The Oxazolidinones

Part of the Topics in Medicinal Chemistry book series (TMC, volume 26)


The oxazolidinones, exemplified by linezolid and now tedizolid phosphate, are established as successful clinical agents for the treatment of a variety of serious infections caused by Gram-positive pathogens. Out of more than one dozen oxazolidinone drug candidates tested in clinical trials over the last 20+ years, only these two agents have exhibited the optimal balance of potency, pharmacokinetic behavior, and safety to become marketed antibacterial agents. The reason for this situation is discussed in the context of a new wave of emerging candidate drugs. An assessment of these nascent oxazolidinones is provided. Progress in the areas of structure-activity relationships (SAR), mechanism of action (MOA), safety characteristics, and resistance development is discussed. Finally, we speculate on the future of the oxazolidinones as a class of antibacterial agents with continuing therapeutic utility.


Chloramphenicol Peptidyl transfer center Protein synthesis inhibitor Ribosome Sutezolid 


  1. 1.
    Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR (2008) Linezolid (Zyvox®), the first member of a completely new class of antibacterial agents for the treatment of serious gram-positive infections. J Med Chem 51:1981–1990. doi: 10.1021/jm800038gCrossRefPubMedGoogle Scholar
  2. 2.
    Mendes RE, Hogan PA, Jones RN, Sader HS, Flamm RK (2016) Surveillance for linezolid resistance via the Zyvox® annual appraisal of potency and spectrum (ZAAPS) programme (2014): evolving resistance mechanisms with stable susceptibility rates. J Antimicrob Chemother 71:1860–1865. doi: 10.1093/jac/dkw052CrossRefPubMedGoogle Scholar
  3. 3.
    Mendes RE, Deshpande LM, Jones RN (2014) Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updates 17:1–12. doi: 10.1016/j.drup.2014.04.002CrossRefGoogle Scholar
  4. 4.
    Burdette SD, Trotman R (2015) Tedizolid: the first once-daily oxazolidinone class antibiotic. Clin Infect Dis 61:1315–1321. doi: 10.1093/cid/civ501CrossRefPubMedGoogle Scholar
  5. 5.
    Flanagan S, McKee EE, Das D, Tulkens PM, Hosako H, Fiedler-Kelly J, Passarell J, Radovsky A, Prokocimer P (2015) Nonclinical and pharmacokinetic assessments to evaluate the potential of tedizolid and linezolid to affect mitochondrial function. Antimicrob Agents Chemother 59:178–185. doi: 10.1128/aac.03684-14CrossRefPubMedGoogle Scholar
  6. 6.
    Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246. doi: 10.1021/jm00120a002CrossRefPubMedGoogle Scholar
  7. 7.
    Kubitza D, Perzbom E, Berkowitz SD (2013) The discovery of rivaroxaban: translating preclinical assessments into clinical practice. Front Pharmacol 4:1–9. doi: 10.3389/fphar.2013.00145CrossRefGoogle Scholar
  8. 8.
    Berlin I, Zimmer R, Thiede H-M, Payan C, Hergueta T, Robin L, Puech AJ (1990) Comparison of the monoamine oxidase inhibiting properties of two reversible and selective monoamine oxidase-A inhibitors moclobemide and toloxatone, and assessment of their effect on psychometric performance in healthy subjects. Br J Clin Pharmacol 30:805–816. doi: 10.1111/j.1365-2125.1990.tb05445.xCrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ali A, Altman MD, Anjum SG, Cao H, Chellappan S, Fernandes MX, Gilson M, Kairys V, King N, Nalivaika E, Prabu M, Rana TM, Garudammagari Sai KKR, Schiffer CA, Tidor B (2008) HIV-1 protease inhibitors. WO 2008118849Google Scholar
  10. 10.
    Chakravarty PK, Shao PP (2011) Substituted aryl sulfone derivatives as calcium channel blockers. US 20110172223Google Scholar
  11. 11.
    Brnardic E, Fraley M, Layton M, Garbaccio R (2010) 3,5-substituted-1,3-oxazolidin-2-one derivatives. US 20100292241Google Scholar
  12. 12.
    Dasenbrock J, Tsaklakidis C, Wurziger H, Barnes C, Bühring K-U, Goodman S (2001) Oxazolidinone derivatives. WO 2001040201Google Scholar
  13. 13.
