Antibiotic Adjuvants

  • Roberta J. Melander
  • Christian MelanderEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 25)


Bacteria are becoming increasingly resistant to currently available antibiotics, and the development of new antibiotics is not keeping pace. Alternative approaches to combatting drug-resistant bacteria are sorely needed. One such approach is the development of small-molecule antibiotic adjuvants. Adjuvants that thwart resistance mechanisms and render bacteria susceptible to antibiotics have the potential to prolong the life span and also to extend the spectrum of our current armamentarium of drugs. Several approaches to the development of potential adjuvant therapeutics have been investigated, based upon combatting various resistance mechanisms, and have identified promising adjuvant classes. These classes include adjuvants that inhibit modification or degradation of the antibiotic by enzymes (such as β-lactamases or the aminoglycoside-modifying enzymes), adjuvants that increase the intracellular concentration of the antibiotic by inhibiting efflux or facilitating antibiotic uptake, adjuvants that interfere with bacterial signaling systems that drive or coordinate resistance mechanisms, and finally adjuvants that target nonessential steps in bacterial cell wall synthesis. The antibiotic adjuvant approach is a promising orthogonal strategy for the development of new antibiotics to combat drug-resistant bacteria.


Adjuvant Antibiotic-modifying enzymes Antibiotics Efflux Multidrug-resistant bacteria 


  1. 1.
    Wright GD (2016) Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 24:862–871. doi: 10.1016/j.tim.2016.06.009CrossRefPubMedGoogle Scholar
  2. 2.
    Dolgin E (2010) Sequencing of superbugs seen as key to combating their spread. Nat Med 16:1054–1054. doi: 10.1038/Nm1010-1054aCrossRefPubMedGoogle Scholar
  3. 3.
    Lewis II JS, Owens A, Cadena J, Sabol K, Patterson JE, Jorgensen JH (2005) Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother 49:1664–1665. doi: 10.1128/AAC.49.4.1664-1665.2005CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP (2001) Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357:1179. doi: 10.1016/S0140-6736(00)04376-2CrossRefPubMedGoogle Scholar
  5. 5.
    Pawlowski AC, Johnson JW, Wright GD (2016) Evolving medicinal chemistry strategies in antibiotic discovery. Curr Opin Biotechnol 42:108–117. doi: 10.1016/j.copbio.2016.04.006CrossRefPubMedGoogle Scholar
  6. 6.
    Gill EE, Franco OL, Hancock REW (2015) Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 85:56–78. doi: 10.1111/cbdd.12478CrossRefPubMedGoogle Scholar
  7. 7.
    Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9:222–231. doi: 10.1038/nchembio.1205CrossRefPubMedGoogle Scholar
  8. 8.
    Rodriguez de Evgrafov M, Gumpert H, Munck C, Thomsen TT, Sommer MO (2015) Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol Biol Evol 32:1175–1185. doi: 10.1093/molbev/msv006CrossRefPubMedGoogle Scholar
  9. 9.
    Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781. doi: 10.1038/35021219CrossRefPubMedGoogle Scholar
  10. 10.
    Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Delivery Rev 57:1451–1470. doi: 10.1016/j.addr.2005.04.002CrossRefGoogle Scholar
  11. 11.
    Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updates 13:151–171. doi: 10.1016/j.drup.2010.08.003CrossRefGoogle Scholar
  12. 12.
    Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W (2011) Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Lett 585:1061–1066. doi: 10.1016/j.febslet.2011.03.012CrossRefPubMedGoogle Scholar
  13. 13.
    Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J (2010) β-Lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28:596–604. doi: 10.1016/j.tibtech.2010.09.004CrossRefPubMedGoogle Scholar
  14. 14.
    Drawz SM, Papp-Wallace KM, Bonomo RA (2014) New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 58:1835–1846. doi: 10.1128/AAC.00826-13CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Papp-Wallace KM, Bonomo RA (2016) New β-lactamase inhibitors in the clinic. Infect Dis Clin North Am 30:441–464. doi: 10.1016/j.idc.2016.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23:160–201. doi: 10.1128/CMR.00037-09CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bush K (2015) A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens. Int J Antimicrob Agents 46:483–493. doi: 10.1016/j.ijantimicag.2015.08.011CrossRefPubMedGoogle Scholar
  18. 18.
