Advertisement

Messenger RNA as a Novel Therapeutic Approach

  • Matthew G. Stanton
  • Kerry E. Murphy-Benenato
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 27)

Abstract

The concept of mRNA as a therapeutic platform has historically been ignored owing to challenges in oligonucleotide delivery and, maybe more importantly, the perceived shortcomings of mRNA with regard to stability and immunogenicity. Advances in several areas have recently prompted a reexamination of such dogma. Significant improvements in oligonucleotide delivery have been realized over the past decade and their application to mRNA has enabled a more rapid path toward clinical development of this new modality. Similarly, recent discoveries in mRNA chemistry further enhance the attractiveness of this platform by attenuating innate immune activation and maximizing protein expression. With these advances, mRNA is positioned to become an important new therapeutic modality.

Keywords

Delivery Immunogenicity Lipid nanoparticles mRNA Nucleotides Polymers RNA Transcript therapy 

References

  1. 1.
  2. 2.
    Zangi L, Lui KO, von Gise A et al (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31:898–907CrossRefGoogle Scholar
  3. 3.
    Karikó K, Muramatsu H, Keller JM et al (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953CrossRefGoogle Scholar
  4. 4.
    Phua KKL, Leong KW, Nair SK (2013) Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J Control Release 201:41–48Google Scholar
  5. 5.
    Kormann MSD, Hasenpusch G, Aneja MK et al (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29:154–157CrossRefGoogle Scholar
  6. 6.
    Wang Y, H-h S, Yang Y et al (2013) Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther 21:358–367CrossRefGoogle Scholar
  7. 7.
    Kranz LM, Diken M, Haas H et al (2016) Systemic delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396–401CrossRefGoogle Scholar
  8. 8.
    Yin H, Kanasty RL, Eltoukhy AA et al (2014) Non-viral vectors for gene based therapies. Nat Rev 15:541–555CrossRefGoogle Scholar
  9. 9.
    Bobbin ML, Rossi JJ (2016) RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122CrossRefGoogle Scholar
  10. 10.
    Hope MJ (2014) Enhancing siRNA delivery by employing lipid nanoparticles. Ther Deliv 5:663–673CrossRefGoogle Scholar
  11. 11.
    Akinc A, Querbes W, De S et al (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18:1357–1364CrossRefGoogle Scholar
  12. 12.
    Geall AJ, Verma A, Otten GR et al (2012) Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci 109:14604–14609CrossRefGoogle Scholar
  13. 13.
    Hekele A, Bertholet S, Archer J et al (2013) Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg Microb Infect 2:e52CrossRefGoogle Scholar
  14. 14.
    Pardi N, Tuyishime S, Muranatsu H et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release 217:345–351CrossRefGoogle Scholar
  15. 15.
    Thess A, Grund S, Mui BL et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther 23:1456–1464CrossRefGoogle Scholar
  16. 16.
    Nabhan JF, Wood KM, Rao VP (2016) Intrathecal delivery of frataxin mRNA encapsulated in lipid nanoparticles to dorsal root ganglia as a potential therapeutic for Friedreich’s ataxia. Sci Rep 6:1–10CrossRefGoogle Scholar
  17. 17.
    Love KT, Mahon KP, Levins CG et al (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci 107:1864–1869CrossRefGoogle Scholar
  18. 18.
    Kauffman KJ, Dorkin JR, Yang JH et al (2015) Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett 51:7300–7306CrossRefGoogle Scholar
  19. 19.
    DeRosa F, Guild B, Karve S et al (2016) Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA depot system. Gene Ther 23(10):699–707CrossRefGoogle Scholar
  20. 20.
    Dong Y, Love KT, Dorkin JR et al (2014) Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci 111:3955–3960CrossRefGoogle Scholar
  21. 21.
    Fenton OS, Kauffman KJ, McClellean RL et al (2016) Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv Mater 28:2939–2943CrossRefGoogle Scholar
  22. 22.
    Li B, Luo B, Deng B (2015) An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett 15:8099–8107CrossRefGoogle Scholar
  23. 23.
    Li B, Luo X, Deng B (2016) Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci Rep 6:22137CrossRefGoogle Scholar
  24. 24.
    Jarzębińska A, Pasewald T, Lambrecht J et al (2016) A single methylene group in oligoalkylamine-based cationic polymers and lipids promotes enhanced mRNA delivery. Angew Chem Int Ed 55:9591–9595CrossRefGoogle Scholar
  25. 25.
    Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115:11043–11078CrossRefGoogle Scholar
  26. 26.
