Skip to main content

Antibacterial New Target Discovery: Sentinel Examples, Strategies, and Surveying Success

  • Chapter
  • First Online:
Antibacterials

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 25))

Abstract

Antibiotics are the bedrock of modern medicine but their efficacy is rapidly eroding due to the alarming emergence of multi-drug resistant bacteria. To begin to address this crisis, novel antibacterial agents that inhibit bacterial-specific cellular functions essential for growth, viability, and/or pathogenesis are urgently needed. Although the genomics era has contributed greatly to identifying novel antibacterial targets, it has failed to appropriately characterize, prioritize, and ultimately exploit such targets to significantly impact antibiotic discovery. Here we describe a contemporary view of new antibacterial target discovery; one which complements existing genomics strategies with a deeply rooted and fundamental understanding of target biology in the context of genetic networks and environmental conditions to rigorously identify high potential targets, and cognate inhibitors, for consideration as antibacterial leads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piddock L (2012) The crisis of no new antibiotics – what is the way forward? Lancet Infect Dis 12(3):249–253. doi:10.1016/S1473-3099(11)70316-4

    Article  PubMed  Google Scholar 

  2. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12. doi:10.1086/595011

    Article  PubMed  Google Scholar 

  3. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529(7586):336–343. doi:10.1038/nature17042

    Article  CAS  PubMed  Google Scholar 

  4. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283

    PubMed  PubMed Central  Google Scholar 

  5. Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc B Biol Sci 370(1670):20140083. doi:10.1098/rstb.2014.0083

    Article  CAS  Google Scholar 

  6. Kinch MS, Patridge E, Plummer M, Hoyer D (2014) An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov Today 19(9):1283–1287. doi:10.1016/j.drudis.2014.07.005

    Article  PubMed  CAS  Google Scholar 

  7. Walsh C, Wencewicz T (2016) Antibiotics: challenges, mechanisms, opportunities. ASM Press, Washington, DC

    Google Scholar 

  8. Butler MS, Blaskovich MA, Cooper MA (2015) Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo). DOI: 10.1038/ja.2016.72

    Article  PubMed  CAS  Google Scholar 

  9. Klahn P, Brönstrup M (2016) New structural templates for clinically validated and novel targets in antimicrobial drug research and development. Curr Top Microbiol Immunol. DOI: 10.1007/82_2016_501

    Chapter  Google Scholar 

  10. Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185(19):5673–5684. doi:10.1128/JB.185.19.5673-5684.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. doi:10.1038/msb4100050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285(5429):901–906. doi:10.1126/science.285.5429.901

    Article  PubMed  CAS  Google Scholar 

  13. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391. doi:10.1038/nature00935

    Article  PubMed  CAS  Google Scholar 

  14. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50(1):167–181. doi:10.1046/j.1365-2958.2003.03697.x

    Article  PubMed  CAS  Google Scholar 

  15. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6(1):29–40. doi:10.1038/nrd2201

    Article  CAS  PubMed  Google Scholar 

  16. Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA (2015) ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 14(8):529–542. doi:10.1038/nrd4572

    Article  PubMed  CAS  Google Scholar 

  17. Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485(7399):439–440. doi:10.1038/485439a

    Article  PubMed  CAS  Google Scholar 

  18. Baltz RH (2006) Marcel Faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33(7):507–513. doi:10.1007/s10295-005-0077-9

    Article  PubMed  CAS  Google Scholar 

  19. O’Shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51(10):2871–2878. doi:10.1021/jm700967e

    Article  PubMed  CAS  Google Scholar 

  20. Brown DG, May-Dracka TL, Gagnon MM, Tommasi R (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57(23):10144–10161. doi:10.1021/jm501552x

    Article  CAS  PubMed  Google Scholar 

  21. Projan SJ (2008) Whither antibacterial drug discovery? Drug Discov Today 13(7–8):279–280. doi:10.1016/j.drudis.2008.03.010

