pp 1-18 | Cite as

Biased Agonist Pharmacochaperones: Small Molecules in the Toolbox for Selectively Modulating GPCR Activity

  • Bernard MouillacEmail author
  • Christiane Mendre
Part of the Topics in Medicinal Chemistry book series


In recent years, biased agonists as well as pharmacological chaperones have demonstrated the potential to harness G protein-coupled receptor signaling and trafficking and have collectively opened new possibilities in G protein-coupled receptor drug discovery. Combining pharmacological chaperoning and biased agonism properties into a unique given molecule would be of high therapeutic interest in many human diseases resulting from G protein-coupled receptor mutation and misfolding. This strategy perfectly applies to congenital nephrogenic diabetes insipidus which is a typical conformational disease. In most of the cases, it is associated with inactivating mutations of the renal arginine vasopressin V2 receptor leading to misfolding and intracellular retention of the receptor, causing the inability of patients to concentrate their urine in response to the antidiuretic hormone. Cell-permeable pharmacological chaperones have been successfully challenged to restore plasma membrane localization of the receptor mutants and to rescue their function. Interestingly, different classes of specific ligands such as antagonists, agonists, as well as biased agonists of the V2 receptor have proven their usefulness as efficient pharmacological chaperones. These compounds, and particularly small-molecule-biased agonists which only trigger the V2-induced Gs protein-dependent signaling pathway, represent a potential therapeutic treatment of this X-linked genetic pathology.


Antidiuretic hormone Biased agonist Congenital nephrogenic diabetes insipidus Pharmacological chaperone Therapeutic rescue Tolvaptan V2 vasopressin receptor Vaptans 