    Shaw KJ, Barbachyn MR (2011) The oxazolidinones: past, present, and future. Ann N Y Acad Sci 1241:48–70. doi: 10.1111/j.1749-6632.2011.06330.xCrossRefPubMedGoogle Scholar
  14. 14.
    Barbachyn MR (2012) Oxazolidinone antibacterial agents. In: Dougherty TJ, Pucci MJ (eds) Antibiotic discovery and development, vol 1. Springer, New York, pp. 271–299CrossRefGoogle Scholar
  15. 15.
    Bialvaei AZ, Rahbar M, Yousefi M, Asgharzadeh M, Kafil HS (2017) Linezolid: a promising option in the treatment of gram-positives. J Antimicrob Chemother 72:354–364. doi: 10.1093/jac/dkw450CrossRefGoogle Scholar
  16. 16.
    Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, Gadwood RC, Shinabarger D, Xiong L, Mankin AS (2007) The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 26:393–402. doi: 10.1016/j.molcel.2007.04.005CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P (2008) The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci U S A 105:13339–13344. doi: 10.1073/pnas.0804276105CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM (2008) Crysal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem 51:3353–3356. doi: 10.1021/jm800379dCrossRefPubMedGoogle Scholar
  19. 19.
    Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A, Orelle C, Vazquez-Laslop N, Mankin AS (2016) Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. Proc Natl Acad Sci U S A 113:12150–12155. doi: 10.1073/pnas.1613055113CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Starosta AL, Karpenko VV, Shishkina AV, Mikolajka A, Sumbatyan NV, Schluenzen F, Korshunova GA, Bogdanov AA, Wison DN (2010) Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Chem Biol 17:504–514. doi: 10.1016/j.chembiol.2010.04.008CrossRefPubMedGoogle Scholar
  21. 21.
    Kannan K, Vázquez-Laslop N, Mankin AS (2012) Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151:508–520. doi: 10.1016/j.cell.2012.09.018CrossRefPubMedGoogle Scholar
  22. 22.
    Sothiselvam S, Neuner S, Rigger L, Klepacki D, Micura R, Vázquez-Laslop N, Mankin AS (2016) Binding of macrolide antibiotics leads to ribosomal selection against specific substrates based on their charge and size. Cell Rep 16:1789–1799. doi: 10.1016/j.celrep.2016.07.018CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE, Hutchinson DK, Barbachyn MR, Brickner SJ (1996) In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother 40:839–845PubMedPubMedCentralGoogle Scholar
  24. 24.
    Locke JB, Hilgers M, Shaw KJ (2009) Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother 53:5265–5274. doi: 10.1128/AAC.00871-09CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rastogi R, Wu M, DasGupta I, Fox GE (2009) Visualization of ribosomal RNA operon copy number distribution. BMC Microbiol 9:208. doi: 10.1186/1471-2180-9-208CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sinclair A, Arnold C, Woodford N (2003) Rapid detection and estimation by pyrosequencing of 23S rRNA genes with a single nucleotide polymorphism conferring linezolid resistance in enterococci. Antimicrob Agents Chemother 47:3620–3622. doi: 10.1128/AAC.47.11.3620-3622.2003CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rmdb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29:181–184CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Livermore DM, Mushtaq S, Warner M, Woodford N (2009) Activity of oxazolidinone TR-700 against linezolid-susceptible and -resistant staphylococci and enterococci. J Antimicrob Chemother 63:713–715. doi: 10.1093/jac/dkp002CrossRefPubMedGoogle Scholar
  29. 29.
    Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB (2002) Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother 46:3334–3336. doi: 10.1128/AAC.46.10.3334-3336.2002CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Besier S, Ludwig A, Zander J, Brade V, Wichelhaus TA (2008) Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances. Antimicrob Agents Chemother 52:1570–1572. doi: 10.1128/AAC.01098-07CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zurenko G, Todd WM, Hafkin BA, Myers B, Kaufmann C, Bock J (1999) Development of linezolid resistant Enterococcus faecium in two compassionate use program patients treated with linezolid. In: Program and abstracts of the 39th annual interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, CA, USA, Sept 26–29. American Society for Microbiology, Washington, abstract 848, p 118Google Scholar
  32. 32.
    Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering Jr RC, Ferraro MJ (2001) Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358:207–208. doi: 10.1016/S0140-6736(01)05410-1CrossRefPubMedGoogle Scholar
  33. 33.
    Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP (2001) Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357:1179. doi: 10.1016/S1040-6736(00)04376-2CrossRefPubMedGoogle Scholar
  34. 34.
    Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56:603–612. doi: 10.1128/AAC.05702-11CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B (2005) A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073. doi: 10.1111/j.1365-2958.2005.04754.xCrossRefPubMedGoogle Scholar
  36. 36.
    Kehrenberg C, Schwarz S (2006) Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant staphylococcus isolates. Antimicrob Agents Chemother 50:1156–1163. doi: 10.1128/AAC.50.4.1156-1163.2006CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Toh SM, Xiong L, Arias CA, Villegas MV, Lolans K, Quinn J, Mankin AS (2007) Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol 64:1506–1514. doi: 10.1111/j.1365-2958.2007.05744.xCrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN (2008) First report of cfr-mediated resistance to linezolid in human staphylococcal isolates recovered in the United States. Antimicrob Agents Chemother 52:2244–2246. doi: 10.1128/AAC.00231-08CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505. doi: 10.1128/AAC.00131-06CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cafini F, Nguyen LTT, Higashide M, Roman F, Prieto J, Morikawa K (2016) Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: the role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. J Antimicrob Chemother 71:587–592. doi: 10.1093/jac/dkv391CrossRefPubMedGoogle Scholar
  41. 41.
    Mendes RE, Hogan PA, Streit JM, Jones RN, Flamm RK (2015) Update on linezolid in vitro activity through the Zyvox annual appraisal of potency and spectrum program, 2013. Antimicrob Agents Chemother 59:2454–2457. doi: 10.1128/AAC.04784-14CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Caballero JD, Pastor MD, Vindel A, Máiz L, Yagüe G, Salvador C, Cobo M, Morosini M-L, Campo R, Cantón R, GEIFQ Study Group (2016) Emergence of cfr-mediated linezolid resistance in a methicillin-resistant Staphylococcus aureus epidemic clone isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 60:1878–1882. doi: 10.1128/AAC.02067-15CrossRefGoogle Scholar
  43. 43.
    Antonelli A, D’Andrea MM, Galano A, Borchi B, Brenciani A, Vaggelli G, Cavallo A, Bartoloni A, Giovanetti E, Rossolini GM (2016) Linezolid-resistant cfr-positive MRSA, Italy. J Antimicrob Chemother 71:2349–2351. doi: 10.1093/jac/dkw108CrossRefPubMedGoogle Scholar
  44. 44.
    Locke JB, Finn J, Hilgers M, Morales G, Rahawi S, Kedar GC, Picazo JJ, Im W, Shaw KJ, Stein JL (2010) Structure-activity relationships for linezolid-resistant Staphylococcus aureus strains possessing the cfr methyltransferase gene or ribosomal mutations. Antimicrob Agents Chemother 54:5337–5343. doi: 10.1128/AAC.00663-10CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, Mendes RE (2015) Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 59:6256–6261. doi: 10.1128/AAC.01473-15CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Fesler AT, Wu C, Yu H, Deng X, Xia X, Shen J (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70:2182–2190. doi: 10.1093/jac/dkv116CrossRefPubMedGoogle Scholar
  47. 47.
    Cai J, Wang Y, Schwarz S, Lv H, Li Y, Liao K, Yu S, Zhao K, Gu D, Wang X, Zhang R, Shen J (2015) Enterococcal isolates carrying the novel oxazolidinone resistance gene optrA from hospitals in Zhejiang, Guangdong, and Henan, China, 2010–2014. Clin Microbiol Infect 21:1095.e1–1095.e4. doi: 10.1016/j.cmi.2015.08.007CrossRefGoogle Scholar
  48. 48.
    Mendes RE, Deshpande LM, Castanheira M, Flamm RK (2016) Evolving linezolid resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY antimicrobial surveillance program. Presented at ASM (American Society for Microbiology) Microbe 2016, Boston, MA, 16–20 June 2016. Poster Saturday-332Google Scholar
  49. 49.
    Li D, Wang Y, Schwarz S, Cai J, Fan R, Li J, Fesler AT, Zhang R, Wu C, Shen J (2016) Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J Antimicrob Chemother 71:1474–1478. doi: 10.1093/jac/dkw040CrossRefPubMedGoogle Scholar
  50. 50.
    Flamm RK, Mendes RE, Hogan PA, Streit JM, Ross JE, Jones RN (2016) Linezolid surveillance results for the United States (LEADER surveillance program 2014). Antimicrob Agents Chemother 60:2273–2280. doi: 10.1128/AAC.02803-15CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yayan J, Ghebremedhin B, Rasche K (2016) No outbreak of vancomycin and linezolid resistance in staphylococcal pneumonia over a 10-year period. PLoS One 10:1–20. doi: 10.1371/journal.pone.0138895CrossRefGoogle Scholar
  52. 52.
    Schaadt R, Sweeney D, Shinabarger D, Zurenko G (2009) In vitro activity of TR-700, the active ingredient of the antibacterial prodrug TR-701, a novel oxazolidinone antibacterial agent. Antimicrob Agents Chemother 53:3236–3239. doi: 10.1128/AAC.00228-09CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Brown SD, Traczewski MM (2010) Comparative in vitro antimicrobial activities of torezolid (TR-700), the active moiety of a new oxazolidinone, torezolid phosphate (TR-701), determination of tentative disk diffusion interpretive criteria, and quality control ranges. Antimicrob Agents Chemother 54:2063–2069. doi: 10.1128/AAC.01569-09CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Choi S, Im W, Bartizal K (2012) Activity of tedizolid phosphate (TR-701) in murine models of infection with penicillin-resistant and penicillin-sensitive Streptococcus pneumoniae. Antimicrob Agents Chemother 56:4713–4717. doi: 10.1128/AAC.00346-12CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rodrígues-Avial I, Culebras E, Betriu C, Morales G, Pena I, Picazo JJ (2012) In vitro activity of tedizolid (TR-700) against linezolid-resistant staphylococci. J Antimicrob Chemother 67:167–169. doi: 10.1093/jac/dkr403CrossRefGoogle Scholar
  56. 56.
    French G (2003) Safety and tolerability of linezolid. J Antimicrob Chemother 51(Suppl S2):ii45–ii53. doi: 10.1093/jac/dkg253CrossRefPubMedGoogle Scholar
  57. 57.
    Rubenstein E, Isturiz R, Standiford HC, Smith LG, Oliphant TH, Cammarata S, Hafkin B, Le V, Remington J (2003) Worldwide assessment of linezolid’s clinical safety and tolerability: comparator-controlled phase III studies. Antimicrob Agents Chemother 47:1824–1831CrossRefGoogle Scholar
  58. 58.
    Zyvox® (linezolid) package insert, revised July 2015.
  59. 59.
    Humphrey SJ, Curry JT, Turman CN, Stryd RP (2001) Cardiovascular sympathomimetic amine interactions in rats treated with monoamine oxidase inhibitors and the novel oxazolidinone antibiotic linezolid. J Cardiovasc Pharmacol 37:548–563. doi: 10.1097/00005344-200105000-00007CrossRefPubMedGoogle Scholar
  60. 60.
    Bergeron L, Boulé M, Perreault S (2005) Serotonin toxicity associated with concomitant use of linezolid. Ann Pharmacother 39:956–961. doi: 10.1345/aph.1E523CrossRefPubMedGoogle Scholar
  61. 61.
    Gillman PK (2003) Linezolid and serotonin toxicity. Clin Infect Dis 37:1274–1275. doi: 10.1086/378895CrossRefPubMedGoogle Scholar
  62. 62.
    Wigen CL, Goetz MB (2002) Serotonin syndrome and linezolid. Clin Infect Dis 34:1651–1652. doi: 10.1086/340710CrossRefPubMedGoogle Scholar
  63. 63.
    Apodaca AA, Rakita RM (2003) Linezolid-induced lactic acidosis. N Engl J Med 348:86–87. doi: 10.1056/NEJM200301023480123CrossRefPubMedGoogle Scholar
  64. 64.
    Hirano M, Palenzuela L, Hahn NM, Nelson Jr RP, Arno JN, Schobert C, Bethel R, Ostrowski LA, Sharma MR, Datta PP, Agrawal RK, Schwartz JE (2005) Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin Infect Dis 40:e113–e116. doi: 10.1086/430441CrossRefPubMedGoogle Scholar
  65. 65.
    Bressler AM, Zimmer SM, Gilmore JL, Somani J (2004) Peripheral neuropathy associated with prolonged use of linezolid. Lancet Infect Dis 4:528–531. doi: 10.1016/S1473-3099(04)01109-0CrossRefPubMedGoogle Scholar
  66. 66.