    Article  PubMed  Google Scholar 

  22. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der Meijden B, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Käch A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327(5968):1010–1013. doi:10.1126/science.1182749

    Article  PubMed  CAS  Google Scholar 

  23. Hagan CL, Wzorek JS, Kahne D (2015) Inhibition of the β-barrel assembly machine by a peptide that binds BamD. Proc Natl Acad Sci U S A 112(7):2011–2016. doi:10.1073/pnas.1415955112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Richter SG, Elli D, Kim HK, Hendrickx AP, Sorg JA, Schneewind O, Missiakas D (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc Natl Acad Sci U S A 110(9):3531–3536. doi:10.1073/pnas.1217337110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nayar AS, Dougherty TJ, Ferguson KE, Granger BA, McWilliams L, Stacey C, Leach LJ, Narita S, Tokuda H, Miller AA, Brown DG, McLeod SM (2015) Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay. J Bacteriol 197(10):1726–1734. doi:10.1128/JB.02552-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. McLeod SM, Fleming PR, MacCormack K, McLaughlin RE, Whiteaker JD, Narita S, Mori M, Tokuda H, Miller AA (2015) Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening. J Bacteriol 197(6):1075–1082. doi:10.1128/JB.02352-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Campbell J, Singh AK, Santa Maria Jr JP, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6(1):106–116. doi:10.1021/cb100269f

    Article  PubMed  CAS  Google Scholar 

  28. Mann PA, Müller A, Xiao L, Pereira PM, Yang C, Ho Lee S, Wang H, Trzeciak J, Schneeweis J, Dos Santos MM, Murgolo N, She X, Gill C, Balibar CJ, Labroli M, Su J, Flattery A, Sherborne B, Maier R, Tan CM, Black T, Onder K, Kargman S, Monsma Jr FJ, Pinho MG, Schneider T, Roemer T (2013) Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem Biol 8(11):2442–2451. doi:10.1021/cb400487f

    Article  CAS  PubMed  Google Scholar 

  29. Huber J, Donald RG, Lee SH, Jarantow LW, Salvatore MJ, Meng X, Painter R, Onishi RH, Occi J, Dorso K, Young K, Park YW, Skwish S, Szymonifka MJ, Waddell TS, Miesel L, Phillips JW, Roemer T (2009) Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem Biol 16(8):837–848. doi:10.1016/j.chembiol.2009.05.012

    Article  PubMed  CAS  Google Scholar 

  30. Mott JE, Shaw BA, Smith JF, Bonin PD, Romero DL, Marotti KR, Miller AA (2008) Resistance mapping and mode of action of a novel class of antibacterial anthranilic acids: evidence for disruption of cell wall biosynthesis. J Antimicrob Chemother 62(4):720–729. doi:10.1093/jac/dkn261

    Article  PubMed  CAS  Google Scholar 

  31. Bouley R, Kumarasiri M, Peng Z, Otero LH, Song W, Suckow MA, Schroeder VA, Wolter WR, Lastochkin E, Antunes NT, Pi H, Vakulenko S, Hermoso JA, Chang M, Mobashery S (2015) Discovery of antibiotic (E)-3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)-one. J Am Chem Soc 137(5):1738–1741. doi:10.1021/jacs.5b00056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lee SH, Wang H, Labroli M, Koseoglu S, Zuck P, Mayhood T, Gill C, Mann P, Sher X, Ha S, Yang SW, Mandal M, Yang C, Liang L, Tan Z, Tawa P, Hou Y, Kuvelkar R, DeVito K, Wen X, Xiao J, Batchlett M, Balibar CJ, Liu J, Xiao J, Murgolo N, Garlisi CG, Sheth PR, Flattery A, Su J, Tan C, Roemer T (2016) TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Sci Transl Med 8(329):329ra32. DOI: 10.1126/scitranslmed.aad7364.

