1568026615666150519102950CrossRefPubMedGoogle Scholar
  39. 39.
    Skolnick J, Gao M, Roy A, et al (2015) Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function. Bioorg Med Chem Lett 25:1163–1170. doi: 10.1016/j.bmcl.2015.01.059CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cimermancic P, Weinkam P, Rettenmaier TJ, et al (2016) CryptoSite: expanding the druggable proteome by characterization and prediction of cryptic binding sites. J Mol Biol 428:709–719. doi: 10.1016/j.jmb.2016.01.029CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Oleinikovas V, Saladino G, Cossins BP, et al (2016) Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc 138:14257–14263. doi: 10.1021/jacs.6b05425CrossRefPubMedGoogle Scholar
  42. 42.
    Changeux JP (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu Rev Biophys 41:103–133. doi: 10.1146/annurev-biophys-050511-102222CrossRefPubMedGoogle Scholar
  43. 43.
    Brunori M (2015) Half a century of hemoglobin’s allostery. Biophys J 109:1077–1079. doi: 10.1016/j.bpj.2015.06.025CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nussinov R, Tsai CJ (2015) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24. doi: 10.1016/ Scholar
  45. 45.
    Michel D (2016) Conformational selection or induced fit? New insights from old principles. Biochimie 128–129:48–54. doi: 10.1016/j.biochi.2016.06.012CrossRefPubMedGoogle Scholar
  46. 46.
    Liu J, Nussinov R (2016) Allostery: an overview of its history, concepts, methods, and applications. PLoS Comput Biol 12:e1004966. doi: 10.1371/journal.pcbi.1004966CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang X, He Y, Liu S, et al (2010) Salicylic acid-based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem 53:2482–2493. doi: 10.1021/jm901645uCrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    He R, Zeng LF, He Y, et al (2013) Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 280:731–750. doi: 10.1111/j.1742-4658.2012.08718.xCrossRefPubMedGoogle Scholar
  49. 49.
    Scott LM, Lawrence HR, Sebti SM, et al (2010) Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr Pharm Des 16:1843–1862. doi: 10.2174/138161210791209027CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Garcis Fortanet J, Chen CHT, Chen YNP, et al (2016) Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J Med Chem 59:7773–7782. doi: 10.1021/acs.jmedchem.6b00680CrossRefGoogle Scholar
  51. 51.
    Chio CM, Lim CS, Bishop AC (2015) Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase SHP2. Biochemistry 54:497–504. doi: 10.1021/bi5013595CrossRefPubMedGoogle Scholar
  52. 52.
    Grossmann KS, Rosário M, Birchmeier C, et al (2010) The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 106:53–89. doi: 10.1016/S0065-230X(10)06002-1CrossRefPubMedGoogle Scholar
  53. 53.
    Chen YNP, LaMarche MJ, Chan HM, et al (2016) Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535:148–152. doi: 10.1038/nature18621CrossRefPubMedGoogle Scholar
  54. 54.
    Haase J, Brown E (2015) Integrating the monoamine, neurotrophin and cytokine hypotheses of depression – a central role for the serotonin transporter. Pharmacol Ther 147:1–11. doi: 10.1016/j.pharmthera.2014.10.002CrossRefPubMedGoogle Scholar
  55. 55.
    Zhong H, Hansen KB, Boyle NJ, et al (2009) An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL–SI/TT mutant. Neurosci Lett 462:207–212. doi: 10.1016/j.neulet.2009.07.030CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wenthur CJ, Gentry PR, Mathews TP, et al (2014) Drugs for allosteric sites on receptors. Annu Rev Pharmacol Toxicol 54:165–184. doi: 10.1146/annurev-pharmtox-010611-134525CrossRefPubMedGoogle Scholar
  57. 57.
    Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450. doi: 10.1128/CMR.16.3.430-450.2003CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang L, Pulk A, Wasserman MR, et al (2012) Allosteric control of the ribosome by small-molecule antibiotics. Nat Struct Mol Biol 19:957–963. doi: 10.1038/nsmb.2360CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tsai A, Uemura S, Johansson M, et al (2013) The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep 3:497–508. doi: 10.1016/j.celrep.2013.01.027CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Husain N, Tulsian NK, Chien WL, et al (2016) Ligand-mediated changes in conformational dynamics of NpmA: implications for ribosomal interactions. Sci Rep 6:37061. doi: 10.1038/srep37061CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Garneau-Tsodikova S, Labby KJ (2016) Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Med Chem Commun 7:11–27. doi: 10.1039/c5md00344jCrossRefGoogle Scholar
  62. 62.