Arginine vasopressin


Cyclic adenosine monophosphate


Congenital nephrogenic diabetes insipidus


Endoplasmic reticulum


US food and drug administration


Gonadotropin-releasing hormone receptor


G protein-coupled receptor


G protein subunit αs


Lysosomal storage disorder


Nuclear magnetic resonance




Pharmacological chaperone, pharmacochaperone, pharmacoperone


Pharmacological chaperone therapy




Vasopressin type 2 receptor


  1. 1.
    Galandrin S, Oligny-Longpré G, Bouvier M (2007) The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 28(8):423–430CrossRefPubMedGoogle Scholar
  2. 2.
    Lutrell LM (2014) More than just a hammer: ligand “bias” and pharmaceutical discovery. Mol Endocrinol 28(3):281–294CrossRefGoogle Scholar
  3. 3.
    Luttrell LM, Maudsley S, Bohn LM (2015) Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol Pharmacol 88(3):579–588CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reiter E, Ahn S, Shukla AK, et al (2012) Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197CrossRefPubMedGoogle Scholar
  5. 5.
    Laugwitz KL, Allgeier A, Offermanns S, et al (1996) The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A 93(1):116–120ADSCrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Offermanns S, Wieland T, Homann D, et al (1994) Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. Mol Pharmacol 45(5):890–898PubMedGoogle Scholar
  7. 7.
    Holloway AC, Qian H, Pipolo L, et al (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61(4):768–777CrossRefPubMedGoogle Scholar
  8. 8.
    Sagan S, Chassaing G, Pradier L, et al (1996) Tachykinin peptides affect differently the second messenger pathways after binding to CHO-expressed human NK-1 receptors. J Pharmacol Exp Ther 276(3):1039–1048PubMedGoogle Scholar
  9. 9.
    Takasu H, Gardella TJ, Luck MD, et al (1999) Amino-terminal modifications of human parathyroid hormone (PTH) selectively alter phospholipase C signaling via the type 1 PTH receptor: implications for design of signal-specific PTH ligands. Biochemistry 38(41):13453–13460CrossRefPubMedGoogle Scholar
  10. 10.
    Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24MathSciNetPubMedGoogle Scholar
  11. 11.
    Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shenoy S, Lefkowitz RJ (2011) β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62(2):305–330CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carter AA, Hill SJ (2005) Characterization of isoprenaline- and salmeterol-stimulated interactions between beta2-adrenoceptors and beta-arrestin 2 using beta-galactosidase complementation in C2C12 cells. J Pharmacol Exp Ther 315(2):839–848CrossRefPubMedGoogle Scholar
  15. 15.
    Wisler JW, DeWire SM, Whalen EJ, et al (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 104(42):16657–16662ADSCrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen X, Sassano MF, Zheng L, et al (2012) Structure-functional selectivity relationship studies of β-arrestin-biased dopamine D2 receptor agonists. J Med Chem 55(16):7141–7153CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Thurmond RL, Desai PJ, Dunford PJ, et al (2004) A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J Pharmacol Exp Ther 309(1):404–413CrossRefPubMedGoogle Scholar
  18. 18.
    Semple G, Skinner PJ, Gharbaoui T, et al (2008) 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (MK-0354): a partial agonist of the nicotinic acid receptor, G-protein coupled receptor 109a, with antilipolytic but no vasodilatory activity in mice. J Med Chem 51(16):5101–5108CrossRefPubMedGoogle Scholar
  19. 19.
    Groer CE, Tidgewell K, Moyer RA, et al (2007) An opioid agonist that does not induce mu-opioid receptor-arrestin interactions or receptor internalization. Mol Pharmacol 71(2):549–557CrossRefPubMedGoogle Scholar
  20. 20.
    Violin JD, DeWire SM, Yamashita D, et al (2010) Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J Pharmacol Exp Ther 335(3):572–579CrossRefPubMedGoogle Scholar
  21. 21.
    Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273(7):1331–1349CrossRefPubMedGoogle Scholar
  22. 22.
    Cohen FE, Kelly LW (2003) Therapeutic approaches to protein-misfolding diseases. Nature 426(6968):905–909ADSCrossRefPubMedGoogle Scholar
  23. 23.
    Sato S, Ward CL, Krouse ME, et al (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271(2):635–638CrossRefPubMedGoogle Scholar
  24. 24.
    Loo TW, Clarke DM (1997) Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J Biol Chem 272(2):709–712CrossRefPubMedGoogle Scholar
  25. 25.
    Morello JP, Salahpour A, Laperrière A, et al (2000) Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J Clin Invest 105(7):887–895CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Morello JP, Petäjä-Repo UE, Bichet DG, et al (2000) Pharmacological chaperones: a new twist on receptor folding. Trends Pharmacol Sci 21(12):466–469CrossRefPubMedGoogle Scholar
  27. 27.
    Bernier V, Bichet DG, Bouvier M (2004) Pharmacological chaperone action on G protein-coupled receptors. Curr Opin Pharmacol 4(5):528–533CrossRefPubMedGoogle Scholar
  28. 28.