    Article  PubMed  CAS  Google Scholar 

  33. Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T, Malhowski AJ, Kishony R, Gilmore MS, Walker S (2009) Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol 4(10):875–883. doi:10.1021/cb900151k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria J, Su J, Pan J, Hailey J, Mcguinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T (2013) Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem Biol 20(2):272–284. doi:10.1016/j.chembiol.2012.11.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459. doi:10.1038/nature14098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, Kim J, Park S, Darwish M, Lee BC, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S (2015) Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527(7578):323–328. doi:10.1038/nature16057

    Article  PubMed  CAS  Google Scholar 

  37. Tokunaga M, Loranger JM, Wu HC (1983) Isolation and characterization of an Escherichia coli clone overproducing prolipoprotein signal peptidase. J Biol Chem 258(20):12102–12105

    PubMed  CAS  Google Scholar 

  38. Dev IK, Harvey RJ, Ray PH (1985) Inhibition of prolipoprotein signal peptidase by globomycin. J Biol Chem 260(10):5891–5894

    PubMed  CAS  Google Scholar 

  39. Xiao Y, Gerth K, Müller R, Wall D (2012) Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother 56(4):2014–2021. doi:10.1128/AAC.06148-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, Caffrey M (2016) Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 351(6275):876–880. doi:10.1126/science.aad3747

    Article  PubMed  CAS  Google Scholar 

  41. de Jonge BL, Walkup GK, Lahiri SD, Huynh H, Neckermann G, Utley L, Nash TJ, Brock J, San Martin M, Kutschke A, Johnstone M, Laganas V, Hajec L, Gu RF, Ni H, Chen B, Hutchings K, Holt E, McKinney D, Gao N, Livchak S, Thresher J (2013) Discovery of inhibitors of 4′-phosphopantetheine adenylyltransferase (PPAT) to validate PPAT as a target for antibacterial therapy. Antimicrob Agents Chemother 57(12):6005–6015. DOI: 10.1128/AAC.01661-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503(7476):365–370. doi:10.1038/nature12790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087. doi:10.1038/nm1306

    Article  PubMed  CAS  Google Scholar 

  44. Tomašić T, Šink R, Zidar N, Fic A, Contreras-Martel C, Dessen A, Patin D, Blanot D, Müller-Premru M, Gobec S, Zega A, Kikelj D, Peterlin Mašič L (2012) Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med Chem Lett 3(8):626–630. doi:10.1021/ml300047h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pasquina L, Santa Maria Jr JP, McKay Wood B, Moussa SH, Matano LM, Santiago M, Martin SE, Lee W, Meredith TC, Walker S (2016) A synthetic lethal approach for compound and target identification in Staphylococcus aureus. Nat Chem Biol 12(1):40–45. doi:10.1038/nchembio.1967

    Article  PubMed  CAS  Google Scholar 

  46. Haydon DJ, Stokes NR, Ure R, Galbraith G, Bennett JM, Brown DR, Baker PJ, Barynin VV, Rice DW, Sedelnikova SE, Heal JR, Sheridan JM, Aiwale ST, Chauhan PK, Srivastava A, Taneja A, Collins I, Errington J, Czaplewski LG (2008) An inhibitor of FtsZ with potent and selective anti-staphylococcal activity. Science 321(5896):1673–1675. doi:10.1126/science.1159961

    Article  CAS  PubMed  Google Scholar 

  47. Tan CM, Therien AG, Lu J, Lee SH, Caron A, Gill CJ, Lebeau-Jacob C, Benton-Perdomo L, Elsen N, Wu J, Deschamps K, Petcu M, Wong S, Daigneault E, Kramer S, Liang L, Maxwell E, Claveau D, Vaillencourt J, Skorey K, Tam J, Wang H, Meredith TC, Sillaots S, Wang-Jarantow L, Reid JC, Parthasarathy G, Sharma S, Baryshnikova A, Lumb KJ, Soisson SM, Roemer T (2012) Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med 4(126):126ra35. doi:10.1126/scitranslmed.3003592