    Kohl A, Amstutz P, Parizek P, et al (2005) Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein. Structure 13:1131–1141. doi: 10.1016/j.str.2005.04.020CrossRefPubMedGoogle Scholar
  63. 63.
    Wright GD (2005) Allostery trumps antibiotic resistance. Structure 13:1089–1090. doi: 10.1016/j.str.2005.07.001CrossRefPubMedGoogle Scholar
  64. 64.
    Leban N, Kaplan E, Chaloin L, et al (2017) Kinetic characterization and molecular docking of novel allosteric inhibitors of aminoglycoside phosphotransferases. Biochim Biophys Acta 1861:3464–3473. doi: 10.1016/j.bbagen.2016.09.012CrossRefPubMedGoogle Scholar
  65. 65.
    Freiburger LA, Baettig OM, Sprules T, et al (2011) Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat Struct Mol Biol 18:288–294. doi: 10.1038/nsmb.1978CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Baettig OM, Shi K, Yachnin BJ, et al (2016) Comprehensive characterization of ligand-induced plasticity changes in a dimeric enzyme. FEBS J 283:3029–3038. doi: 10.1111/febs.13788CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fisher JF, Mobashery S (2016) β-lactam resistance mechanisms: Gram-positive bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 6:a025221. doi: 10.1101/cshperspect.a025221CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 54:1133–1141CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lee W, McDonough MA, Kotra LP, et al (2001) A 1.2-Å snapshot of the final step of bacterial cell wall biosynthesis. Proc Natl Acad Sci U S A 98:1427–1431. doi: 10.1073/pnas.98.4.1427CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lee M, Hesek D, Suvorov M, et al (2003) A mechanism-based inhibitor targeting the DD-transpeptidase activity of bacterial penicillin-binding proteins. J Am Chem Soc 125:16322–16326. doi: 10.1021/ja038445lCrossRefPubMedGoogle Scholar
  71. 71.
    Shi Q, Meroueh SO, Fisher JF, et al (2011) A computational evaluation of the mechanism of penicillin-binding protein-catalyzed cross-linking of the bacterial cell wall. J Am Chem Soc 133:5274–5283. doi: 10.1021/ja1074739CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fuda C, Suvorov M, Vakulenko SB, et al (2004) The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. J Biol Chem 279:40802–40806. doi: 10.1074/jbc.M403589200CrossRefPubMedGoogle Scholar
  73. 73.
    Pratt RF (2016) β-lactamases: why and how. J Med Chem 59:8207–8220. doi: 10.1021/acs.jmedchem.6b00448CrossRefPubMedGoogle Scholar
  74. 74.
    Cho H, Uehara T, Bernhardt TG (2014) β-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:1300–1311. doi: 10.1016/j.cell.2014.11.017CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46:S344–S349CrossRefPubMedGoogle Scholar
  76. 76.
    Llarrull LI, Testero SA, Fisher JF, et al (2010) The future of the β-lactams. Curr Opin Microbiol 13:551–557. doi: 10.1016/j.mib.2010.09.008CrossRefPubMedGoogle Scholar
  77. 77.
    Lim D, Strynadka NC (2002) Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Mol Biol 9:870–876. doi: 10.1038/nsb858CrossRefGoogle Scholar
  78. 78.
    Fuda C, Hesek D, Lee M, et al (2005) Activation for catalysis of penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus by bacterial cell wall. J Am Chem Soc 127:2056–2057. doi: 10.1021/ja0434376CrossRefPubMedGoogle Scholar
  79. 79.