    Zivkovic SA, Lacomis D (2005) Severe sensory neuropathy associated with long-term linezolid use. Neurology 64:926–927. doi: 10.1212/01.WNL.0000152883.53691.5BCrossRefPubMedGoogle Scholar
  67. 67.
    Lee E, Burger S, Shah J, Melton C, Mullen M, Warren F, Press R (2003) Linezolid-associated toxic optic neuropathy: a report of 2 cases. Clin Infect Dis 37:1389–1391. doi: 10.1086/379012CrossRefPubMedGoogle Scholar
  68. 68.
    Senneville E, Legout L, Valette M, Yazdanpanah Y, Beltrand E, Caillaux M, Migaud H, Mouton Y (2006) Effectiveness and tolerability of prolonged linezolid treatment for chronic osteomyelitis: a retrospective study. Clin Ther 28:1155–1163. doi: 10.1016/j.clinthera.2006.08.001CrossRefPubMedGoogle Scholar
  69. 69.
    Beekmann SE, Gilbert DN, Polgreen PM (2009) Toxicity of extended courses of linezolid: results of an Infectious Diseases Society of America emerging infections network survey. Diagn Microbiol Infect Dis 62:407–410. doi: 10.1016/j.diagmicrobio.2008.08.009CrossRefGoogle Scholar
  70. 70.
    McKee EE, Ferguson M, Bentley AT, Marks TA (2006) Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother 50:2042–2049. doi: 10.1128/AAC.01411-05CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Garrabou G, Soriano A, et al (2007) Reversible inhibition of mitochondrial protein synthesis during linezolid-related hyperlactatemia. Antimicrob Agents Chemother 51:962–967. doi: 10.1128/AAC.01190-06CrossRefPubMedGoogle Scholar
  72. 72.
    Bobylev I, Maru H, Joshi AR, Lehmann HC (2016) Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy. J Antimicrob Chemother 71:685–691. doi: 10.1093/jac/dkv386CrossRefPubMedGoogle Scholar
  73. 73.
    Flanagan S, Bartizal K, Minassian SL, Fang E, Prokocimer P (2013) In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob Agents Chemother 57:3060–3066. doi: 10.1128/AAC.00431-13CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Barbachyn MR, Hutchinson DK, Brickner SJ, Cynamon MH, Kilburn JO, Klemens SP, Glickman SE, Grega KC, Hendges SK, Toops DS, Ford CW, Zurenko GE (1996) Identification of a novel oxazolidinone (U-100480) with potent antimycobacterial activity. J Med Chem 39:680–685. doi: 10.1021/jm950956yCrossRefPubMedGoogle Scholar
  75. 75.
    Cynamon MH, Klemens SP, Sharpe CA, Chase S (1999) Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob Agents Chemother 43:1189–1191PubMedPubMedCentralGoogle Scholar
  76. 76.
    Wallis RS, Jakubiec WM, Kumar V, Silvia AM, Paige D, Dimitrova D, Li X, Ladutko L, Campbell S, Frideland G, Mitton-Fry M, Miller PF (2010) Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers. J Infect Dis 202:745–751. doi: 10.1086/655471CrossRefPubMedGoogle Scholar
  77. 77.
    Williams KN, Stover CK, Zhu T, Tasneen R, Tyagi S, Grosset JH, Nuermberger E (2008) Promising anti-tuberculosis activity of the oxazolidinone PNU-100480 relative to linezolid in the murine model. Antimicrob Agents Chemother 53:1314–1319. doi: 10.1128/AAC.01182-08CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wallis RS, Dawson R, Friedrich SO, Venter A, Paige D, Zhu T, Silvia A, Gobey J, Ellery C, Zhang Y, Eisenach K, Miller P, Diacon AH (2014) Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One 9:1–9. doi: 10.1371/journal.pone.0094462CrossRefGoogle Scholar
  79. 79.
    Zhu T, Friedrich SO, Diacon A, Wallis RS (2014) Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis. Antimicrob Agents Chemother 58:3306–3311. doi: 10.1128/AAC.01920-13CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Anderegg TR, Biedenbach DJ, Jones RN (2002) In vitro evaluation of AZD2563, a novel oxazolidinone, against 603 recent staphylococcal isolates. Antimicrob Agents Chemother 46:2662–2664. doi: 10.1128/AAC.46.8.2662-2664.2002CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Balasubramanian V, Solapure S, Iyer H, Ghosh A, Sharma S, Kaur P, Deepthi R, Subbulakshmi V, Ramya V, Ramachandran V, Balganesh M, Wright L, Melnick D, Butler SL, Sambandamurthy VK (2014) Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob Agents Chemother 58:495–502. doi: 10.1128/AAC.01903-13CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zumla A, Nahid P, Cole ST (2013) Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 12:388–404. doi: 10.1038/nrd4001CrossRefPubMedGoogle Scholar
  83. 83.