    Uchida H, Itaka K, Nomoto T et al (2014) Modulated protonation of side chain aminoethylene repeats in N-substituted polyaspartamides promotes mRNA transfection. J Am Chem Soc 136:12396–12405CrossRefGoogle Scholar
  27. 27.
    Uchida S, Kinoh H, Ishii T et al (2016) Systemic delivery of messenger RNA for the treatment of pancreatic cancer using polyplex nanomicelles with a cholesterol moiety. Biomaterials 82:221–228CrossRefGoogle Scholar
  28. 28.
    Dong Y, Dorkin JR, Wang W et al (2016) Poly(glycoamidoaine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano Lett 16:842–848CrossRefGoogle Scholar
  29. 29.
    Heartlein M, Anderson D, Dong Y, DeRosa F (2015) Lipid formulations for delivery of messenger RNA. WO 2015061467 A1Google Scholar
  30. 30.
    Heyes J, Palmer LR, Reid SP et al (2015) Compositions and methods for delivering messenger RNA. WO 2015011633 A1Google Scholar
  31. 31.
    Byers C, Caplan SL, Gamber GG et al (2015) Leptin mRNA compositions and formulations. WO 2015095351 A1Google Scholar
  32. 32.
    Almarsson O, Lawlor C (2016) Lipid nanoparticle mRNA compositions. WO 2016118725 A1Google Scholar
  33. 33.
    Theofilopoulos AN, Gonzalez-Quintial R, Lawson BR et al (2010) Sensors of the innate immune system: their link to rheumatic diseases. Nat Rev Rheumatol 6:146–156CrossRefGoogle Scholar
  34. 34.
    Picard-Jean F, Tremblay-Létourneau M, Serra E et al (2013) RNA 5′-end maturation: a crucial step in the replication of viral genomes. In: Romanowski V (ed) Current issues in molecular virology-viral genetics and biotechnological applications. http://www.intechopen.com/books/current-issues-in-molecular-virology-viral-genetics-and-biotechnological-applications/rna-5-end-maturation-a-crucial-step-in-the-replication-of-viral-genomes
  35. 35.
    Kato H, Takeuchi O, Mikamo-Satoh E et al (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610CrossRefGoogle Scholar
  36. 36.
    Leung DW, Amarasinghe GK (2016) When your cap matters: structural insights into self vs non-self recognition of 5′ RNA by immunomodulatory host proteins. Curr Opin Struct Biol 36:133–141CrossRefGoogle Scholar
  37. 37.
    Vladimer GI, Górna MW, Superti-Furga G (2014) IFITs: emerging roles as key anti-viral proteins. Front Immunol 5(9):1–9Google Scholar
  38. 38.
    Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798CrossRefGoogle Scholar
  39. 39.
    Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH (1995) Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem 270:6298–6307CrossRefGoogle Scholar
  40. 40.
    Nacheva GA, Berzal-Herranz A (2003) Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. Eur J Biochem 270:1458–1465CrossRefGoogle Scholar
  41. 41.
    Arnaud-Barbe N, Cheynet-Sauvion V, Oriol G et al (1998) Transcription of RNA templates by T7 RNA polymerase. Nucleic Acids Res 26:3550–3554CrossRefGoogle Scholar
  42. 42.
    Karikó K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-coding mRNA. Nucleic Acids Res 39:e142CrossRefGoogle Scholar
  43. 43.
    Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175CrossRefGoogle Scholar
  44. 44.
    Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16:1833–1840CrossRefGoogle Scholar
  45. 45.
    Nallagatla SR, Bevilacqua PC (2008) Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA 14:1201–1213CrossRefGoogle Scholar
  46. 46.
    Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Karikó K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892CrossRefGoogle Scholar
  47. 47.
    Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaegar TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630CrossRefGoogle Scholar
  48. 48.
    Schrum, JP, Afeyan NB, Seiczkiewicz GJ, Bancel S, de Fougerolles A, Elbashir S (2012) US 20120251618 Delivery and formulation of engineered nucleic acidsGoogle Scholar
  49. 49.
    de Fougerolles A, Roy A, Schrum JP, Siddiqi S, Hatala P, Bancel S (2013) US 20130115272 Modified nucleosides, nucleotides, and nucleic acids, and uses thereofGoogle Scholar
  50. 50.
    Pardi N, Tuyishme S, Muramatsu H et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Controlled Release 217:345–351CrossRefGoogle Scholar
  51. 51.
    Andries O, McCafferty S, De Smedt SC et al (2015) N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Controlled Release 217:337–344CrossRefGoogle Scholar
  52. 52.
    Li B, Luo X, Dong Y (2016) Effects of chemically modified messenger RNA on protein expression. Bioconjug Chem 27:849–853CrossRefGoogle Scholar
  53. 53.
    Presnyak V, Alhusaini N, Chen YH et al (2015) Codon optimality is a major determinant of mRNA stability. Cell 160:1111–1124CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthew G. Stanton
    • 1
  • Kerry E. Murphy-Benenato
    • 1
  1. 1.Moderna TherapeuticsCambridgeUSA

Personalised recommendations