    Dundas J, Ouyang Z, Tseng J, et al (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118. doi: 10.1093/nar/gkl282CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Otero LH, Rojas-Altuve A, Llarrull LI, et al (2013) How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A 110:16808–16813. doi: 10.1073/pnas.1300118110CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Mahasenan KV, Molina R, Bouley R, et al (2017) Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. J Am Chem Soc 139:2102–2110. doi: 10.1021/jacs.6b12565CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fishovitz J, Rojas-Altuve A, Otero LH, et al (2014) Disruption of allosteric response as an unprecedented mechanism of resistance to antibiotics. J Am Chem Soc 136:9814–9817. doi: 10.1021/ja5030657CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. doi: 10.1021/ci049714CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bouley R, Kumarasiri M, Peng Z, et al (2015) Discovery of antibiotic (E)-3-(3-carboxyphenyl)-2-(4-cyanostyryl) quinazolin-4(3H)-one. J Am Chem Soc 137:1738–1741. doi: 10.1021/jacs.5b00056CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bouley R, Ding D, Peng Z, et al (2016) SAR for the 4(3H)-quinazolinone antibacterials. J Med Chem 59:5011–5021. doi: 10.1021/acs.jmedchem.6b00372CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    O’Daniel PI, Peng Z, Pi H, et al (2014) Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with Gram-positive antibacterial activity. J Am Chem Soc 136:3664–3672. doi: 10.1021/ja500053xCrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Spink E, Ding D, Peng Z, et al (2015) SAR for the oxadiazole class of antibiotics. J Med Chem 58:1380–1389. doi: 10.1021/jm501661fCrossRefPubMedGoogle Scholar
  88. 88.
    Janardhanan J, Meisel JE, Ding D, et al (2016) In vitro and in vivo synergy of the oxadiazole class of antibacterials with β-lactams. Antimicrob Agents Chemother 60:5581–5588. doi: 10.1128/AAC.00787-16CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Podoll JD, Liu Y, Chang L, et al (2013) Bio-inspired synthesis yields a tricyclic indoline that selectively resensitizes methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. Proc Natl Acad Sci U S A 110:15573–15578. doi: 10.1073/pnas.1310459110CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bessa LJ, Palmeira A, Gomes AS, et al (2015) Synergistic effects between thioxanthones and oxacillin against methicillin-resistant Staphylococcus aureus. Microb Drug Resist 21:404–415. doi: 10.1089/mdr.2014.0162CrossRefPubMedGoogle Scholar
  91. 91.
    Negi B, Kumar D, Kumbukgolla W, et al (2016) Anti-methicillin resistant Staphylococcus aureus activity, synergism with oxacillin and molecular docking studies of metronidazole-triazole hybrids. Eur J Med Chem 115:426–437. doi: 10.1016/j.ejmech.2016.03.041CrossRefPubMedGoogle Scholar
  92. 92.
    Fishovitz J, Taghizadeh N, Fisher JF, et al (2015) The Tipper–Strominger hypothesis and triggering of allostery in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus (MRSA). J Am Chem Soc 137:6500–6505. doi: 10.1021/jacs.5b01374CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gonzales PR, Pesesky MW, Bouley R, et al (2015) Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat Chem Biol 11:855–861. doi: 10.1038/nchembio.1911CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Qiao Y, Lebar MD, Schirner K, et al (2014) Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J Am Chem Soc 136:14678–14681. doi: 10.1021/ja508147sCrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chan LC, Basuino L, Diep B, et al (2015) Ceftobiprole-and ceftaroline-resistant methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 59:2960–2963. doi: 10.1128/AAC.05004-14CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Greninger AL, Chatterjee SS, Chan LC, et al (2016) Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential non-mecA mechanisms of resistance. PLoS One 11:e0149541. doi: 10.1371/journal.pone.0149541CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Schaumburg F, Peters G, Alabi A, et al (2016) Missense mutations of PBP2a are associated with reduced susceptibility to ceftaroline and ceftobiprole in African MRSA. J Antimicrob Chemother 71:41–44. doi: 10.1093/jac/dkv325CrossRefPubMedGoogle Scholar
  98. 98.
    Lahiri SD, Alm RA (2016) Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: involvement of other PBPs. J Antimicrob Chemother 71:3050–3057. doi: 10.1093/jac/dkw282CrossRefPubMedGoogle Scholar
  99. 99.
    Leemans E, Mahasenan KV, Kumarasiri M, et al (2016) Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials. Bioorg Med Chem Lett 26:1011–1015. doi: 10.1016/j.bmcl.2015.12.041CrossRefPubMedGoogle Scholar
  100. 100.
    Chang L, Podoll JD, Wang W, et al (2014) SAR tricyclic indoline resistance-modifying agent. J Med Chem 57:3803–3817. doi: 10.1021/jm500146gCrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Barbour PM, Podoll JD, Marholz LJ, et al (2014) Discovery and initial SAR of N-benzyl tricyclic indolines as antibacterials for methicillin-resistant Staphylococcus aureus. Bioorg Med Chem Lett 24:5602–5605. doi: 10.1016/j.bmcl.2014.10.094CrossRefGoogle Scholar
  102. 102.