    Bernier V, Morello JP, Zarruk A, et al (2006) Pharmacologic chaperones as a potential treatment for X-linked nephrogenic diabetes insipidus. J Am Soc Nephrol 17(1):233–243Google Scholar
  29. 29.
    Conn PM, Ulloa-Aguirre A (2010) Trafficking of G protein-coupled receptors to the plasma membrane: insights from pharmacoperone drugs. Trends Endocrinol Metab 21(3):190–197CrossRefPubMedGoogle Scholar
  30. 30.
    Conn PM, Smithson DC, Hodder PS, et al (2014) Transitioning pharmacoperones to therapeutic use: in vivo proof-of-principle and design of high throughput screens. Pharmacol Res 83:38–51CrossRefPubMedGoogle Scholar
  31. 31.
    Leidenheimer NJ, Ryder KG (2014) Pharmacological chaperoning: a primer on mechanism and pharmacology. Pharmacol Res 83:10–19CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Karageorgos LE, Isaac EL, Brooks DA, et al (1997) Lysosomal biogenesis in lysosomal storage disorders. Exp Cell Res 234(1):85–97CrossRefPubMedGoogle Scholar
  33. 33.
    Parkinson-Lawrence EJ, Shandala T, Prodoehl M, et al (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 25(2):102–115CrossRefGoogle Scholar
  34. 34.
    Parenti G, Andria G, Valenzano KJ (2015) Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther 23(7):1138–1148CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brady RO (2006) Enzyme replacement for lysosomal diseases. Annu Rev Med 57:283–296CrossRefPubMedGoogle Scholar
  36. 36.
    Platt FM, Jeyakumar M (2008) Substrate reduction therapy. Acta Paediatr 97(457):88–93CrossRefPubMedGoogle Scholar
  37. 37.
    Germain DP, Giugliani R, Hughes DA, et al (2012) Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis 7:91CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zimran A, Altarescu G, Elstein D (2013) Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease. Blood Cells Mol Dis 50(2):134–137CrossRefPubMedGoogle Scholar
  39. 39.
    Germain DP, Hughes DA, Nicholls K, et al (2016) Treatment of Fabry’s disease with the pharmacologic chaperone Migalastat. N Engl J Med 375(6):545–555CrossRefPubMedGoogle Scholar
  40. 40.
    Conn PM, Ulloa-Aguirre A (2011) Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. Adv Pharmacol 62:109–141CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Conn PM, Ulloa-Aguire A, Ito J, et al (2007) G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 59(3):225–250CrossRefPubMedGoogle Scholar
  42. 42.
    Janovick JA, Maya-Nunez G, Conn PM (2002) Rescue of hypogonadotropic hypogonadism-causing and manufactured GnRH receptor mutants by a specific protein-folding template: misrouted proteins as a novel disease etiology and therapeutic target. J Clin Endocrinol Metab 87(7):3255–3262CrossRefPubMedGoogle Scholar
  43. 43.
    Janovick JA, Stewart MD, Jacob D, et al (2013) Restoration of testis function in hypogonadotropic hypogonadal mice harboring a misfolded GnRHR mutant by pharmacoperone drug therapy. Proc Natl Acad Sci U S A 110(52):21030–21035ADSCrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jean-Alphonse F, Perkovska S, Frantz MC, et al (2009) Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 20(10):2190–2203CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    White E, McKenna J, Cavanaugh A, et al (2009) Pharmacochaperone-mediated rescue of calcium-sensing receptor loss-of-function mutants. Mol Endocrinol 23(7):1115–1123CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Janovick JA, Maya-Nunez G, Ullo-Aguire A, et al (2009) Increased plasma membrane expression of human follicle-stimulating hormone receptor by a small molecule thienopyr(im)idine. Mol Cell Endocrinol 298(1–2):84–88CrossRefPubMedGoogle Scholar
  47. 47.
    Newton CL, Whay AM, McArdle CA, et al (2011) Rescue of expression and signaling of human luteinizing hormone G protein-coupled receptor mutants with an allosterically binding small-molecule agonist. Proc Natl Acad Sci U S A 108(17):7172–7176ADSCrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Aronson D, Verbalis JG, Mueller M, et al (2011) Short- and long-term treatment of dilutional hyponatraemia with satavaptan, a selective arginine-vasopressin V2 receptor antagonist: the DILIPO study. Eur J Heart Fail 13(3):327–336CrossRefPubMedGoogle Scholar
  49. 49.
    Feinstein TN, Yui N, Webber MJ, et al (2013) Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J Biol Chem 288(39):27849–27860CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Moeller HB, Rittig S, Fenton RA (2013) Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 34(2):278–301CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Treschan TA, Peters J (2006) The vasopressin system. Anesthesiology 105(3):599–612CrossRefPubMedGoogle Scholar
  52. 52.
    Morello JP, Bichet DG (2001) Nephrogenic diabetes insipidus. Annu Rev Physiol 63:607–630CrossRefPubMedGoogle Scholar
  53. 53.
    Bichet DG, Birnbaumer M, Lonergan M, et al (1994) Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am J Hum Genet 55(2):278–286PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tsukagushi H, Matsubara H, Taketani S, et al (1995) Binding, intracellular transport and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus. J Clin Invest 96(4):2043–2050CrossRefGoogle Scholar
  55. 55.
    Ala Y, Morin D, Mouillac B, et al (1998) Functional studies of twelve mutant V2 vasopressin receptors related to nephrogenic diabetes insipidus: molecular basis of a mild clinical phenotype. J Am Soc Nephrol 9(10):1861–1872PubMedGoogle Scholar
  56. 56.
    Bockenhauer D, Bichet DG (2014) Urinary concentration: different ways to open and close the tap. Pediatr Nephrol 29(8):1297–1303CrossRefPubMedGoogle Scholar
  57. 57.
    Birnbaumer M, Seibold A, Gilbert S, et al (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357(6376):333–335ADSCrossRefPubMedGoogle Scholar
  58. 58.
    Lolait SJ, Carroll AM, McBride OW, et al (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357(6376):526–529CrossRefGoogle Scholar
  59. 59.
    Rosenthal W, Seibold A, Antaramian A, et al (1992) Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359(6392):233–235ADSCrossRefPubMedGoogle Scholar
  60. 60.
    Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101(10):2257–2267CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Serradeil-Le Gal C, Lacour C, Valette G, et al (1996) Characterization of SR 121463A, a highly potent and selective, orally active vasopressin V2 receptor antagonist. J Clin Invest 98(12):2729–2738CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bockenhauer D, Carpentier E, Rochdi D, et al (2010) Vasopressin type 2 receptor V88M mutation: molecular basis of partial and complete nephrogenic diabetes insipidus. Nephron Physiol 114(1):1–10CrossRefGoogle Scholar
  63. 63.
    Janovick JA, Park BS, Conn PM (2011) Therapeutic rescue of misfolded mutants: validation of primary high throughput screens for identification of pharmacoperone drugs. PLoS One 6(7):e22784ADSCrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tan CM, Nickols HH, Limbird LE (2003) Appropriate polarization following pharmacological rescue of V2 vasopressin receptors encoded by X-linked nephrogenic diabetes insipidus alleles involves a conformation of the receptor that also attains mature glycosylation. J Biol Chem 278(37):35678–35686CrossRefPubMedGoogle Scholar
  65. 65.
    Wüller S, Wiesner B, Loffler A, et al (2004) Pharmacochaperones post-translationally enhance cell surface expression by increasing conformational stability of wild-type and mutant vasopressin V2 receptors. J Biol Chem 279(45):47254–47263CrossRefPubMedGoogle Scholar
  66. 66.
    Bernier V, Lagacé M, Lonergan M, et al (2004) Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059. Mol Endocrinol 18(8):2074–2084CrossRefPubMedGoogle Scholar
  67. 67.
    Robben JH, Sze M, Knoers NV, et al (2007) Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 292(1):F253–F260CrossRefPubMedGoogle Scholar
  68. 68.
    Robben JH, Sze M, Knoers NV, et al (2006) Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism. Mol Biol Cell 17(1):379–386CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Robben JH, Kortenoeven MLA, Sze M, et al (2009) Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc Natl Acad Sci U S A 106(29):12195–12200ADSCrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Auzan RJ, Ventura MA, Clauser E (2005) Mechanisms of cell-surface rerouting of an endoplasmic reticulum-retained mutant of the vasopressin V1b/V3 receptor by a pharmacological chaperone. J Biol Chem 280(51):42198–42206CrossRefPubMedGoogle Scholar
  71. 71.
    Hawtin SR (2006) Pharmacological chaperone activity of SR49059 to functionally recover misfolded mutations of the vasopressin V1a receptor. J Biol Chem 281(21):14604–14614CrossRefPubMedGoogle Scholar
  72. 72.
    Mendre C, Mouillac B (2010) Pharmacological chaperones: a potential therapeutic treatment for conformational diseases. Med Sci (Paris) 26(6–7):627–635CrossRefGoogle Scholar
  73. 73.
    Los EL, Deen PMT, Robben JH (2010) Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 22(5):393–399CrossRefPubMedGoogle Scholar
  74. 74.
    Wesche D, Deen PMT, Knoers NV (2012) Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol 27(12):2183–2204CrossRefPubMedGoogle Scholar
  75. 75.
    Schrier RW, Gross P, Gheorghiade M (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355(20):2099–2112CrossRefPubMedGoogle Scholar
  76. 76.
    Mouillac B, Mendre C (2014) Vasopressin receptors and pharmacological chaperones: from functional rescue to promising therapeutic strategies. Pharmacol Res 83:74–78CrossRefPubMedGoogle Scholar
  77. 77.
    Rahmeh R, Damian M, Cottet M, et al (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci U S A 109(17):6733–6738ADSCrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Mary S, Damian M, Louet M, et al (2012) Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc Natl Acad Sci U S A 109(21):8304–8309ADSCrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Liu JJ, Horst R, Katritch V, et al (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335(6072):1106–1110ADSCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de MontpellierMontpellierFrance

Personalised recommendations