    Article  PubMed  Google Scholar 

  48. Mann PA, Müller A, Wolff KA, Fischmann T, Wang H, Reed P, Hou Y, Li W, Müller CE, Xiao J, Murgolo N, Sher X, Mayhood T, Sheth PR, Mirza A, Labroli M, Xiao L, McCoy M, Gill CJ, Pinho MG, Schneider T, Roemer T (2016) Chemical genetic analysis and functional characterization of staphylococcal wall teichoic acid 2-epimerases reveals unconventional antibiotic drug targets. PLoS Pathog 12(5):e1005585. doi:10.1371/journal.ppat.1005585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhu W, Zhang Y, Sinko W, Hensler ME, Olson J, Molohon KJ, Lindert S, Cao R, Li K, Wang K, Wang Y, Liu YL, Sankovsky A, de Oliveira CA, Mitchell DA, Nizet V, McCammon JA, Oldfield E (2013) Antibacterial drug leads targeting isoprenoid biosynthesis. Proc Natl Acad Sci U S A 110(1):123–128. doi:10.1073/pnas.1219899110

    Article  PubMed  Google Scholar 

  50. Farha MA, Czarny TL, Myers CL, Worrall LJ, French S, Conrady DG, Wang Y, Oldfield E, Strynadka NC, Brown ED (2015) Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proc Natl Acad Sci U S A 112(35):11048–11053. doi:10.1073/pnas.1511751112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Czarny TL, Brown ED (2016) A small-molecule screening platform for the discovery of inhibitors of undecaprenyl diphosphate synthase. ACS Infect Dis 2(7):489–499. doi:10.1021/acsinfecdis.6b00044

    Article  CAS  PubMed  Google Scholar 

  52. Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526(7575):672–677. doi:10.1038/nature15542

    Article  PubMed  CAS  Google Scholar 

  53. Howe JA, Xiao L, Fischmann TO, Wang H, Tang H, Villafania A, Zhang R, Barbieri CM, Roemer T (2016) Atomic resolution mechanistic studies of ribocil: a highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA Biol 13(10):946–954. doi:10.1080/15476286.2016.1216304

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9(4):222–231. doi:10.1038/nchembio.1205

    Article  PubMed  CAS  Google Scholar 

  55. Hillenmeyer ME, Fung E, WildenhainJ PSE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320(5874):362–365. doi:10.1126/science.1150021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zlitni S, Ferruccio LF, Brown ED (2013) Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat Chem Biol 9(12):796–804. doi:10.1038/nchembio.1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yao J, Rock CO (2015) How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem 290(10):5940–5946. doi:10.1074/jbc.R114.636241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gründling A, Schneewind O (2007) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci U S A 104(20):8478–8483. doi:10.1073/pnas.0701821104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Oku Y, Kurokawa K, Matsuo M, Yamada S, Lee BL, Sekimizu K (2009) Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol 191(1):141–151. doi:10.1128/JB.01221-08

    Article  PubMed  CAS  Google Scholar 

  60. Beckmann I, Subbaiah TV, Stocker BAD (1964) Rough mutants of Salmonella typhimurium. II. Serological and chemical investigations. Nature 201:1299–1301

    Article  CAS  PubMed  Google Scholar 

  61. Nelson BW, Roantree RJ (1967) Analyses of lipopolysaccharides extracted from penicillin-resistant, serum-sensitive Salmonella mutants. J Gen Microbiol 48(2):179–188. doi:10.1099/00221287-48-2-179