    Xu W, Wang W, Wang X (2015) Gold-catalyzed cyclization leads to a bridged tetracyclic indolenine that represses β-lactam resistance. Angew Chem Int Ed 54:9546–9549. doi: 10.1002/anie.201503736CrossRefGoogle Scholar
  103. 103.
    Lepri S, Buonerba F, Goracci L, et al (2016) Indole based weapons to fight antibiotic resistance: a SAR study. J Med Chem 59:867–891. doi: 10.1021/acs.jmedchem.5b01219CrossRefPubMedGoogle Scholar
  104. 104.
    Rani N, Vijayakumar S, Velan LPT, et al (2014) Quercetin 3-O-rutinoside mediated inhibition of PBP2a: computational and experimental evidence to its anti-MRSA activity. Mol BioSyst 10:3229–3237. doi: 10.1039/c4mb00319eCrossRefPubMedGoogle Scholar
  105. 105.
    Rani N, Saravanan V, Velan LPT, et al (2016) Allosteric site-mediated active site inhibition of PBP2a using quercetin 3-O-rutinoside and its combination. J Biomol Struct Dyn 34:1778–1796. doi: 10.1080/07391102.2015.1092096CrossRefPubMedGoogle Scholar
  106. 106.
    Kyaw BM, Lim CS (2012) Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus. Braz J Microbiol 43:938–945. doi: 10.1590/S1517-838220120003000013CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Hirai I, Okuno M, Katsuma R, et al (2010) Characterisation of anti-Staphylococcus aureus activity of quercetin. Int J Food Sci Technol 45:1250–1254. doi: 10.1111/j.1365-2621.2010.02267.xCrossRefGoogle Scholar
  108. 108.
    Wang CM, Chen HT, ZY W, et al (2016) Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules 21:139. doi: 10.3390/molecules21020139CrossRefPubMedGoogle Scholar
  109. 109.
    Kurek A, Nadkowska P, Pliszka S, et al (2012) Modulation of antibiotic resistance in bacterial pathogens by oleanolic acid and ursolic acid. Phytomedicine 19:515–519. doi: 10.1016/j.phymed.2011.12.009CrossRefPubMedGoogle Scholar
  110. 110.
    Chung PY, Navaratnam P, Chung LY (2011) Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann Clin Microbiol Antimicrob 10:25. doi: 10.1186/1476-0711-10-25CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Chen LW, Wang PF, Dan-Jie T, et al (2016) Metronidazole-containing pyrazole derivatives potently inhibit tyrosyl-tRNA synthetase: design, synthesis and biological evaluation. Chem Biol Drug Des 88:592–598. doi: 10.1111/cbdd.12793CrossRefPubMedGoogle Scholar
  112. 112.
    Qiu F, Meng L, Chen J, et al (2016) In vitro activity of five flavones from Scutellaria baicalensisin combination with cefazolin against methicillin resistant Staphylococcus aureus (MRSA). Med Chem Res 25:2214–2219. doi: 10.1007/s00044-016-1685-9CrossRefGoogle Scholar
  113. 113.
    Farha MA, Czarny TL, Myers CL, et al (2015) Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proc Natl Acad Sci U S A 112:11048–11053. doi: 10.1073/pnas.1511751112CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Jorgenson MA, Young KD (2016) Interrupting biosynthesis of O-antigen or the lipopolysaccharide core produces morphological defects in Escherichia coli by sequestering undecaprenyl phosphate. J Bacteriol 198:3070–3079. doi: 10.1128/JB.00550-16CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Jorgenson MA, Kannan S, Laubacher ME, et al (2016) Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in Escherichia coli by competing for undecaprenyl phosphate. Mol Microbiol 100:1–14. doi: 10.1111/mmi.13284CrossRefPubMedGoogle Scholar
  116. 116.
    Lee LV, Granda B, Dean K, et al (2010) Biophysical investigation of the mode of inhibition of tetramic acids, the allosteric inhibitors of undecaprenyl pyrophosphate synthase. Biochemistry 49:5366–5376. doi: 10.1021/bi100523cCrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Danley DE, Baima ET, Mansour M, et al (2015) Discovery and structural characterization of an allosteric inhibitor of bacterial cis-prenyltransferase. Protein Sci 24:20–26. doi: 10.1002/pro.2579CrossRefPubMedGoogle Scholar
  118. 118.