    Ball P (2007) The clinical development and launch of amoxicillin/clavulanate for the treatment of a range of community-acquired infections. Int J Antimicrob Agents 30(Suppl 2):S113–S117. doi: 10.1016/j.ijantimicag.2007.07.037CrossRefPubMedGoogle Scholar
  19. 19.
    Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70. doi: 10.1038/nrmicro727CrossRefPubMedGoogle Scholar
  20. 20.
    Shlaes DM (2013) New β-lactam-β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 1277:105–114. doi: 10.1111/nyas.12010CrossRefPubMedGoogle Scholar
  21. 21.
    Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL (2012) Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc Natl Acad Sci U S A 109(29):11663–11668. doi: 10.1073/pnas.1205073109CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Levasseur P, Girard AM, Miossec C, Pace J, Coleman K (2015) In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacteriaceae, including strains with well-characterized β-lactamases. Antimicrob Agents Chemother 59:1931–1934. doi: 10.1128/AAC.04218-14CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Klibanov OM, Phan D, Ferguson K (2015) Drug updates and approvals: 2015 in review. Nurse Pract 40:34–43. doi: 10.1097/01.NPR.0000473071.26873.3cCrossRefPubMedGoogle Scholar
  24. 24.
    Petersen PJ, Jones CH, Venkatesan AM, Bradford PA (2009) Efficacy of piperacillin combined with the penem β-lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob Agents Chemother 53:1698–1700. doi: 10.1128/AAC.01549-08CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bassetti M, Ginocchio F, Mikulska M (2011) New treatment options against Gram-negative organisms. Crit Care 15:215. doi: 10.1186/cc9997CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Paukner S, Hesse L, Prezelj A, Solmajer T, Urleb U (2009) In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum β-lactamase inhibitor. Antimicrob Agents Chemother 53:505–511. doi: 10.1128/AAC.00085-08CrossRefPubMedGoogle Scholar
  27. 27.
    Livermore DM, Mushtaq S (2013) Activity of biapenem (RPX2003) combined with the boronate β-lactamase inhibitor RPX7009 against carbapenem-resistant Enterobacteriaceae. J Antimicrob Chemother 68:1825–1831. doi: 10.1093/jac/dkt118CrossRefPubMedGoogle Scholar
  28. 28.
    Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Quale J, Landman D (2015) Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against Gram-negative clinical isolates in New York City. Antimicrob Agents Chemother 59:4856–4860. doi: 10.1128/AAC.00843-15CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Griffith DC, Loutit JS, Morgan EE, Durso S, Dudley MN (2016) Phase 1 study of the safety, tolerability, and pharmacokinetics of the β-lactamase inhibitor vaborbactam (RPX7009) in healthy adult subjects. Antimicrob Agents Chemother 60:6326–6332. doi: 10.1128/AAC.00568-16CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    van Duin D, Bonomo RA (2016) Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis 63:234–241. doi: 10.1093/cid/ciw243CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 18:306–325. doi: 10.1128/CMR.18.2.306-325.2005CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, Walsh TR, Coombes BK, Wright GD (2014) Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510:503–506. doi: 10.1038/nature13445CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cornaglia G, Giamarellou H, Rossolini GM (2011) Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 11(5):381–393. doi: 10.1016/S1473-3099(11)70056-1CrossRefPubMedGoogle Scholar
  34. 34.
    Nordmann P, Poirel L, Walsh TR, Livermore DM (2011) The emerging NDM carbapenemases. Trends Microbiol 19:588–595. doi: 10.1016/j.tim.2011.09.005CrossRefPubMedGoogle Scholar
  35. 35.
    Page MGP, Dantier C, Desarbre E, Gaucher B, Gebhardt K, Schmitt-Hoffmann A (2011) In vitro and in vivo properties of BAL30376, a β-lactam and dual β-lactamase inhibitor combination with enhanced activity against Gram-negative bacilli that express multiple β-lactamases. Antimicrob Agents Chemother 55:1510–1519. doi: 10.1128/AAC.01370-10CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hinchliffe P, Gonzalez MM, Mojica MF, Gonzalez JM, Castillo V, Saiz C, Kosmopoulou M, Tooke CL, Llarrull LI, Mahler G, Bonomo RA, Vila AJ, Spencer J (2016) Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A 113:E3745–E3754. doi: 10.1073/pnas.1601368113CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Labby KJ, Garneau-Tsodikova S (2013) Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 5(11):1285–1309. doi: 10.4155/fmc.13.80CrossRefPubMedGoogle Scholar
  38. 38.
    Gao F, Yan X, Shakya T, Baettig OM, Ait-Mohand-Brunet S, Berghuis AM, Wright GD, Auclair K (2006) Synthesis and SAR of truncated bisubstrate inhibitors of aminoglycoside 6'-N-acetyltransferases. J Med Chem 49:5273–5281. doi: 10.1021/jm060732nCrossRefPubMedGoogle Scholar
  39. 39.
    Lin DL, Tran T, Alam JY, Herron SR, Ramirez MS, Tolmasky ME (2014) Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib by zinc: reversal of amikacin resistance in Acinetobacter baumannii and Escherichia coli by a zinc ionophore. Antimicrob Agents Chemother 58:4238–4241. doi: 10.1128/Aac.00129-14CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li Y, Green KD, Johnson BR, Garneau-Tsodikova S (2015) Inhibition of aminoglycoside acetyltransferase resistance enzymes by metal salts. Antimicrob Agents Chemother 59:4148–4156. doi: 10.1128/AAC.00885-15CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chiem K, Fuentes BA, Lin DL, Tran T, Jackson A, Ramirez MS, Tolmasky ME (2015) Inhibition of aminoglycoside 6'-N-acetyltransferase Type Ib-mediated amikacin resistance in Klebsiella pneumoniae by zinc and copper pyrithione. Antimicrob Agents Chemother 59:5851–5853. doi: 10.1128/Aac.01106-15CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shakya T, Stogios PJ, Waglechner N, Evdokimova E, Ejim L, Blanchard JE, McArthur AG, Savchenko A, Wright GD (2011) A small molecule discrimination map of the antibiotic resistance kinome. Chem Biol 18:1591–1601. doi: 10.1016/j.chembiol.2011.10.018CrossRefPubMedGoogle Scholar
  43. 43.
    Suga T, Ishii T, Iwatsuki M, Yamamoto T, Nonaka K, Masuma R, Matsui H, Hanaki H, Omura S, Shiomi K (2012) Aranorosin circumvents arbekacin-resistance in MRSA by inhibiting the bifunctional enzyme AAC(6′)/APH(2″). J Antibiot 65:527–529. doi: 10.1038/ja.2012.53CrossRefPubMedGoogle Scholar
  44. 44.
    Hernick M (2013) Mycothiol: a target for potentiation of rifampin and other antibiotics against Mycobacterium tuberculosis. Expert Rev Anti-Infect Ther 11:49–67. doi: 10.1586/Eri.12.152CrossRefPubMedGoogle Scholar
  45. 45.
    Gutierrez-Lugo MT, Baker H, Shiloach J, Boshoff H, Bewley CA (2009) Dequalinium, a new inhibitor of Mycobacterium tuberculosis mycothiol ligase identified by high-throughput screening. J Biomol Screen 14:643–652. doi: 10.1177/1087057109335743CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ramon-Garcia S, Ng C, Anderson H, Chao JD, Zheng XJ, Pfeifer T, Av-Gay Y, Roberge M, Thompson CJ (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother 55:3861–3869. doi: 10.1128/Aac.00474-11CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pieren M, Tigges M (2012) Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance. Curr Opin Pharmacol 12:551–555. doi: 10.1016/j.coph.2012.07.005CrossRefPubMedGoogle Scholar
  48. 48.
    Maravic G (2004) Macrolide resistance based on the Erm-mediated rRNA methylation. Curr Drug Targets Infect Disord 4:193–202. doi: 10.2174/1568005043340777CrossRefPubMedGoogle Scholar
  49. 49.
    Clancy J, Schmieder BJ, Petitpas JW, Manousos M, Williams JA, Faiella JA, Girard AE, McGuirk PR (1995) Assays to detect and characterize synthetic agents that inhibit the ErmC methyltransferase. J Antibiot (Tokyo) 48:1273–1279. doi: 10.7164/antibiotics.48.1273CrossRefGoogle Scholar
  50. 50.
    Feder M, Purta E, Koscinski L, Cubrilo S, Maravic Vlahovicek G, Bujnicki JM (2008) Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics. ChemMedChem 3:316–322. doi: 10.1002/cmdc.200700201CrossRefPubMedGoogle Scholar
  51. 51.
    Webber MA, Piddock LJV (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11. doi: 10.1093/jac/dkg050CrossRefPubMedGoogle Scholar
  52. 52.
    Li XZ, Plesiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi: 10.1128/CMR.00117-14CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jang S (2016) Multidrug efflux pumps in Staphylococcus aureus and their clinical implications. J Microbiol 54:1–8. doi: 10.1007/s12275-016-5159-zCrossRefPubMedGoogle Scholar
  54. 54.
    Abreu AC, McBain AJ, Simoes M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021. doi: 10.1039/c2np20035jCrossRefPubMedGoogle Scholar
  55. 55.
    Markham PN, Westhaus E, Klyachko K, Johnson ME, Neyfakh AA (1999) Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob Agents Chemother 43:2404–2408PubMedPubMedCentralGoogle Scholar
  56. 56.
    Markham PN, Neyfakh AA (1996) Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 40:2673–2674PubMedPubMedCentralGoogle Scholar
  57. 57.
    Fujita M, Shiota S, Kuroda T, Hatano T, Yoshida T, Mizushima T, Tsuchiya T (2005) Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 49:391–396CrossRefPubMedGoogle Scholar
  58. 58.
    Kalle AM, Rizvi A (2011) Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob Agents Chemother 55:439–442. doi: 10.1128/AAC.00735-10CrossRefPubMedGoogle Scholar
  59. 59.
    Sabatini S, Gosetto F, Serritella S, Manfroni G, Tabarrini O, Iraci N, Brincat JP, Carosati E, Villarini M, Kaatz GW, Cecchetti V (2012) Pyrazolo[4,3-c][1,2]benzothiazines-5,5-dioxide: a promising new class of Staphylococcus aureus NorA efflux pump inhibitors. J Med Chem 55:3568–3572. doi: 10.1021/jm201446hCrossRefPubMedGoogle Scholar
  60. 60.
    Lepri S, Buonerba F, Goracci L, Velilla I, Ruzziconi R, Schindler BD, Seo SM, Kaatz GW, Cruciani G (2016) Indole-based weapons to fight antibiotic resistance: a SAR study. J Med Chem 59:867–891. doi: 10.1021/acs.jmedchem.5b01219CrossRefPubMedGoogle Scholar
  61. 61.
    Kaatz GW, Moudgal VV, Seo SM, Kristiansen JE (2003) Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob Agents Chmother 47:719–726. doi: 10.1128/Aac.47.2.719-726.2003CrossRefGoogle Scholar
  62. 62.
    Mirza ZM, Kumar A, Kalia NP, Zargar A, Khan IA (2011) Piperine as an inhibitor of the MdeA efflux pump of Staphylococcus aureus. J Med Microbiol 60:1472–1478. doi: 10.1099/jmm.0.033167-0CrossRefPubMedGoogle Scholar
  63. 63.
    Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee VJ (2001) Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116. doi: 10.1128/AAC.45.1.105-116.2001CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pages JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794:826–833. doi: 10.1016/j.bbapap.2008.12.011CrossRefPubMedGoogle Scholar
  65. 65.
    Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem Pharmacol 71:910–918. doi: 10.1016/j.bcp.2005.12.008CrossRefPubMedGoogle Scholar
  66. 66.
    Chalhoub H, Saenz Y, Rodriguez-Villalobos H, Denis O, Kahl BC, Tulkens PM, Van Bambeke F (2016) High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. Int J Antimicrob Agents 48:740–743. doi: 10.1016/j.ijantimicag.2016.09.012CrossRefPubMedGoogle Scholar
  67. 67.
    Bohnert JA, Schuster S, Kern WV, Karcz T, Olejarz A, Kaczor A, Handzlik J, Kiec-Kononowicz K (2016) Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined real-time influx and efflux assay. Antimicrob Agents Chemother 60:1974–1983. doi: 10.1128/Aac.01995-15CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lawler AJ, Ricci V, Busby SJW, Piddock LJV (2013) Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557. doi: 10.1093/jac/dkt069CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bailey AM, Paulsen IT, Piddock LJV (2008) RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52:3604–3611. doi: 10.1128/AAC.00661-08CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kinana AD, Vargiu AV, May T, Nikaido H (2016) Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump. Proc Natl Acad Sci U S A 113:1405–1410. doi: 10.1073/pnas.1525143113CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Saw HT, Webber MA, Mushtaq S, Woodford N, Piddock LJV (2016) Inactivation or inhibition of AcrAB-TolC increases resistance of carbapenemase-producing Enterobacteriaceae to carbapenems. J Antimicrob Chemother 71:1510–1519. doi: 10.1093/jac/dkw028CrossRefPubMedGoogle Scholar
  72. 72.
    Piddock LJV, Garvey MI, Rahman MM, Gibbons S (2010) Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J Antimicrob Chemother 65:1215–1223. doi: 10.1093/jac/dkq079CrossRefPubMedGoogle Scholar
  73. 73.
    Handzlik J, Szymanska E, Chevalier J, Otrgbska E, Kiec-Kononowicz K, Pages JM, Alibert S (2011) Amine-alkyl derivatives of hydantoin: new tool to combat resistant bacteria. Eur J Med Chem 46:5807–5816. doi: 10.1016/j.ejmech.2011.09.032CrossRefPubMedGoogle Scholar
  74. 74.
    Otrebska-Machaj E, Chevalier J, Handzlik J, Szymanska E, Schabikowski J, Boyer G, Bolla JM, Kiec-Kononowicz K, Pages JM, Alibert S (2016) Efflux pump blockers in Gram-negative bacteria: the new generation of hydantoin based-modulators to improve antibiotic activity. Front Microbiol 7:622. doi: 10.3389/fmicb.2016.00622CrossRefGoogle Scholar
  75. 75.
    Cox G, Koteva K, Wright GD (2014) An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. J Antimicrob Chemother 69:1844–1855. doi: 10.1093/jac/dku057CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Taylor PL, Rossi L, De Pascale G, Wright GD (2012) A forward chemical screen identifies antibiotic adjuvants in Escherichia coli. ACS Chem Biol 7:1547–1555. doi: 10.1021/cb300269gCrossRefPubMedGoogle Scholar
  77. 77.
    Mollmann U, Heinisch L, Bauernfeind A, Kohler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22:615–624. doi: 10.1007/s10534-009-9219-2CrossRefPubMedGoogle Scholar
  78. 78.
    Livermore DM (1990) Antibiotic uptake and transport by bacteria. Scand J Infect Dis Suppl 74:15–22. doi: 10.3109/inf.1990.22.suppl-74.01CrossRefPubMedGoogle Scholar
  79. 79.
    Lambert PA (2002) Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J Appl Microbiol 92(Suppl):46S–54S. doi: 10.1046/j.1365-2672.92.5s1.7.xCrossRefPubMedGoogle Scholar
  80. 80.
    Zabawa TP, Pucci MJ, Parr Jr TR, Lister T (2016) Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 33:7–12. doi: 10.1016/j.mib.2016.05.005CrossRefPubMedGoogle Scholar
  81. 81.
    Viljanen P, Vaara M (1984) Susceptibility of Gram-negative bacteria to polymyxin-B nonapeptide. Antimicrob Agents Chemother 25:701–705. doi: 10.1128/AAC.25.6.701CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ofek I, Cohen S, Rahmani R, Kabha K, Tamarkin D, Herzig Y, Rubinstein E (1994) Antibacterial synergism of polymyxin-B nonapeptide and hydrophobic antibiotics in experimental Gram-negative infections in mice. Antimicrob Agents Chemother 38:374–377. doi: 10.1128/AAC.38.2.374CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Pages JM, Peslier S, Keating TA, Lavigne JP, Nichols WW (2016) Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother 60:1349–1359. doi: 10.1128/Aac.01585-15CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ejim L, Farha MA, Falconer SB, Wildenhain J, Coombes BK, Tyers M, Brown ED, Wright GD (2011) Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7:348–350. doi: 10.1038/nchembio.559CrossRefPubMedGoogle Scholar
  85. 85.
    Lamers RP, Cavallari JF, Burrows LL (2013) The efflux inhibitor phenylalanine-arginine β-naphthylamide (PAβN) permeabilizes the outer membrane of Gram-negative bacteria. PLoS One 8:e60666. doi: 10.1371/journal.pone.0060666CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657. doi: 10.1039/b906679aCrossRefPubMedGoogle Scholar
  87. 87.
    Boudreau MA, Fishovitz J, Llarrull LI, Xiao QB, Mobashery S (2015) Phosphorylation of BlaR1 in manifestation of antibiotic resistance in methicillin-resistant Staphylococcus aureus and its abrogation by small molecules. ACS Infect Dis 1(10):454–459. doi: 10.1021/acsinfecdis.5b00086CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010) Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol 13:232–239. doi: 10.1016/J.Mib.2010.01.008CrossRefPubMedGoogle Scholar
  89. 89.
    Mejean V (2016) Two-component regulatory systems: the moment of truth. Res Microbiol 167(1):1–3. doi: 10.1016/j.resmic.2015.09.004CrossRefPubMedGoogle Scholar
  90. 90.
    Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50:3424–3434. doi: 10.1128/Aac.00356-06CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Worthington RJ, Blackledge MS, Melander C (2013) Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 5:1265–1284. doi: 10.4155/fmc.13.58CrossRefPubMedGoogle Scholar
  92. 92.
    Boyle-Vavra S, Yin SH, Jo DS, Montgomery CP, Daum RS (2013) VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus. Antimicrob Agents Chemother 57:83–95. doi: 10.1128/Aac.01651-12CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Belcheva A, Golemi-Kotra D (2008) A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem 283:12354–12364. doi: 10.1074/jbc.M710010200CrossRefPubMedGoogle Scholar
  94. 94.
    Jo DS, Montgomery CP, Yin S, Boyle-Vavra S, Daum RS (2011) Improved oxacillin treatment outcomes in experimental skin and lung infection by a methicillin-resistant Staphylococcus aureus isolate with a vraSR operon deletion. Antimicrob Agents Chemother 55:2818–2823. doi: 10.1128/AAC.01704-10CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Matsuo M, Kato F, Oogai Y, Kawai T, Sugai M, Komatsuzawa H (2010) Distinct two-component systems in methicillin-resistant Staphylococcus aureus can change the susceptibility to antimicrobial agents. J Antimicrob Chemother 65:1536–1537. doi: 10.1093/jac/dkq141CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Rogers SA, Huigens RW, Cavanagh J, Melander C (2010) Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 54:2112–2118. doi: 10.1128/AAC.01418-09CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Su Z, Peng L, Worthington RJ, Melander C Evaluation of 4,5-disubstituted-2-aminoimidazole-triazole conjugates for antibiofilm/antibiotic resensitization activity against MRSA and Acinetobacter baumannii. ChemMedChem 6:2243–2251. doi: 10.1002/cmdc.201100316CrossRefPubMedGoogle Scholar
  98. 98.
    Su ZM, Peng LL, Melander C (2012) A modular approach to the synthesis of 1,4,5-substituted-2-aminoimidazoles. Tetrahedron Lett 53:1204–1206. doi: 10.1016/J.Tetlet.2011.12.090CrossRefGoogle Scholar
  99. 99.
    Yeagley AA, Su Z, McCullough KD, Worthington RJ, Melander C (2013) N-substituted 2-aminoimidazole inhibitors of MRSA biofilm formation accessed through direct 1,3-bis(tert-butoxycarbonyl)guanidine cyclization. Org Biomol Chem 11:130–137. doi: 10.1039/c2ob26469bCrossRefPubMedGoogle Scholar
  100. 100.
    Harris TL, Worthington RJ, Melander C (2012) Potent small-molecule suppression of oxacillin resistance in methicillin-resistant Staphylococcus aureus. Angew Chem Int Ed 51:11254–11257. doi: 10.1002/anie.201206911CrossRefGoogle Scholar
  101. 101.
    Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ (2008) Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother 62:1215–1221. doi: 10.1093/jac/dkn417CrossRefPubMedGoogle Scholar
  102. 102.
    Bonde M, Hojland DH, Kolmos HJ, Kallipolitis BH, Klitgaard JK (2011) Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 318:168–176. doi: 10.1111/j.1574-6968.2011.02255.xCrossRefPubMedGoogle Scholar
  103. 103.
    Poulsen MO, Jacobsen K, Thorsing M, Kristensen NR, Clasen J, Lillebaek EM, Skov MN, Kallipolitis BH, Kolmos HJ, Klitgaard JK (2013) Thioridazine potentiates the effect of a β-lactam antibiotic against Staphylococcus aureus independently of mecA expression. Res Microbiol 164:181–188. doi: 10.1016/j.resmic.2012.10.007CrossRefPubMedGoogle Scholar
  104. 104.
    Harris TL, Worthington RJ, Hittle LE, Zurawski DV, Ernst RK, Melander C (2014) Small molecule downregulation of PmrAB reverses Lipid A modification and breaks colistin resistance. ACS Chem Biol 9:122–127. doi: 10.1021/cb400490kCrossRefPubMedGoogle Scholar
  105. 105.
    Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55:3370–3379. doi: 10.1128/AAC.00079-11CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE (2011) The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 55:3743–3751. doi: 10.1128/AAC.00256-11CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Brackett CM, Furlani RE, Anderson RG, Krishnamurthy A, Melander RJ, Moskowitz SM, Ernst RK, Melander C (2016) Second generation modifiers of colistin resistance show enhanced activity and lower inherent toxicity. Tetrahedron 72:3549–3553. doi: 10.1016/j.tet.2015.09.019CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wilke KE, Francis S, Carlson EE (2015) Inactivation of multiple bacterial histidine kinases by targeting the ATP-binding domain. ACS Chem Biol 10:328–335. doi: 10.1021/cb5008019CrossRefPubMedGoogle Scholar
  109. 109.
    Boibessot T, Zschiedrich CP, Lebeau A, Benimelis D, Dunyach-Remy C, Lavigne JP, Szurmant H, Benfodda Z, Meffre P (2016) The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases. J Med Chem 59:8830–8847. doi: 10.1021/acs.jmedchem.6b00580CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR (2016) RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem Biol 23:381–391. doi: 10.1016/j.chembiol.2016.02.010CrossRefPubMedGoogle Scholar
  111. 111.
    Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Pereira-Leal JB, Ligoxygakis P, Pinho MG (2015) Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLoS Pathog 11:e1004891. doi: 10.1371/journal.ppat.1004891CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Campbell J, Singh AK, Santa Maria Jr JP, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6:106–116. doi: 10.1021/cb100269fCrossRefPubMedGoogle Scholar
  113. 113.
    Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, McGuinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol 20:272–284. doi: 10.1016/j.chembiol.2012.11.013CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Farha MA, Leung A, Sewell EW, D'Elia MA, Allison SE, Ejim L, Pereira PM, Pinho MG, Wright GD, Brown ED (2013) Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol 8(1):226–233. doi: 10.1021/cb300413mCrossRefPubMedGoogle Scholar
  115. 115.