    Article  PubMed  CAS  Google Scholar 

  62. Joiner KA, Schmetz MA, Sanders ME, Murray TG, Hammer CH, Dourmashkin R, Frank MM (1985) Multimeric complement component C9 is necessary for killing of Escherichia coli J5 by terminal attack complex C5b-9. Proc Natl Acad Sci U S A 82(14):4808–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schiller NL (1988) Characterization of the susceptibility of Pseudomonas aeruginosa to complement-mediated killing: role of antibodies to the rough lipopolysaccharide on serum-sensitive strains. Infect Immun 56(3):632–639

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Schiller NL, Joiner KA (1986) Interaction of complement with serum-sensitive and serum-resistant strains of Pseudomonas aeruginosa. Infect Immun 54(3):689–694

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Greenfield LK, Whitfield C (2012) Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 356:12–24. doi:10.1016/j.carres.2012.02.027

    Article  PubMed  CAS  Google Scholar 

  66. Phan MD, Peters KM, Sarkar S, Lukowski SW, Allsopp LP, Gomes Moriel D, Achard ME, Totsika M, Marshall VM, Upton M, Beatson SA, Schembri MA (2013) The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 9(10):e1003834. doi:10.1371/journal.pgen.1003834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sarkar S, Ulett GC, Totsika M, Phan MD, Schembri MA (2014) Role of capsule and O-antigen in the virulence of uropathogenic Escherichia coli. PLoS One 9(4):e94786. doi:10.1371/journal.pone.0094786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C (2009) Systematic mapping of genetic interaction networks. Annu Rev Genet 43:601–625. doi:10.1146/annurev.genet.39.073003.114751

    Article  PubMed  CAS  Google Scholar 

  69. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368. doi:10.1126/science.1065810

    Article  PubMed  CAS  Google Scholar 

  70. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C (2010) The genetic landscape of the cell. Science 327(5964):425–431. doi:10.1126/science.1180823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Paradis-Bleau C, Markovski M, Uehara T, Lupoli TJ, Walker S, Kahne DE, Bernhardt TG (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143(7):1110–1120. doi:10.1016/j.cell.2010.11.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Babu M, Díaz-Mejía JJ, Vlasblom J, Gagarinova A, Phanse S, Graham C, Yousif F, Ding H, Xiong X, Nazarians-Armavil A, Alamgir M, Ali M, Pogoutse O, Pe’er A, Arnold R, Michaut M, Parkinson J, Golshani A, Whitfield C, Wodak SJ, Moreno-Hagelsieb G, Greenblatt JF, Emili A (2011) Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways. PLoS Genet 7(11):e1002377. doi:10.1371/journal.pgen.1002377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Typas A, Nichols RJ, Siegele DA, Shales M, Collins SR, Lim B, Braberg H, Yamamoto N, Takeuchi R, Wanner BL, Mori H, Weissman JS, Krogan NJ, Gross CA (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5(9):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CH, Koo BM, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165(6):1493–1506. doi:10.1016/j.cell.2016.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Roemer T, Schneider T, Pinho MG (2013) Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr Opin Microbiol 16(5):538–548. doi:10.1016/j.mib.2013.06.012

    Article  PubMed  CAS  Google Scholar 

  76. Lee SH, Jarantow-Wang L, Sillaots S, Cheng H, Meredith TC, Thompson J, Roemer T (2011) Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem Biol 18(11):1379–1389. doi:10.1016/j.chembiol.2011.08.015

    Article  PubMed  CAS  Google Scholar 

  77. Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, C KG, King P, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu Zy ZY, Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind JW (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43(6):1387–1400. doi:10.1046/j.1365-2958.2002.02832.x

    Article  PubMed  CAS  Google Scholar 

  78. Xu HH, Trawick JD, Haselbeck RJ, Forsyth RA, Yamamoto RT, Archer R, Patterson J, Allen M, Froelich JM, Taylor I, Nakaji D, Maile R, Kedar GC, Pilcher M, Brown-Driver V, McCarthy M, Files A, Robbins D, King P, Sillaots S, Malone C, Zamudio CS, Roemer T, Wang L, Youngman PJ, Wall D (2010) Staphylococcus aureus TargetArray: comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials. Antimicrob Agents Chemother 54(9):3659–3670. doi:10.1128/AAC.00308-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T (2012) Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 8(1):e1002509. doi:10.1371/journal.ppat.1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201. doi:10.1128/CMR.00037-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. D’Elia MA, Pereira MP, Chung YS, Zhao W, Chau A, Kenney TJ, Sulavik MC, Black TA, Brown ED (2006) Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol 188:4183–4189. doi:10.1128/JB.00197-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. D’Elia MA, Millar KE, Beveridge TJ, Brown ED (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188:8313–8316. doi:10.1128/JB.01336-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Sewell EW, Brown ED (2014) Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot (Tokyo) 67(1):43–51. doi:10.1038/ja.2013.100

    Article  CAS  Google Scholar 

  84. Pasquina LW, Santa Maria JP, Walker S (2013) Teichoic acid biosynthesis as an antibiotic target. Curr Opin Microbiol 16(5):531–537. doi:10.1016/j.mib.2013.06.014

    Article  PubMed  CAS  Google Scholar 

  85. Schirner K, Stone LK, Walker S (2011) ABC transporters required for export of wall teichoic acids do not discriminate between different main chain polymers. ACS Chem Biol 6(5):407–412. doi:10.1021/cb100390w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cordes EH (2014) Hallelujah moments: tales of drug discovery (chapter 9). Oxford University Press, New York

    Google Scholar 

  87. Bigger JW (1944) Treatment of staphylococcal infections with penicillin. Lancet 244:497–500

    Article  Google Scholar 

  88. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18. doi:10.1016/S0378-1097(03)00856-5

    Article  PubMed  CAS  Google Scholar 

  89. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. doi:10.1146/annurev.micro.112408.134306

    Article  PubMed  CAS  Google Scholar 

  90. Sass P, Josten M, Famulla K, Schiffer G, Sahl HG, Hamoen L, Brötz-Oesterhelt H (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108(42):17474–17479. doi:10.1073/pnas.1110385108

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D (2006) Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 103(31):11754–11759. DOI: 10.1073/pnas.0604744103

    Article  CAS  Google Scholar 

  92. Koehn FE, Carter GT (2005) Rediscovering natural products as a source of new drugs. Discov Med 5(26):159–164

    PubMed  Google Scholar 

  93. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328(5982):1168–1172. doi:10.1126/science.1185723

    Article  PubMed  CAS  Google Scholar 

  94. Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ, Gordon EA, Reddy BV, Charlop-Powers Z, Zebroski HA, Gallardo-Macias R, Jaskowski M, Satish S, Park S, Perlin DS, Freundlich JS, Brady SF (2016) Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 12:1004–1006. doi:10.1038/nchembio.2207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. doi:10.1101/cshperspect.a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Bakelar J, Buchanan SK, Noinaj N (2016) The structure of the β-barrel assembly machinery complex. Science 351(6269):180–186. doi:10.1126/science.aad3460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501(7467):385–390. doi:10.1038/nature12521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lee J, Xue M, Wzorek JS, Wu T, Grabowicz M, Gronenberg L, Sutterlin HA, Davis RM, Ruiz N, Silhavy TJ, Kahne DE (2016) Characterization of a stalled complex on the β-barrel assembly machine. Proc Natl Acad Sci U S A 113(31):8717–8722. doi:10.1073/pnas.1604100113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG, Stansfeld PJ, He C, Zhang Y, Wang W, Dong C (2014) Structural basis for outer membrane lipopolysaccharide insertion. Nature 511(7507):52–56. doi:10.1038/nature13464

    Article  PubMed  CAS  Google Scholar 

  100. Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y (2014) Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511(7507):108–111. doi:10.1038/nature13484

    Article  PubMed  CAS  Google Scholar 

  101. Freinkman E, Chng SS, Kahne D (2011) The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc Natl Acad Sci U S A 108(6):2486–2491. DOI: 10.1073/pnas.1015617108