    Sinko W, Wang Y, Zhu W, et al (2014) Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads. J Med Chem 57:5693–5701. doi: 10.1021/jm5004649CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Czarny TL, Brown ED (2016) A small-molecule screening platform for the discovery of inhibitors of undecaprenyl diphosphate synthase. ACS Infect Dis 2:489–499. doi: 10.1021/acsinfecdis.6b00044CrossRefPubMedGoogle Scholar
  120. 120.
    Inokoshi J, Nakamura Y, Komada S, et al (2016) Inhibition of bacterial undecaprenyl pyrophosphate synthase by small fungal molecules. J Antibiot 69:798–805. doi: 10.1038/ja.2016.35CrossRefPubMedGoogle Scholar
  121. 121.
    Jukič M, Rožman K, Gobec S (2016) Recent advances in the development of undecaprenyl pyrophosphate synthase inhibitors as potential antibacterials. Curr Med Chem 23:464–482CrossRefPubMedGoogle Scholar
  122. 122.
    Wang Y, Desai J, Zhang Y, et al (2016) Bacterial cell growth inhibitors targeting undecaprenyl diphosphate synthase and undecaprenyl diphosphate phosphatase. ChemMedChem 11:2311–2319. doi: 10.1002/cmdc.201600342CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Concha N, Huang J, Bai X, et al (2016) Discovery and characterization of a class of pyrazole inhibitors of bacterial undecaprenyl pyrophosphate synthase. J Med Chem 59:7299–7304. doi: 10.1021/acs.jmedchem.6b00746CrossRefPubMedGoogle Scholar
  124. 124.
    Chung BC, Zhao J, Gillespie RA, et al (2013) Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341:1012–1016. doi: 10.1126/science.1236501CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Hakulinen JK, Hering J, Brändén G, et al (2017) MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat Chem Biol 13:265–267. doi: 10.1038/nchembio.2270CrossRefPubMedGoogle Scholar
  126. 126.
    Soares da Costa TP, Desbois S, Dogovski C, et al (2016) Structural determinants defining the allosteric inhibition of an essential antibiotic target. Structure 24:1282–1291. doi: 10.1016/j.str.2016.05.019CrossRefPubMedGoogle Scholar
  127. 127.
    Skovpen YV, Conly CJT, Sanders DAR, et al (2016) Biomimetic design results in a potent allosteric inhibitor of dihydrodipicolinate synthase from Campylobacter jejuni. J Am Chem Soc 138:2014–2020. doi: 10.1021/jacs.5b12695CrossRefPubMedGoogle Scholar
  128. 128.
    Sowole MA, Simpson S, Skovpen YV, et al (2016) Evidence of allosteric enzyme regulation via changes in conformational dynamics: hydrogen/deuterium exchange investigation of dihydrodipicolinate synthase. Biochemistry 55:5413–5422. doi: 10.1021/acs.biochem.6b00764CrossRefPubMedGoogle Scholar
  129. 129.
    Scocchera E, Wright DL (2017) The antifolates. Top Med Chem. doi: 10.1007/7355_2017_16CrossRefGoogle Scholar
  130. 130.
    Hammoudeh DI, Daté M, Yun M-K, et al (2014) Identification and characterization of an allosteric inhibitory site on dihydropteroate synthase. ACS Chem Biol 9:1294–1302. doi: 10.1021/cb500038gCrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Haranahalli K, Tong S, Ojima I (2016) Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg Med Chem 24:6354–6369. doi: 10.1016/j.bmc.2016.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hurley KA, Santos TM, Nepomuceno GM, et al (2016) Targeting the bacterial division protein FtsZ. J Med Chem 59:6975–6998. doi: 10.1021/acs.jmedchem.5b01098CrossRefPubMedGoogle Scholar
  133. 133.
    Ramírez-Aportela E, López-Blanco JR, Andreu JM, et al (2014) Understanding nucleotide-regulated FtsZ filament dynamics and the monomer assembly switch with large-scale atomistic simulations. Biophys J 107:2164–2176. doi: 10.1016/j.bpj.2014.09.033CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Miguel A, Hsin J, Liu T, et al (2015) Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species. PLoS Comput Biol 11:e1004117. doi: 10.1371/journal.pcbi.1004117CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Adams DW, Wu LJ, Errington J (2016) A benzamide-dependent ftsZ mutant reveals residues crucial for Z-ring assembly. Mol Microbiol 99:1028–1042. doi: 10.1111/mmi.13286CrossRefPubMedGoogle Scholar
  136. 136.