    Gordeev MF, Zhengyu YY (2014) New potent oxazolidinone (MRX-I) with an improved class safety profile. J Med Chem 57:4487–4497. doi: 10.1021/jm401931eICrossRefPubMedGoogle Scholar
  84. 84.
    Harris C, Barbachyn MR, Prasad JVNV, Angell P, Sulavik M, Gibson G, Gage J, Lockard M, Ford C, Hamel J, Stapert D, Huband M, Pagano P, Zurenko G, Schaadt R, Yagi B, Ogden A, Lepsy C, Ashton B, Hollembaek J, Brodfuehrer J, Adams W, Martin J, Blackburn A, Spence J (2006) Identification of a new trifluorophenyl oxazolidinone, PF-987296. In: Program and abstracts of the 46th annual interscience conference on antimicrobial agents and chemotherapy (ICAAC), San Francisco, CA, USA, Sept 27–30. American Society for Microbiology, Washington, abstract F1-971, p 213Google Scholar
  85. 85.
    Li C-R, Zhal Q-Q, Wang X-K, Hu X-X, Li G-Q, Zhang W-X, Pang J, Lu X, Yuan H, Gordeev MF, Chen L-T, Yang X-Y, You X-F (2014) In vivo antibacterial activity of MRX-I, a new oxazolidinone. Antimicrob Agents Chemother 58:2418–2421. doi: 10.1128/AAC.01526-13CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Meng J, Zhong D, Li L, Yuan Z, Yuan H, Xie C, Zhou J, Li C, Gordeev MF, Liu J, Chen X (2015) Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab Dipos 43:646–659. doi: 10.1124/dmd.114.061747CrossRefGoogle Scholar
  87. 87.
    Lawrence L, Danese P, DeVito J, Franceschi F, Sutcliffe J (2008) In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother 52:1653–1662. doi: 10.1128/AAC.01383-07CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Skripkin E, McConnell ES, DeVito J, Lawrence L, Ippolito JA, Duffy EM, Sutcliffe J, Franceschi F (2008) Rx-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance. Antimicrob Agents Chemother 52:3550–3557. doi: 10.1128/AAC.01193-07CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Gordeev MF, Hackbarth C, Barbachyn MR, Banitt LS, Gage JR, Luehr GW, Gomez M, Trias J, Morin SE, Zurenko GE, Parker CN, Evans JM, White PJ, Patel DV (2003) Novel oxazolidinone-quinolone hybrid antibacterials. Bioorg Med Chem Lett 13:4213–4216. doi: 10.1016/j.bmcl.2003.07.021CrossRefPubMedGoogle Scholar
  90. 90.
    Hubschwerlen C, Specklin J-L, Sigwalt C, Schroeder S, Locher HH (2003) Design, synthesis and biological evaluation of oxazolidinone-quinolone hybrids. Bioorg Med Chem 11:2313–2319. doi: 10.1016/S0968-0896(03)00083-XCrossRefPubMedGoogle Scholar
  91. 91.
    Locher HH, Seller P, Chen X, Schroeder S, Pfaff P, Enderlin M, Klenk A, Fournier E, Hubschwerlen C, Ritz R, Kelly CP, Keck W (2014) In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob Agents Chemother 58:892–900. doi: 10.1128/AAC.01830-13CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Louie T, Nord CE, Talbot GH, Wilcox M, Gerding DM, Buitrago M, Kracker H, Charef P, Comely OA (2015) A multicenter, double-blind, randomized, phase 2 study evaluating the novel antibiotic, cadazolid, in patients with Clostridium difficile infection. Antimicrob Agents Chemother 59:6266–6273. doi: 10.1128/AAC.00504-15CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gerding DN, Hecht DW, Louie T, Nord CE, Talbot GH, Comely OA, Buitrago M, Best E, Sambol S, Osmolski JR, Kracker H, Locher HH, Charef P, Wilcox M (2016) Susceptibility of Clostridium difficile isolates from a phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection. J Antimicrob Chemother 71:213–219. doi: 10.1093/jac/dkv300CrossRefPubMedGoogle Scholar
  94. 94.
    Suzuki H, Utsunomiya I, Shudo K, Fujimura T, Tsuji M, Kato I, Aoki T, Ino A, Iwaki T (2013) ACS Med Chem Lett 4:1074–1078. doi: 10.1021/ml400280zCrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Seetharamsingh B, Ramesh R, Dange SS, Khairnar PV, Singhal S, Upadhyay D, Veeraraghavan S, Viswanadha S, Vakkalanka S, Reddy DS (2015) Design, synthesis, and identification of silicon incorporated oxazolidinone antibiotics with improved brain exposure. ACS Med Chem Lett 6:1105–1110. doi: 10.1021/acsmedchemlett.5b00213CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Barman TK, Kumar M, Mathur T, Chaira T, Ramkumar G, Kalia V, Rao M, Pandya M, Yadav AS, Das B, Upadhyay DJ, Hamidullah KR, Raj S, Singh H (2016) In vitro and in vivo activities of a bi-aryl oxazolidinone RBx 11760 against gram positive bacteria. Antimicrob Agents Chemother 60:7134–7145. doi: 10.1128/AAC.00453-16CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Barbachyn MR, Brickner SJ, Hutchinson DK (1996) Spirocyclic and bicyclic diazinyl and carbazinyl oxazolidinones. WO 9635691Google Scholar
  98. 98.
    Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Muller K (2010) Oxetanes in drug discovery: structural and synthetic insights. J Med Chem 53:3227–3246. doi: 10.1021/jm9018788CrossRefPubMedGoogle Scholar
  99. 99.
    Gadekar PK, Roychowdhury A, Kharkar PS, Khedkar VM, Arkile M, Manek H, Sarkar D, Sharma R, Vijayakumar V, Sarveswari S (2016) Design, synthesis and biological evaluation of novel azaspiro analogs of linezolid as antibacterial and antitubercular agents. Eur J Med Chem 122:475–487. doi: 10.1016/j.ejmech.2016.07.001CrossRefPubMedGoogle Scholar
  100. 100.
    Kaushik A, Heuer AM, Bell DT, Culhane JC, Ebner DC, Parrish N, Ippoliti JT, Lamichhane G (2016) An evolved oxazolidinone with selective potency against Mycobacterium tuberculosis and gram-positive bacteria. Bioorg Med Chem Lett 26:3572–3576. doi: 10.1016/j.bmcl.2016.019CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Nikaido H, Rosenberg EY (1990) Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols: study with 1-lactam antibiotics containing catechol and analogous groups. J Bacteriol 172:1361–1367CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Phillips OA, D’Silva R, Bahta TO, Sharaf LH, Udo EE, Benov L, Walters DE (2015) Synthesis and biological evaluation of novel 5-(hydroxamic acid) methyl oxazolidinone derivatives. Eur J Med Chem 106:120–131. doi: 10.1016/j.ejmech.2015.10.025CrossRefPubMedGoogle Scholar
  103. 103.
    Chen Y, Ruan Z-X, Wang F, Huangfu D-S, Sun P-H, Lin J, Chen W-M (2015) Novel oxazolidinone antibacterial analogues with a substituted ligustrazine C-ring unit. Chem Biol Drug Des 86:682–690. doi: 10.1111/cbdd.12537CrossRefPubMedGoogle Scholar
  104. 104.
    Takrouri K, Cooper HD, Spaulding A, Zucchi P, Koleva B, Cleary DC, Tear W, Beuning PJ, Hirsch EB, Aggen JB (2016) Progress against Escherichia coli with the oxazolidinone class of antibacterials: test case for a general approach to improving whole-cell Gram-negative activity. ACS Infect Dis 2:405–426. doi: 10.1021/acsinfecdis.6b00003CrossRefPubMedGoogle Scholar
  105. 105.
    McCarthy JR (2015) A convenient synthesis of the antibacterial agent linezolid. Tetrahedron Lett 56:6846–6847. doi: 10.1016/j.tetlet.2015.10.082CrossRefGoogle Scholar
  106. 106.
    Mahy W, Leitch JA, Frost CG (2016) Copper catalyzed assembly of N-aryloxazolidinones: synthesis of linezolid, tedizolid and rivaroxaban. Eur J Org Chem 2016:1305–1313. doi: 10.1002/ejoc.201600033CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryCalvin CollegeGrand RapidsUSA

Personalised recommendations