    Article  Google Scholar 

  102. Chimalakonda G, Ruiz N, Chng SS, Garner RA, Kahne D, Silhavy TJ (2011) Lipoprotein LptE is required for the assembly of LptD by the beta-barrel assembly machine in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 108(6):2492–2497. doi:10.1073/pnas.1019089108

    Article  PubMed  PubMed Central  Google Scholar 

  103. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24(1):71–109. doi:10.1128/CMR.00030-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Silver LL (2016) Appropriate targets for antibacterial drugs. Cold Spring Harb Perspect Med. pii: a030239. DOI: 10.1101/cshperspect.a030239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  105. O'Dwyer K, Spivak AT, Ingraham K, Min S, Holmes DJ, Jakielaszek C, Rittenhouse S, Kwan AL, Livi GP, Sathe G, Thomas E, Van Horn S, Miller LA, Twynholm M, Tomayko J, Dalessandro M, Caltabiano M, Scangarella-Oman NE, Brown JR (2015) Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother 59(1):289–298. doi:10.1128/AAC.03774-14

    Article  PubMed  CAS  Google Scholar 

  106. Thulin E, Sundqvist M, Andersson DI (2015) Amdinocillin (mecillinam) resistance mutations in clinical isolates and laboratory-selected mutants of Escherichia coli. Antimicrob Agents Chemother 59(3):1718–1727. doi:10.1128/AAC.04819-14

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sakoulas G, Okumura CY, Thienphrapa W, Olson J, Nonejuie P, Dam Q, Dhand A, Pogliano J, Yeaman MR, Hensler ME, Bayer AS, Nizet V (2014) Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med (Berl) 92(2):139–149. doi:10.1007/s00109-013-1100-7

    Article  CAS  Google Scholar 

  108. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287. doi:10.1038/nrmicro1861

    Article  PubMed  CAS  Google Scholar 

  109. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243–245. doi:10.1038/nm991

    Article  PubMed  CAS  Google Scholar 

  110. Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191(10):1771–1777. doi:10.1086/429692

    Article  PubMed  CAS  Google Scholar 

  111. Alexander DC, Valvano MA (1994) Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. J Bacteriol 176(22):7079–7084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Walsh SI, Craney A, Romesberg FE (2016) Not just an antibiotic target: exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 24:6370–6378. doi:http://dx.doi.org/10.1016/j.bmc.2016.09.048

    Article  CAS  Google Scholar 

  113. Brown DG (2016) Drug discovery strategies to outer membrane targets in Gram-negative pathogens. Bioorg Med Chem. pii: S0968-0896(16)30325-X. DOI: 10.1016/j.bmc.2016.05.004

    Article  CAS  Google Scholar 

  114. Brown S, Santa Maria JP, Walker S (2013) Wall teichoic acids of Gram-positive bacteria. Annu Rev Microbiol 67:313–336. doi:10.1146/annurev-micro-092412-155620

    Article  PubMed  CAS  Google Scholar 

  115. D’Elia MA, Pereira MP, Brown ED (2009) Are essential genes really essential? Trends Microbiol 17:433–438. doi:10.1016/j.tim.2009.08.005

    Article  PubMed  CAS  Google Scholar 

  116. O’Neil PK, Rollauer SE, Noinaj N, Buchanan SK (2015) Fitting the pieces of the β-barrel assembly machinery complex. Biochemistry 54(41):6303–6311. doi:10.1021/acs.biochem.5b00852

    Article  PubMed  CAS  Google Scholar 

  117. Plummer AM, Fleming KG (2016) From chaperones to the membrane with a BAM! Trends Biochem Sci 41(10):872–882. doi:10.1016/j.tibs.2016.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Simpson BW, May JM, Sherman DJ, Kahne D, Ruiz N (2015) Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane. Philos Trans R Soc Lond B Biol Sci. 370(1679). pii: 20150029. DOI: 10.1098/rstb.2015.0029

    Article  CAS  Google Scholar 

  119. May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D (2015) Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. Philos Trans R Soc Lond B Biol Sci. 370(1679). pii: 20150027. DOI: 10.1098/rstb.2015.0027

    Article  CAS  Google Scholar 

  120. Konovalova A, Silhavy TJ (2015) Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol. 370(1679) pii: 20150030. DOI: 10.1098/rstb.2015.0030

    Article  CAS  Google Scholar 

  121. Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128. doi:10.1146/annurev-biochem-060713-035600

    Article  PubMed  CAS  Google Scholar 

  122. Typas A, Banzhaf M, Gross CA, Vollmer W (2011) From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10(2):123–136. doi:10.1038/nrmicro2677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Lovering AL, Safadi SS, Strynadka NC (2012) Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 81:451–478. doi:10.1146/annurev-biochem-061809-112742

    Article  PubMed  CAS  Google Scholar 

  124. Woodward L, Naismith JH (2016) Bacterial polysaccharide synthesis and export. Curr Opin Struct Biol 40:81–88. doi:10.1016/j.sbi.2016.07.016

    Article  PubMed  CAS  Google Scholar 

  125. Rowley G, Spector M, Kormanec J, Roberts M (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4(5):383–394. doi:10.1038/nrmicro1394

    Article  PubMed  CAS  Google Scholar 

  126. Guest RL, Raivio TL (2016) Role of the Gram-negative envelope stress response in the presence of antimicrobial agents. Trends Microbiol 24(5):377–390. doi:10.1016/j.tim.2016.03.001

    Article  PubMed  CAS  Google Scholar 

  127. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67(4):593–656. doi:10.1128/MMBR.67.4.593-656.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Gray AN, Egan AJ, Van't Veer IL, Verheul J, Colavin A, Koumoutsi A, Biboy J, Altelaar AF, Damen MJ, Huang KC, Simorre JP, Breukink E, den Blaauwen T, Typas A, Gross CA, Vollmer W (2015) Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife 4. DOI: 10.7554/eLife.07118

  129. Typas A, Banzhaf M, van den Berg van Saparoea B, Verheul J, Biboy J, Nichols RJ, Zietek M, Beilharz K, Kannenberg K, von Rechenberg M, Breukink E, den Blaauwen T, Gross CA, Vollmer W (2010) Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143(7):1097–1109. doi:10.1016/j.cell.2010.11.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Rigel NW, Schwalm J, Ricci DP, Silhavy TJ (2012) BamE modulates the Escherichia coli β-barrel assembly machine component BamA. J Bacteriol 194(5):1002–1008. doi:10.1128/JB.06426-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Rigel NW, Ricci DP, Silhavy TJ (2013) Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc Natl Acad Sci U S A 110(13):5151–5156. doi:10.1073/pnas.1302662110

    Article  PubMed  PubMed Central  Google Scholar 

  132. Cuthbertson L, Powers J, Whitfield C (2005) The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 280(34):30310–30319. doi:10.1074/jbc.M504371200

    Article  PubMed  CAS  Google Scholar 

  133. Silver LL (2016) A Gestalt approach to Gram-negative entry. Bioorg Med Chem 24:6379–6389. doi:http://dx.doi.org/10.1016/j.bmc.2016.06.044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Roemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Sutterlin, H.A., Malinverni, J.C., Lee, S.H., Balibar, C.J., Roemer, T. (2017). Antibacterial New Target Discovery: Sentinel Examples, Strategies, and Surveying Success. In: Fisher, J.F., Mobashery, S., Miller, M.J. (eds) Antibacterials. Topics in Medicinal Chemistry, vol 25. Springer, Cham. https://doi.org/10.1007/7355_2016_31

Download citation

Publish with us

Policies and ethics