    Kaul M, Mark L, Zhang Y, et al (2015) TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 59:4845–4855. doi: 10.1128/AAC.00708-15CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Kaul M, Mark L, Parhi AK, et al (2016) Combining the FtsZ-targeting prodrug TXA709 and the cephalosporin cefdinir confers synergy and reduces the frequency of resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 60:4290–4296. doi: 10.1128/AAC.00613-16CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Artola M, Ruiz-Avila LB, Ramirez-Aportela E, et al (2017) The structural assembly switch of cell division protein FtsZ probed with fluorescent allosteric inhibitors. Chem Sci 8:1525–1534. doi: 10.1039/C6SC03792ECrossRefPubMedGoogle Scholar
  139. 139.
    Busiek KK, Margolin W (2015) Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 25:R243–R254. doi: 10.1016/j.cub.2015.01.030CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Garland M, Loscher S, Bogyo M (2017) Chemical strategies to target bacterial virulence. Chem Rev 117:4422–4461. doi: 10.1021/acs.chemrev.6b00676CrossRefPubMedGoogle Scholar
  141. 141.
    Totsika M (2017) Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability. Future Med Chem 9:267–269. doi: 10.4155/fmc-2016-0227CrossRefPubMedGoogle Scholar
  142. 142.
    Johnson BK, Abramovitch RB (2017) Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci 38:339–362. doi: 10.1016/ Scholar
  143. 143.
    Li S, Zhou L, Yao Y, et al (2017) A platform for the development of novel biosensors by configuring allosteric transcription factor recognition with amplified luminescent proximity homogeneous assays. Chem Commun 53:99–102. doi: 10.1039/c6cc07244eCrossRefGoogle Scholar
  144. 144.
    Hagenbuchner J, Ausserlechner MJ (2016) Targeting transcription factors by small compounds – current strategies and future implications. Biochem Pharmacol 107:1–13. doi: 10.1016/j.bcp.2015.12.006CrossRefPubMedGoogle Scholar
  145. 145.
    Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. doi: 10.1038/nrmicro.2016.89CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Welsh MA, Blackwell HE (2016) Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 40:774–794. doi: 10.1093/femsre/fuw009CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Eibergen NR, Moore JD, Mattmann ME, et al (2015) Potent and selective modulation of the RhlR quorum sensing receptor by using non-native ligands: an emerging target for virulence control in Pseudomonas aeruginosa. Chembiochem 16:2348–2356. doi: 10.1002/cbic.201500357CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Wang B, Muir TW (2016) Regulation of virulence in Staphylococcus aureus: molecular mechanisms and remaining puzzles. Cell Chem Biol 23:214–224. doi: 10.1016/j.chembiol.2016.01.004CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Wang B, Zhao A, Xie Q, et al (2017) Functional plasticity of the AgrC receptor histidine kinase required for staphylococcal virulence. Cell Chem Biol 24:76–86. doi: 10.1016/j.chembiol.2016.12.008CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Paczkowski JE, Mukherjee S, McCready AR, et al (2017) Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem 292:4064–4076. doi: 10.1074/jbc.M116.770552CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Kamal AAM, Maurer CK, Allegretta G et al (2017) Quorum sensing inhibitors as path blockers for Pseudomonsa aeruginosa infections – a new concept in anti-infective drug discovery. Top Med Chem. doi: 10.1007/7355_2017_17CrossRefGoogle Scholar
  152. 152.
    Wagner JR, Lee CT, Durrant JD, et al (2016) Emerging computational methods for the rational discovery of allosteric drugs. Chem Rev 116:6370–6390. doi: 10.1021/acs.chemrev.5b00631CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Papaleo E, Saladino G, Lambrughi M, et al (2016) The role of protein loops and linkers in conformational dynamics and allostery. Chem Rev 116:6391–6423. doi: 10.1021/acs.chemrev.5b00623CrossRefPubMedGoogle Scholar
  154. 154.
    Sakmar TP, Huber T (2016) Inside-out receptor inhibition. Nature 540:344–345. doi: 10.1038/nature20486CrossRefPubMedGoogle Scholar
  155. 155.