    Labroli MA, Caldwell JP, Yang C, Lee SH, Wang H, Koseoglu S, Mann P, Yang SW, Xiao J, Garlisi CG, Tan C, Roemer T, Su J (2016) Discovery of potent wall teichoic acid early stage inhibitors. Bioorg Med Chem Lett 26:3999–4002. doi: 10.1016/j.bmcl.2016.06.090CrossRefPubMedGoogle Scholar
  116. 116.
    Mann PA, Muller A, Xiao L, Pereira PM, Yang C, Ho Lee S, Wang H, Trzeciak J, Schneeweis J, Dos Santos MM, Murgolo N, She X, Gill C, Balibar CJ, Labroli M, Su J, Flattery A, Sherborne B, Maier R, Tan CM, Black T, Onder K, Kargman S, Monsma Jr FJ, Pinho MG, Schneider T, Roemer T (2013) Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 8:2442–2451. doi: 10.1021/cb400487fCrossRefPubMedGoogle Scholar
  117. 117.
    Hurley KA, Santos TM, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB (2016) Targeting the bacterial division protein FtsZ. J Med Chem 59(15):6975–6998. doi: 10.1021/acs.jmedchem.5b01098CrossRefPubMedGoogle Scholar
  118. 118.
    Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Monteiro JM, Pereira PM, Elsen NL, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillancourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Ramtohul Y, Langlois E, Landry F, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Pinho MG, Soisson SM, Roemer T (2012) Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med 4:126ra135. doi: 10.1126/scitranslmed.3003592CrossRefGoogle Scholar
  119. 119.
    Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova SE, Heal JR, Sheridan JM, Aiwale ST, Chauhan PK, Srivastava A, Taneja A, Collins I, Errington J, Czaplewski LG (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321:1673–1675. doi: 10.1126/science.1159961CrossRefPubMedGoogle Scholar
  120. 120.
    Chan FY, Sun N, Leung YC, Wong KY (2015) Antimicrobial activity of a quinuclidine-based FtsZ inhibitor and its synergistic potential with β-lactam antibiotics. J Antibiot (Tokyo) 68:253–258. doi: 10.1038/ja.2014.140CrossRefGoogle Scholar
  121. 121.
    Nair DR, Monteiro JM, Memmi G, Thanassi J, Pucci M, Schwartzman J, Pinho MG, Cheung AL (2015) Characterization of a novel small molecule that potentiates β-lactam activity against Gram-positive and Gram-negative pathogens. Antimicrob Agents Chemother 59:1876–1885. doi: 10.1128/AAC.04164-14CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lee SH, Jarantow LW, Wang H, Sillaots S, Cheng H, Meredith TC, Thompson J, Roemer T (2011) Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem Biol 18:1379–1389. doi: 10.1016/j.chembiol.2011.08.015CrossRefPubMedGoogle Scholar
  123. 123.
    Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW (2004) Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 23:462–467. doi: 10.1016/j.ijantimicag.2003.09.027CrossRefPubMedGoogle Scholar
  124. 124.
    Bernal P, Lemaire S, Pinho MG, Mobashery S, Hinds J, Taylor PW (2010) Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated β-lactam resistance by delocalizing PBP2. J Biol Chem 285:24055–24065. doi: 10.1074/jbc.M110.114793CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Rosado H, Turner RD, Foster SJ, Taylor PW (2015) Impact of the β-lactam resistance modifier (–)-epicatechin gallate on the non-random distribution of phospholipids across the cytoplasmic membrane of Staphylococcus aureus. Int J Mol Sci 16:16710–16727. doi: 10.3390/ijms160816710CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Palacios L, Rosado H, Micol V, Rosato AE, Bernal P, Arroyo R, Grounds H, Anderson JC, Stabler RA, Taylor PW (2014) Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers. PLoS One 9:e93830. doi: 10.1371/journal.pone.0093830CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistryNorth Carolina State UniversityRaleighUSA

Personalised recommendations