    Corbett MSP, Mark AE, Poger D (2017) Do all X-ray structures of protein-ligand complexes represent functional states? EPOR, a case study. Biophys J 112:595–604. doi: 10.1016/j.bpj.2016.12.042CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Zacharias M (2017) Predicting allosteric changes from conformational ensembles. Structure 25:393–394. doi: 10.1016/j.str.2017.02.006CrossRefPubMedGoogle Scholar
  157. 157.
    Li S, Shen Q, Su M, et al (2016) Alloscore: a tool for predicting allosteric ligand-protein interactions. Bioinformatics 32:1574–1576. doi: 10.1093/bioinformatics/btw036CrossRefPubMedGoogle Scholar
  158. 158.
    Huang W, Lu S, Huang Z, et al (2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29:2357–2359. doi: 10.1093/bioinformatics/btt399CrossRefPubMedGoogle Scholar
  159. 159.
    Greener JG, Sternberg MJE (2015) AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis. BMC Bioinformatics 16:335. doi: 10.1186/s12859-015-0771-1CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Greener JG, Filippis I, Sternberg MJE (2017) Predicting protein dynamics and allostery using multi-protein atomic distance constraints. Structure 25:546–558. doi: 10.1016/j.str.2017.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Fischer M, Coleman RG, Fraser JS, et al (2014) Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 6:575–583. doi: 10.1038/nchem.1954CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Barril X (2014) Ligand discovery: docking points. Nat Chem 6:560–561. doi: 10.1038/nchem.1986CrossRefPubMedGoogle Scholar
  163. 163.
    Alvarez-Garcia D, Barril X (2014) Relationship between protein flexibility and binding: lessons for structure-based drug design. J Chem Theory Comput 10:2608–2614. doi: 10.1021/ct500182zCrossRefPubMedGoogle Scholar
  164. 164.
    Chen Y-C (2015) Beware of docking! Trends Pharmacol Sci 36:78–95. doi: 10.1016/ Scholar
  165. 165.
    Deyon-Jung L, Morice C, Chery F, et al (2016) Fragment pharmacophore-based in silico screening: a powerful approach for efficient lead discovery. Med Chem Commun 7:506–511. doi: 10.1039/C5MD00444FCrossRefGoogle Scholar
  166. 166.
    Brown DG, May-Dracka TL, Gagnon MM, et al (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57:10144–10161. doi: 10.1021/jm501552xCrossRefPubMedGoogle Scholar
  167. 167.
    Payne DJ, Gwynn MN, Holmes DJ, et al (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi: 10.1038/nrd2201CrossRefPubMedGoogle Scholar
  168. 168.
    Henrichfreise B, Brunke M, Viollier PH (2016) Bacterial surfaces: the wall that SEDS built. Curr Biol 26:R1158–R1160. doi: 10.1016/j.cub.2016.09.028CrossRefPubMedGoogle Scholar
  169. 169.
    Nonejuie P, Burkart M, Pogliano K, et al (2013) Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc Natl Acad Sci U S A 110:16169–16174. doi: 10.1073/pnas.1311066110CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Kocaoglu O, Carlson EE (2016) Progress and prospects for small-molecule probes of bacterial imaging. Nat Chem Biol 12:472–478. doi: 10.1038/nchembio.2109CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Lamsa A, Lopez-Garrido J, Quach D, et al (2016) Rapid inhibition profiling in Bacillus subtilis to identify the mechanism of action of new antimicrobials. ACS Chem Biol 11:2222–2231. doi: 10.1021/acschembio.5b01050CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Stylianidou S, Brennan C, Nissen SB, et al (2016) SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. Mol Microbiol 102:690–700. doi: 10.1111/mmi.13486CrossRefPubMedGoogle Scholar
  173. 173.
    Malone CL, Boles BR, Lauderdale KJ, et al (2009) Fluorescent reporters for Staphylococcus aureus. J Microbiol Methods 77:251–260. doi: 10.1016/j.mimet.2009.02.011CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Laubacher ME, Melquist AL, Chandramohan L, et al (2013) Cell sorting enriches Escherichia coli mutants that rely on peptidoglycan endopeptidases to suppress highly aberrant morphologies. J Bacteriol 195:855–866. doi: 10.1128/JB.01450-12CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Sycuro LK, Rule CS, Petersen TW, et al (2013) Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol Microbiol 90:869–883. doi: 10.1111/mmi.12405CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Cass JA, Stylianidou S, Kuwada NJ, et al (2017) Probing bacterial cell biology using image cytometry. Mol Microbiol 103:818–828. doi: 10.1111/mmi.13591CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations